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  Ensemble  learning ef  K  simple  perceptrons,  whieh  determine their outputs  by sign  func-
tiens, is discussed within  the framework  of  online  learning and  statistical  mechanics.  Heb-
bian, perceptren  and  Adal[lron learning show  different characteristics  in their aMnity  fbr
ensemble  learning, that is "maintaining

 variety  among  students",  Results show  that Ada-
[[ton learning is superior  to the other  two  rules.

gl. Introduction

   Ensemble  learningi)-6) means  to combine  many  rules  or  learning machines  (stu-
dents in the  fo11owing) that perfbrm poorly. Theoretical studies  analyzing  the  gen-
eralization  performance by using  statistical  mechanics7)'8)  have been performed vig-

orously.4)-6)  Hebbian  learning, perceptron learning and  AdaTlron learning are  well-

known  as  learning rules  for a  simple  perceptron.9)ft 
i2)

 Determining difierences among

ensemble  learnings with  these  three learning rules  is a  very  attractive  problem. We

discuss ensemble  learning of  K  simple  perceptrons within  the framework of  online

learning and  finite K.i3)]i4)

g2. Model

   Each  student  treated  in this paper  is a  perceptron.  An  ensemble  of  K  students  is

considered.  Connection weights  of  students  are  Ji, J2, ･ ･ ･ 
,
 JK.  J and  input x  are

Ai dimensional vectors.  Each component  xi of  x  is assumed  to be an  independent
random  variable  that obeys  the Gaussian distribution N(O, 1/N). Each component
of JOk, that is the initial value  of Jk, is assumed  to be generated according  to N(O, 1)

independently. Each  student's  output  is sgn(uili),sgn(u2t2),-･･,sgn(uKIK)  where

uiclk  =  JXx.  In this paper, uk  is called  a  normalized  internal potential of  a  student.

   The teacher is also  perceptron. The  teacher's connection  weight  is B.  In this

paper,  B  is assumed  to be fixed where  B  is also  an  N  dimensional vector.  Each

component  Bi is assumed  to be generated according  to N(O, 1) independently. The
teacher's output  is sgn(v)  where  v  =  BTx.  Here, v  represents  an  internal potential
of  the teacher.
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    In this paper the thermodynamic  limit N  -  oo  is also  treated. Therefore,

 xl =  1, Bl =  IJOk =  V]V. Generally, anorm  of student  IJk changes  as  the  time

step  proceeds. Therefore, the  raLio  lk of the norm  to V]V is considered  and  is called
a length of  student  Jk. That is, IJkl =  lkvf]ii7 . The  common  input x  is presented
to the  teacher  and  all  students  in the same  order.  Within the framework of  online

learning, the  update  can  be expressed  as  JT+i =  Jge +  fMixM , where  m  denotes

time step  and  fh"i =  f(sgn(vM),uXi) is a  function deterinined by learning rule.

    In this paper, two methods  are  treated to determine an  ensemble  output.  One
is the majority  vote  of  K  students.  Another  method  is adopting  an  output  of  a  new

perceptron whose  connection  weight  is the  mean  of  the  weights  of  K  students.  This
method  is simply  called  the weight  mean  in this paper.

                              g3. Theory

    In this paper, the  majority  vote  and  the weight  mean  are  treated to determine
an  ensemble  output.  We  use  E =  e(-sgn(v)£  II=isgn(?tk)) and  E =  e(-sgn(v)
･sgn(2ff..i uk))  as  error  c for the  majority  vote  and  the weight  mean,  respectively.

Here, e(-) is the  step  function. Generalization error  Eg  is defined as  the average  of

error  c over  the probability distribution p(m) of  input x.  Therefbre, the generalization
error  Eg  can  be also  described as

              cg =  f dxp(x)E =  f kll
"

=,

 dukdvp({uk}, v)c({uk},  v), (3 1)

by using  the  probability  distribution p({uk},v) of  uk  and  v. As t･he thermodynamic
limit N  -  oo  is also  considered  in this paper, uk  and  v  obey  the multiple  Gaussian
distribution based on  the  central  limit theorem.  All diagonal components  of  the
covariaiice  matrix  X  of  p({uk},v) equal  unity.  Let us  discuss a direction cosine

between  connection  weights  as  preparation fbr obtaining  non-diagonal  components.

Rk  E  BTJkllBllJkl  is called  the similarity  between  teacher  and  student.  qklef i

Jik'Jk,/IJhllJktl is called  the similarity  among  students.  Covariance between an

internal poteiitial v  of  a  teacher B  and  a  normalized  internal potential ?tk of  a  student

Jh equals  a  similarity  Rk. Covariance between a normalized  internal poteiitial uk  of

a  student  Jk and  a  normalized  internal potential ukr  of  another  student  Jkr equals
a  similarity  qkk, . Therefore, Eq. (3･1) can  be rewritten  as

                Eg =  f ,ll
"

=,dukdvp({itte},v)E({uk},v),

 (3 2)

         P({itk}' V) =  
(2,,)"ililxli
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As  a result,  a  generalization error  Eg  can  be  calculated  if all similarities  Rk and  qkk,
are  obtained.  Differential equations  regarding  tk and  Rk fbr general learning rules

have been obtained  based on  selfaveraging  as fo11ows,9)

dlkdt<.fkUk>
 +<fe>dRk<fkv>

 
-

 <fkttk> Rk
21k 

'dt

lk
-
 :i,2: <fz>, (3J5)

where  <･> stands  fbr the  sample  average.

tained  as  fo11ows from selfaveraging.4),i3)iA14)differential

 equation  regarding  q is ob-

dqhk,<fk,Uh>-qkk,  <fk,Uk,>+<fkUk,> -qkk,  <fkUk>
dt

+<fkfk,)

lkr

-qsk'
 (<fi>'<Ilkli>)

lk

lklh, (3･6)

g4. Result

   The update  procedures  f(sgn(v), u)  for Hebbian, perceptron and  Ada[[lrron learn-
ing are  sgn(v),  e  (-uv) sgn(v)  and  

-ue
 (-uv), respectively.  Using these expressions,

<fkuk>, <fkv> and  <,ee> can  be obtained.9)'i6)  <kukt> and  <kk,> are  also  derived

analytically,]3)ii4)  Dynamical behaviors of  R  and  q have been obtained  numerically

by solving  Eqs. (3･5), (3･6) and  these sample  averages,  We  have obtained  numerical

ensemble  generalization errors  cg  by using  Eqs. (3･2)-(3･4) and  the above  R  and  q.
Figures 1-3 show  the relationships  between K  and  the effect  of  ensemble  obtained  by
the  Metropolis method  using  the  values  of  R  and  q calculated  numerically.  In these

figures, MV  and  WM  indicate the  majority  vote  and  the  weight  mean,  respectively.

The  ordinates  have been normalized  by the theoretica] ensemble  generalization error

of  K  =  1 and  t =  50. Computer simulations  were  executed  with  N  =  104.
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g5. Discussion

   Figures 1 -  3 show  that  the generalization errors  of  the three learning rules  are

all improved  by ensemble  learning. However, the degree of  improvement is small

in Hebbian  learning and  large in Ada'Ibon learning, We  discuss the  reason  fbr this

difference in the following,

   Each  student  moves  towards  teacher  as  learning proceeds. Therefore, similarities

R  and  q increase and  approach  unity,  leading to R  and  q becoming less irrelevant to

each  other,  Then, if q is relatively  smaller  when  compared  with  Rh, variety  among

students  is further maintained  and  the effect  of  the ensemble  can  be  considered  as

large. Therefbre, the relationship  between  R  and  q is essential  in cnsemble  learning,
Tb  illustrate this, Fig. 4 shows  the relationship  by taking  R  and  q as  axes.  In this

figure, the  curve  for Ada[[liron learning is located in the bottom. That is, ofthe  three

learning rules,  the one  offering  the  smallest  q when  compared  with  R  is AdaTron

learning. In other  words,  the learning rule  in which  the rising  of  q is the slowest
and  the  variety  among  students  is maintained  best is Adarllr]on learning. From the

perspective  of  the difference between the  majority  vote  and  the  weight  mean,  Figs. 1
-
 3 show  that  the irnprovement by weight  mean  is larger than that by majority  vote

in all three learning rules,
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