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Structural Relaxation in a Binary Mixture
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We study the dynamic feedback mechanism of the mode-coupling model in a binary liquid
in the context of structural Glass transition. The dependence of the dynamic transition point
on the mass ratio of the constituents in the mixture is studied from the model equations.
The effects of slow structural relaxation on the single particle dynamics are also analyzed.
The feedback effects on the tagged particle dynamics from coupling of density fluctuations
show that the extrapolated self-diffusion coefficient approaches zero at a low temperature in
agreement with simulation results.

§1. The model studied

The self-consistent mode-coupling theory (MCT) has provided a microscopic
basis for understanding the slow dynamics in supercooled liquids. In a one compo-
nent system the mode-coupling model constitutes a dynamic feedback mechanism to
enhance the viscosity or equivalently reduce diffusion coefficient. We use a similar
theoretical approach for a binary liquid in the context of structural Glass transition.
Binary systems are particularly interesting since they are widely used for simulation
studies of supercooled liquids!):?) since two component systems seem to avoid the
crystallization and continue to remain in the disordered state till very high density.
Density correlation function between components s and s’ in the mixture is defined
as, Cser(q,t) = N~H6ps(q,t)6ps(—q,0)). Time evolution of the correlation functions
is obtained in terms of the matrix equation,

Xss' = Qs0gSsg 1S the equal-time density correlation function matrix. as = mgy/ns
and ngy = Ns/N; m; is the mass of the species s. S,y is the partial structure factor
between s and s’. The memory function M(q, z) is expressed as

M(q,2) = ¢* [i MB(q) + porx (q)/{z +i¢* TR (g, 2)}] . (1-2)

M5B _.(q) = v0(q)(—1)*+* is related to the bare inter-diffusion constant. x.y= z.z,
with s = mgsns/p, and py = ming + mans. 't = [y + ™ with ™ represents
the mode-coupling contribution to longitudinal viscosity. Up to the one loop order,
the MC contribution is given by

dk
Lo [ 22y (g k) Vie(g, k1) Cre (k, 1) Cls(k1,t),  (1:3)

where k; = cj’—lg and the vertex function is given by Viy (g, k) = (asas) LGk Ese (k)+
g.k1 sy (k1)], css being the direct correlation functions for the binary liquid. pq =
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[n1S11 + R2(2,/n1n2S12 + n2S22)]A™1, A = (n1 + R?n2) and R represents the mass-
ratio, ma/m;.

The long time limit of the density correlation function, known as the non-
ergodicity parameter (NEP), fso(q) = Cssr(q,t = 00)//XssXs's'- In the asymptotic
limit of time (2 — 0), Eq. (1-1) reduce to

)= 0T

+ 20(a)I'(q)

with I'(q) being the long time limit of the memory function given by Eq. (1-3).

20(q) = D5 ¢ (asay /po)Sss(q). The matrix (s (q) is given in terms of the structure

of the system, (so(q) = @;0;5:5(¢)S;s(q)/(por/Sss(q)Ss's(q)). A non-zero solution

for the fss(q) at the critical point marks the dynamic transition to a non-ergodic
phase.

(1-4)

§2. Numerical solution of MCT equations

2.1. Mass ratio dependence of transition

The dynamic transition of the bianary liquid as predicted in the earlier works®
using the mode coupling approach does not depend on R®. This dependence of the
dynamic transition point on R follows naturally from our model equations. We study
here the model equation (1-4) with input structure factor of a binary hard sphere
system. The characteristic properties for the systems are, (a) the fractional concen-
tration of bigger particles x, (b) The size ratio a(= o01/02), of the diameters of the
two species, and (c¢) the total packing fraction n = n; + 12, where n; = %n5033, Ng
being the number of particles per unit volume of sth species. For high values of the
ratio, ® > 2, i.e., the bigger sized particles with higher mass, we find that there is no
significant change in the transition point. This is in qualitative agreement with the
simulation studies on the binary mixtures. However, for the case of bigger particles
having less inertia than the smaller particles, i.e., ® < 1, a significant change in tran-
sition point is observed. A similar qualitative dependence on the mass-ratio is also
found in the non-ergodicity parameters. Recent computer simulations demonstrate
dependence of the diffusivity on the transport properties.?)

2.2. Single particle dynamics

The tagged particle density correlation function is defined as, G*(|F — 7|, t) =
V (§(F—R(t))6(7 = R(0))), where R%(t): position of the ath particle of the sth species
(s = 1,2). In the two limiting cases of free particle (t — 0) and diffusive regimes
(t = o0), G%(r,t) follows Gaussian distribution in space.”) Tagged correlation for
the uth species at wave vector g, 15 (q,t) is described by

Py v Yt o t Pl

o2 “ID—HE—‘FQ Uu¢g+L dTKu(q,t—T) P =0, w=12, (2-1)
where v> = KgT/my,. D, represents the bare self-diffusion coefficient for uth
species.®) In a dense liquid the correlated motion of the tagged particle with the
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surrounding bath particles is accounted through the memory function K,(q,t) ob-
tained from the generalization of the one-component result,

Ku0.) = M [ s S Vi (B0, 007~ Bl ) (2:2)

v,V

with VY, (k) = (§.k)28y(k)éy (k) \/Suu (k) Sy (k) and A, = 02/, ny, is the num-
ber density corresponding to the uth species. ¢ = ¢/q.

For obtaining Egs. (2:1) and (2-2) it is required to write down the equation
for the tagged particle momentum in a TDGL form. This can be only considered
approximate since the tagged particle momentum is not a conserved property.

We consider the model equations here for the Kob-Andersen (KA) binary system
characterized by the Lennard Jones (LJ) interaction potential. We take mi = mo
here. Partial structure factors are obtained from the self-consistent solution of inte-
gral equations following the method outlined in Ref. 7). The mean-square displace-
ment (r?(t)) crosses over from ballistic (~ #2) at short times to a diffusive behavior
(~ t) at longest times. Over intermediate times the growth of (r2(t)) is substantially
reduced due to the manifestation of the cage effect. From the long time fit to (r?(t))
curve, we obtain the self-diffusion coefficients D, for both the species (u = 1,2)
at different temperatures. Power law fits to the D, indicate that at a tempera-
ture around 7, = 0.44 the diffusion coefficients for both the species would vanish
on extrapolation. This value of T, is close to the simulation prediction for ideal
glass transition temperature at T = 0.435%) which is also concluded from a similar
extrapolation procedure.

In the supercooled liquid there is a fraction of particles termed as “mobile” par-
ticles, move further than what is predicted by a Gaussian approximation at a given
time. These particles are identified in the present model by comparing the actual
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Fig. 1. Distribution of the bigger particles 47r2G*(r,t) corresponding t = t* at which the peak
in as(t) occurs, at T = 0.451. The Gaussian distribution, 4rr’G(r,t), where G(r,t) =
[3/27(r2(t))2]%/2 exp[—3r2/2(r?(t))2], is also shown with dashed curve at the same tempera-
ture. Inset shows the relative difference (G°(r,t) — G3(r,t))/Gy(r,t) at T = 0.451. Arrows,
both in the main figure and the inset, indicate the position of 7* (see text). o2z is the hard core
of the Lennard-Jones potential of species 2.
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distribution for the single particle probability with a corresponding homogeneous
(Gaussian) distribution.?) It was shown in Ref. 10) that the mobile particles tend to
form clusters in the system which contribute to the heterogeneous character of the
system. The fraction of mobile particles,

bup = / oo 4G (r, 1) (2:3)

is computed at three different temperatures, T* = 0.45, 0.48 and 0.55. This fraction
increases as the temperature is lowered. This is in the background of the system
getting more jammed with lowering of the temperature. The fraction of mobile
particles over the temperature range considered here constitutes only roughly 5.4%—
6.4% of the total particles. In the computer simulation of the same system Kob et
al.9 have identified a similar fraction of particles having higher mobility.

§3. Conclusion

Earlier MCT models'? 1) predict the dynamic transition at a much lower den-
sity in comparison to the simulation study on binary systems.®) The present model
improves this. The dynamic transition shows a dependence on mass ratio of the
particles here. We have also studied the nature of the single particle dynamics in
terms of the van Hove self-correlation function. Memory effects due to coupling with
slowly decaying density correlations are included. As the temperature is lowered the
particles tend to get more jammed with a fraction of the particles remaining more
mobile. We observe a fraction of the mobile particles (5-6 %) increase with lowering
of temperature and thus signifying the growing heterogeneity in the system. This is
in agreement with the corresponding results from the simulation.
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