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   Spiral instabilities and  their controls  are  investigated in a  reaction-diffusion  system  using

the  Belousov-Zhabotinsky reaction.  Two  spiral  instabilities, the long-waNelength instability
and  the  Doppler instability, are  reported,  which  can  lead to spatiotemporal  chaos.  The  long-
wavelength  instability occurs  in an  oscillatory  regime,  while  the  Doppler instability occurs  in
an  excitable  regime.  [[b control  these  two  instabilities, two  different strategies  are  proposed
according  to their defecVgenerating mechanisms,  R)r the  long-wavelength instability in an
oscillatory  system,  the  control  can  be achieved  by introducing a  local pacemaker, which  emits

stable  travelling waves  to sweep  off  the unstable  spiral  defects. R)r the Doppler instability,
the  control  can  be achieved  by trapping  the spiral  tip with  a  locar area  of  higher  diffusion
coeMcient  than its surroundings.

gl. Introduction

   In reaction-diffusion  systems,  spiral  waves  are  one  of  the  characteristic  patterns
which  widely  exists  in chemical,  biological, physiological, and  physical systems.  A
normal  spiral  consists  of  a  spiral  tip and  travelling wavesl  the tip rotates  around  a

regular  circle, sending  the waves  out.  In a  certain  range  of  control  parameters,  the

normal  spiral  may  lose its stability:  it may  meander,  with  its tip giving cycloid  tra-

jectory; or  even  break, with  more  and  more  new  tips generated, making  the whole

system  chaotic.  [Eransitions from  ordered  spiral  waves  to defect-mediated turbu-

lence have been well  studied  in theory,i)m5) and  observed  both in experiments6)-9)
and  numerical  simulations.iO)-i3)  The  study  of  transitions to defect-mediated turbu-

lence becomes one  of  the most  promising routes  to investigate spatiotemporal  chaos.

Moreover, studies  on  animal  hearts show  that the motion  of  spiral  waves  is closely

related  to re-entrant  excitation,  and  the  instability of  the spiral  waves  leads to car-

diac fibrillation, which  causes  life-threatening situations.i4)-i6)  So understanding

spiral  dynamics  and  control  spiral  instabilities are  of  great value  both in theory and
application.

    Spiral waves  in reaction-diffusion  systems  can  be sorted  into two  categories:  spi-

rals  in excitable  systems  and  spirals  in oscillatory  systems.  The  dynamical  behavior

of  spiral  waves  in an  excitable  medium  is governed  by  the  dispersion relatioll,  which

relates  the speed  to the period  of  travelling wayes,  and  the critical  relation,  which

relates  the  rotating  speed  to the  wave  front curvature.i7)  In the  dispersion rela-

tion, there exists  a  minimum  period, below which  the system  cannot  recover  to its
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excitable  state,  and  travelling wa;ves  cease  to exist.i7)'i8)  When  the Doppler insta-

bility occurs,  due to the Doppler effect, the local period  of  spiral  waves  becomes

less than  the minimum  period, rendering  the local chemical  waves  unstable,  thus

defects are  spontaneously  created.  In this case,  the  key of  effective  control  of  spiral

instability is to confine  the motion  of  the spiral  tip. In previous studies,  researchers

have successfully  controlled  an  excitable  spiral  tip with  external  infiuencesi9) and

localized inhomogeneities of  defects.20) We  find that the local difference of diffusion

coeMcient  can  also  lead to the attraction  of  spiral  tip.2i) It may  affbrd  us  a  new  way

to control  the instability caused  by meandering  of  the spiral  tip.

   Spirals in oscillatory  systems  are  generated with  the  spatiotemporal  phase  dif

ference of  the periodic oscillations.  When  the reaction-diffusion  system  is near  a

supercritical  Hepf bifurcation, it can  be described by the complex  Ginzburg-Landau

equation  (CGLE), Wave  instabilities have been extensively  studied  in the CGLE.22)

In our  BZ  reaction  system,  the  long-wavelength instability, under  which  the spiral  is

modulated  by a  long-warvelength wave  and  the modulation  has a  convective  nature,  is

possibly related  to Eckhaus  instability in CGLE  systems.  In a  CGLE  system,  people

have a'chieved  the spatiotemporal  turbulence control  through  tracing and  stabiliz-

ing one  previously unstable  wave-generating  defect by iniecting weak  perturbations

near  the defect core.23),24)  Thus  a  stable  spiral  is developed to cover  the entire

uncontrolled  region  along  the wa;ve  propagation direction. Recently we  find that,

by introducing a local pacemaker  at a  random  location in the system  described by

a  two-dimensional (2D) CGLE,  spiral  turbulence can  be controlled  by a  stable  tar-

get wave  produced  around  the  pacemaker.25) This simple  and  effective  method  is

hopeful to be  applied  in reaction-diffusion  systems.

   In this paper, we  review  our  systematic  experimental  studies  of  dynamical be-

havior of  spiral  waves  and  spiral  instabilities in an  spatially  extended  Belousov-

Zhabotinsky (BZ) reaction  system.  Then,  according  to the analysis  of  the  mech-

anisms  leading to chemical  turbulence in the  two  instabilities, we  discuss two  new

strategies  to control  the two  instabilities respectively.

g2. Phasediagram

   Our experiments  are  conducted  in a spatial  open  reactor,26)  using  the  ferroin/

(Fe(phen)g+) catalyzed  BZ  reaction.  Figure 1 gives a  slice  of  the phase  diagram

using  [MA] and  [H2S04] as  control  parameters, with  [NaBr03] is fixed at  O.6 M,

[KBr]= O.03 M, [ferroin]= 1.5 mM.  About 80 different points  are  studied  and  cate-

gorized. The  phase diagram can  be divided into several  domains. Each is labelled

according  to the observed  patternS: simply  rotating  spiral  (S), meandering  spiral

(M), chemical  turbulence  due to the Doppler instability (D), convectively  unstable

spiral  (C), and  chemical  turbulence  due to the long-wavelength instability (T). The
solid  lines indicate the onsets  of  different instabilities of  spirals.  The dashed lines are

the extrapolation  of  the  solid  lines. In regions  M  and  D, the  medium  is excitable,

where  the wave  front is very  sharp.  In the region  of S near  the S-C boundary, the

medium  is oscillatory,  where  the waves  far from the sources  can  be well  described

with  sinusoidal  oscillations.
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Fig. 1, The  phase  diagram studied  in our  experiments  with  [MAI and  [H2S04] as  the control  pa-

  rameters.  The  solid  lines indicate the onsets  of  different instabilities, The  dashed lines are  the
  extrapolation  of  the  solid  lines.

   The S-M boundary in the  phase diagram defines a  transition from simple  spirals

to meandering  spirals.  At the onset,  the trajectory  of  the spiral  tip undergoes  a

Hopf bifurcation.27) As a  result,  it changes  from a  simple  circie  to an  epicycloid

or  a  hypocycloid, and  the local behavior of  the  spiral  waves  changes  from periodic
to quasi-periodic. In the meandering  state,  due  to the Doppler effect, the  tip of  a

spiral  emits  waves  that are  compressed  in front of  the tip and  dilated behind the
tip. Thus  the local wavelength  of  spiral  waves  is no  longer constant  but changes

periodically between a  maximum  and  a  minimum  value.  The  ensemble  of  Iocal
maximum  wavelength  forms a  super-spiral.  If one  continues  to decrease [MA] or to
increase [H2S04] to cross  the M-D  boundary (see Fig. 1), the Doppler instability will

take place and  defects are  perpetually generated near  the spiral  heads, until  chemical

turbulence occupies  the whole  reaction  medium.

   The  C  regimes  in the phase  diagram represent  regions  where  spiral  waves  undergo

a  long-wavelength instability that has a convective  nature.  Befbre the onset,  one

observes  a  stable  simple  rotating  spiral.  At the  onset  of  the instability (S-C boundary
in Fig. 1), a  long-wavelength modulated  spiral  appears  upon  the  carrier  waves.  This
modulation  spiral  seems  stable  within  our  finite size  of  reaction  medium.  Beyond
the  onset,  defects can  be generated far aMTay  from the spiral  centev.  However, due
to the convective  nature  of the instability,28) stable  modulated  waves  can  exist  in
a  finite size,  surrounded  by a  defect sea.  With  the  increase of  [H2S04], the region
of  defect-mediated turbulence  continuously  invades the region  of  stable  modulated

waves,  until  the later fu11y disappears as  the  control  parameter  crosses  the C-T
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boundary in the phase
reaction  medium  forms.diagram.

 As a  result,  the chemical  turbulence in the whole

g3. Long-wavelengthinstability

   When  the long-wavelength instability takes place, sustained  long-wavelength
modulated  spiral  waves  will  appear,  but the  pattern  is stable  in the  finite size  of

reactor.  As the amplitude  of  modulation  increases with  control  parameters, spiral

waves  break. Defects are  generated far away  from the center,  as  a  result  of  the

neighboring  two  wave  fronts being too  close.

   We  choose  the sulfuric  acid  concentration  in reservoir  B  as  the control  parameter,
keeping the other  parameters  fixed (see Fig. 1). When  the concentration  of  the sulfu-

ric acid  is below O.72 M,  one  observes  a  normal  spiral. Figure 2(a) gives an  example

f''im  ttt t'
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Fig, 2, The  snapshots  of  long-wavelength modulated  spirals  and  defect-mediated turbu]ence.

   [H2S04]B(in M): (a) O.63, simple  periodic  spiral; (b) O.765, onset  of  the long-wavelength in-

   stability;  (c) O.90, fu11 developed modulated  spirals;  (d) O.94, and  (e) O.95, onset  and  beyond of

   defect-mediated turbulence; (f) O.97, a  state  of  compact  laminar  disks. The  images  shown  are

   13.3 × 13.3 mm2,
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of  such  a  state,  where  the  gray level of  the picture corresponds  to the concentra-

tion of  ferriin. As the control  parameter  is increased to across  a  critical  value  (O.72
M),  the  long-wave!ength instability settles  in. Apparent spatially  rnodulated  waves

emerge  so  that the distance between successive  wa;ve  fronts (the local wavelength)
varies  spatially,  as  shown  in Figs. 2(b) and  (c). Between  [H2S04]B =  0.72, O.94 M,

no  additional  defects appea[r  and  the long-wayelength modulated  spiral  is sustained
in the finite reaction  medium.  If we  fo11ow one  wave  front for the long wavelength
instability, the local wavelength  varies,  which  means  that  the  modulation  wa;ves  have

a  relative  velocity  (named convective  velocity)  Ii2; to the carrier  waves.  In our  ex-

periments, the direction of  the conyective  velocity  points  to the  center  of  the  spiral

warves.  The  convective  velocities  become larger with  the increase of  control  parame-
ter. From  these results,  the onset  of  the long-wavelength instability is possibly due
to the Eckhaus  instability, which  we  describe in the  next  section.  As  the control

parameter  is increased across  another  threshold (O.94 M), defects are  continuously

generated (see Figs. 2(d)-(f)). The spiral  breakup takes place  far away  from the
center,  and  there  exists  a  disk of  laminar core  of  the spiral  where  turbulence cannot
invade. Thus  the system  is separated  into two  different regimes:  ordered  spiral  waves

inside the core  and  defect-mediated turbulence outside  of  core.  The  size  of  laminar

core  decreases as  the  increase of  control  parameter. However, in the turbulent sea

there are  some  of  the defects having chances  to develop into spirals,  generating many
laminar cores  of  ordered  spirals.  The  sizes  of  the }aminar cores  tend to be equal  and

the  cores  tend  to fbrm  a  compact  pattern (see Fig. 2(f)). At last, when  [H2S04] is
above  1.0 M,  the turbulence state  will  invade the  whole  space,  which  is not  shown

here.

S4. Control oflong-wavelength  instability

   In an  oscillatory  system  near  the onset  of  Hopf  bifurcation, the system's  variable

can  be written  as  a  function of  time  t:

                    uFs  uo+A(R,  T) exp(iwHT)  +c.c. (4･1)

In the ferroin catalyzed  BZ  reaction,  u  corresponds  to the concentration  of  ferriin, caH

is the Hopf  frequency, and  A  is the complex  amplitude  of  oscillations.  The dynamics
that  A  obeys  can  be simplified  to a CGLE.  It has the form

                  OA

                  
-ziF7t

 
=A-(1+ic)IA12A+(i+ib)v2A,

 (4.2)

where  b and  c  are  real  control  parameters,v2 =  02/5x2 +  a2/Oy2, and  A(r,t) is the
complex  variable.  A  steadily  rotating  spiral  solution  of  Eq. (4･2) has the  general
form

                  A(r, t) =  F(r) exp{i  [aO+ th (r) -wtl}.  (4･3)
Ibr large r the spiral  wave  asymptotes  to a plane wave  with  the wave  number  k =:

(dthldr)lr.oo, which  is independent  of  r. Substituting the constant  amplitude  plane
wave  solution  A  =  ViTEI2exp(ikr -  iavt) into Eq. (4･2), one  can  get the fbllowing
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dispersion relation:

                          av =c+  (b-c)k2. (4･4)
If one  ignores the curvature  effect,  a  target wave  solution  can  be considered  as  a

plane  wave  solution,  so  that the dispersion relation  of  Eq. (4･4) is approximately

valid  to target  wave  selutions.  The  linear stability  analyses29),30)  show  that in the

long-wayelength limit, the  complex  growth  rate  A as  a  function of  the  wave  number

of  inhomogeneous  perturbations  p  satisfies

                      A(p)=iv,p-D"p2+O(p3),  (4-5)

where  vg  =  2(c -  b)k and  DpF =  1 +  bc -  2k2(1 +  c2)/(1  
-
 k2). When  Dlh <  O, the

so-called  Eckhaus instability occurs.  This instability is a  long-wavelength instability

and  has convective  nature.  When  1 +  bc <  O, the so-called  Benjamin-Feir instability
occurs,  and  the system  is unstable  for all planar  waves  with  any  wave  number  k, as
Dll <  O,

   A  cut  of  the phase  diagram  in the blc-k parameter  space  with  fixed b =  
-1.4

 is

shown  in Fig. 3. Several regions  where  the plane-wave solution  has different stabil-

ities22) are  shown.  The convectively  unstable  region  is due  to Eckhaus  instability,

where  the travelling waves  of  certain  wave  numbers  can  remain  stable  in the convec-
tive sense,  because the growth  rate  of  a  perturbation is smaller  than  the travelling

speed  of  the wayes.  In the  absolutely  unstable  region,  the perturbation growth  rate

becomes larger than  the wave  speed.  In this case  the  system  will  quickly  fa11 into a

state  of defect-mediated turbulence. R)r a spiral  wave  solution,  the  wave  number  k

is uniquely  determined by  the  parameters  b and  c, as  shown  in Fig. 3. Thus, with  a

a.o

     

k o.s 

     

o.o
 o.o O.5 t.o 1.5

c

Fig. 3, Regions with  different stabilities  in the k-c plane  with  b =:  
-1.4.

 [I]he solid  line and  dotted

  ]ine are  the onset  of  absolute  instability and  convective  instability, respectively.  The  wave

  numbers  of  the spiral  waves  (dark dots) are  uniquely  decided by the  parameters  b and  c.
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fixed value  b =  
-1.4,

 there exist  a  critical  value  co  =  O.8, beyond which  the system
undergoes  the transition from ordered  spiral  waves  to spiral  turbulence.

   Under the assumption  that the spiral  waves  described in the previous  section  are

due to a  Hopf bifurcation, and  that the instability described in the previous section
is due to Eckhaus  instability, we  develop our  spiral  instability control  strategy.  Our
study  focuses on  controlling  spiral  turbulence in the absolutely  unstable  region.  In
the  fo11owing numerical  simulations,  the  space  variables  are  discretized to 256 × 256

sites under  ne-flux  boundary conditions.  We  start  with  random  initial conditions

with  parameter  c  =  O.9, which  is in the absolutely  unstable  region,  as  shown  in
Fig. 3. We  wait  until  the state  of  spiral  turbulence is fu11y developed; an  example  of

such  a  state  is shown  in Fig. 4(a). Then  at  control  time t =  O we  introduce to the
system  a spatially  localized pacemaker  by changing  parameter  c from  O.9 to ci  =  O.6
in the central  5 x  5 sites (actually arbitrary  position also  works).  Concentric waves
are  automatically  emitted  from the  pacemaker at t =  450  t.u. (see Fig. 4(b)). The

target waves  are  stable,  and  gradually invade into the region  where  spiral  turbulence

previously dominates (see Fig. 4(c)). Finally after  t =:  1500 t.u., the whole  system  is

dominated  by one  large target wave  and  the control  is achieved,  as shown  in Fig. 4(d).

   As proved  by previous experiments3i)-33)  as well  as  numerical  simulations  of

inhomogeneous  CGLE,34) introducing pacemaker  changes  the  local frequency ofthe
bulk oscillation  (wo).35) The  frequency change  in the local area  should  be large
enough  to show  the inhomogeneity, which  is necessary  to create  a  target wave.  In

our  simulations,  we  find that the difference ofc  should  be larger than  O.3. As a

tff/t.
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Fig. 4, Numerical simulation  of  the spiral  turbulence control  with  atarget  wave,  (a) t=  O, the

  control  starts;  (b) t =  450 t,u., the target wave  appears;  (c) t =  1000  t.u., the target wave

  alrnost  dorninates the system;  (d) t =  1500 t,u., the whole  systern  is occupied  by a  large target
  wave.
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result,  a  target wave  with  the same  frequency as  the pacemaker  (wT) is generated.
Inside the introduced small  area  the system  is in the  state  of  homogeneous  oscillation

with  frequency wl  =  cJ,36)  this determines the  frequency of  the target wave  outside

of  the  small  area,  where  the dispersion relation  holds (see Eq. (4･4)). As a  result  we

have ci =  c  =  (b -  c)k2,  which  gives the wave  number  k of  the  target wave:

                 ic= (c-cvT)/(c-b)= (c-cJ)/(c-b). (4･6)
   According to Eq. (4-6), with  the fixed b and  c, the  value  of  k will  decrease
with  the increase of  the  value  of  w.  Thus, it is possible to drive the wave  number

of  the trayelling wave  from an  absolutely  unstable  region  to a  convective  unstable

region  (see Fig. 3) by increasing the firequency of  a  travelling wave,  [rhis region

is displayed in cv-c  or  ci-c  plane in Fig. 5, where  the solid  line corresponds  to the

onset  of  absolute  instability for plane  waves,  which  determines the minimum  and  the
maximum  of  wT.  The vertical  dashed line (c =  O.8) is the  onset  of  absolute  instability
fbr spiral  waves;  thus a  target wa:ve  is stable  but a  spiral  wave  is unstable  in the  area

defined by the dashed line and  the solid  line in Fig. 5. The  dotted line in the  middle

represents  the  existence  condition  for ta[rget wave,  beyond which  taJrget waves  cannot

be automatically  generated by introducing a  pacemaker  in a  local region.

   In addition  to the fact that the target wave  is stable,  to achieve  the control  of

spatiotemporal  chaos,  the target wave  should  be able  to develop, which  means  that

the domain walls  between target wave  and  spiral  turbulence  should  move  outward,

to

1.e

O.5

o.o

-O.5

e,o O.5
 c

t,o

Fig, 5, Phase diagram in the w-c  plane. The  solid  line and  dashed Iine show  the onset  of  absolute

   instability for plane  waves  and  for spiral  waves,  respectively.  The  dotted line in the middle

   represents  the  existence  condition  for target wave  ci  S  c  -  O.3. The  black dots show  the change

   of  spiral  wave  frequency as  a  function of  c. A  sharp  increase occurs  at  the onset  of  spiral

   turbulence.  The  hatched area  is the region  where  the  control  can  be achieved.
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thus the target wave  eventually  should  dominate  the whole  system.  In the  parameter
space  of  CGLE  that we  are  now  interested, i.e., b=  -1.4,  c >  O, cJ >  O, [wTl <  c=

[cvol, the  firequency of  the  bulk oscillation  is IaTger than the asymptotic  firequency of

the wa;ve.  Thus, the movement  of  domain walls  is a  result  of  competition  between
antitarget  waves  and  antispiral  waves.36)  The request  that the phase of  the solution

must  be continuous  across  domain  boundaries provides an  equation  for the  velocity  of

the domain walls,37)  which  states  that, for the case  of b <  c, as  we  have, the pattern
with  the  lowest frequency will  dominate. Spiral wave  solutions  in an  absolutely

unstable  parameter  region  can  be regarded  as  little spiral  seeds  with  very  short

coTrelation  length. The black dots in Fig. 5 show  the frequency of  spiral  wave

solutions  w  as  a  function of  c. A  sharp  frequency increase at  the onset  of  spiral

turbulence is observed.  To  have advantages  oftarget  waves  over  the  spiral  turbulence,

wT  or  ci  must  be  smaller  than  the corresponding  frequency of  spiral  wave  solutions.

As a  result,  the hatched  area  in Fig. 5 is the  region  where  the  spiral  turbulence  can  be

controlled  by introducing a  pacemaker  and  generating a  target wave  in the system.

The  value  of  ci  can  continuously  change  inside the region.  Simulation results  with

different ci  are  consistent  with  this analysis.

g5. Dopplerinstability

   The  Doppler  instability occurs  in excitable  systems.  Its mechanisms  rise  from a
Hopf bifurcation contributing  to the  spiral  core,  which  makes  the  spiral  meandering.

Due  to the Doppler  effect, with  suficiently  large meandering,  defects can  be gener-
ated  when  two  adjacent  wave  fronts near  the core  are  too close,  so  that the  local
wavelength  is beyond the critical  value  allowed  by the dispersion relation.

   In the experiment,  we  use  the concentration  of  the malonic  acid  as  the control

parameter  with  the  others  fixed. At  high malonic  acid  concentration,  we  observe

a  periodic  (simple) rotating  spiral, as shown  in Fig. 6(d). The tip of  the spiral

fbllows a  small  circle,  as  indicated in Fig. 6(a). When  the malonic  acid  concen-

tration is decreased across  a  critical  value,  the system  undergoes  a  transition from
simple  rotating  spirals  to meandering  spirals,27),38)40)  and  the time dependence
of  the  concentrations  at  any  point in the  reaction-diffusion  medium  changes  from

periodic  to quasi-periodic. Two  types of  meandering  motion  have been observed  in

previous work:  hypocycloid (outward fiower petals) and  epicycloid  (inward flower

petals).27),38)ni) Under our  experimental  conditions,  the tip fo11ows a  hypocycloid
trace, as  shown  in Fig. 6(b). The orbit  is similar  to an  earth-moon  pattern where  the

primary  cycle  (moon) orbits  the  secondary  cycle  (earth) in one  direction and  rotates

about  its center  in the opposite  direction.27) As we  decrease the malonic  acid  con-

centration  in the  meandering  regime,  the  diameter of  the secondary  circle  increases
and  the petals of  spiral  tip orbit  grow. This large meandering  motion  is shown  in

Fig. 6(c). As a  consequence  of  the Doppler effect, spiral  waves  in front of  the spiral

tip are  compressed  and  those  behind  the  spiral  tip are  dilated, as  shown  in Fig. 6(f).
The local oscillation  period of  the meandering  spirals  is fbund  to vary  regularly  in

a  range  between  a minimum  and  a  ma[ximum  value,  The  size  of  the petals of  the

spiral  tip orbit  increases continuously  as  the  malonic  acid  concentration  is decreased,
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Fig. 6. [ibansition from aregular  spiral  to meandering  spirals  and  to spiral  turbulence as the  malonic

   acid  concentration  is decreased. (a)-(c) Enlargements of  the  central  part of  (d)-(f). The  white

   lines in (a)-(c) show  the orbit  of  the spiral  tip, and  the white  dots mark  the  location of  the

   spiral  tips in the background. Malonic acid  concentrations:  (a), (d) O,40 M, simple  spiral;  (b),
   (e) O.30 M,  onset  ef  meandering  spirali  (c), (f) O,13 M,  large meandering  spiral;  (d), O.10 M,

   spiral  turbulence.  Other contrel  parameters were  kept  fixed. The  region  shown  in (a)-(c) is

   7.5 × 7.5 mm2;  (d)-(g) 19.5 mm  in diameter.

so  that  the  Doppler  effect  on  the  spiral  waMes  becomes more  and  more  pronounced.

When  the control  parameter  passes a  second  critical  value  (O.12 M),  the  system

undergoes  another  transition characterized  by the Doppler instability: spiral  waves

near  the spiral  center  break and  the system  spontaneously  generates new  spiral  tips

(defects). This process continues  until  the whole  system  is fi11ed with  defects. Thus
the asymptotic  state  of  the system  is a  state  of  spatiotempoTal  turbulence, as  shown

in Fig. 6(g).

   The observed  phenomena  can  be well  explained  by an  instability mechanism

which  was  proposed by Bar et  al.iO)  The argument  is the  fbllowing: The  dispersion
relation  that relates  the speed  to the period of  the travelling waves  governs the

behavior of  spiral  waves  in an  excitable  medium.  The speed  of  the waves  depends on
how well  the local system  recovers  to its quiescent  state  after  being excited;  hence  it
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is an  increasing function of  the period of  waves.i7)  There exists  a  minimum  period
pmin below  which  the  system  cannot  recover  to its excitable  state, and  travelling
waves  will  cease  to exist.i7)'i8)  Generally the period of a  regular  spiral  waves  is a
little larger than  the minimum  period, thus spiral  waves  are  stable.  However,  when  a

spiral  tip meanders,  the  local period of  its waves  varies  because of  the Doppler  effect.

R])r suMciently  large meandering,  the local period of  spiral  waves  (po) becomes less
than  p.i., rendering  the local chemical  waves  unstable,  and  defects are  spontaneously

created.

g6. ControlofDopplerinstability

   If we  can  successfu11y  prevent  the spiral  tip from meandering,  we  may  avoid  the

Doppler  instability. In this section,  we  investigate the attract  effect  of  spiral  tip

by a  small  area  with  local diffusion coeMcient  inhomogeneity  in a  spatially  extended

two-variable FitzHugh-Nagumo  model,42)  The  normal  FitzHugh-Nagumo  model  has

the form:

                   g/ :=: (a-u)(u-1)u-v+D.v2u, (6-i)

                            Z/t =E(bu  -v)+D.  v2.,  (6.2)

where  u  and  v  are  dimensionless excitable  variable  and  recovery  variable  respectively;

D.  and  D.  are  diffusion coefficients  of  the two  variables.  When  O <  a  <  1, b l O,

Dv  <  Du, E  <  1, the equation  describes an  excitable  medium.  We  set  control

parameters  as  fbllows: a  =  O.1, b =  1.0, E =  O.005, D.  =  O,33, D.  =  O, and  simulate

the model  on  a  256 × 256 grid of  spatial  points (space unit  h =  1) with  no-flux

boundary condition.  We  create  a  spiral  wave  using  the  vertical  gradient distribution

in the  initial condition.  In the  asymptotic  state,  the spiral  tip fo11ows a hypocycloid
trajectory, showing  a  typical sign  of  meandering  state27)  (see Fig, 7(a)).
   Then  we  increase the  diffusion coeMcient  in a  small  circular  region  n  by D
times. If we  use  D.9 to denote the diffusion coeMcient  in region  9, and  use  De  for

                   (fl) (b)

Fig. 7. (a) Spiral wave  and  its tip's motion  in the homogeneous  media.  The  white  curve  is the

  trajectory of  the spiral  tip. (b) Spiral wave  and  its tip's motion  in the media  with  a  10 × 10

  grid area  of  inhomogeneity of  diffusion coeMcient.
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the region  outside  of  O, we  have D.n =  D  ･ D2. We  find that the spiral  tip can  be
attracted  and  travels around  the  region  9  when  D  is large enough  and  R  >  Ro (R
is the  radius  of  9; Ro is the core  radius  of  spiral  when  D9  =  D.n). Figure 7(b)

gives such  an  example.  At a  given R, we  can  define two  values  Di and  D2: When
D  <  Di, the tip cannot  be trapped; when  D  >  D2, the tip can  be trapped for a long

enough  period. A  temporal  attraction  occurs  when  Di <  D  <  D2; in this case  the

tip can  be trapped for a  short  period and  then escapes;  the  trapped  time increases

with  D. Defining D, as the mean  value  of  Di and  D2, the plot of D.  with  different

R  is shown  in Fig. 8.

   With  the relation  between the  spiral  core  radius  and  the diffusion coeMcient,

the  mechanism  of  the  spiral  tip attraction  can  be we!l  understood.  According  to

the analysis  of  the spiral  tip dynamics given by Ha[kim and  Karma,43) for a  sirnple

rotation  spiral  in an  excitable  medium,  the core  radius  R  as  a  function of  diffusion

coeMcient  can  be written  as

R=  tZi'L (B. 
b-K?s.)

312

 , (6･3)

where  D.  is the diffusion coeficient  of the activator  (u); clo is the speed  of  plane
wave;  b, K  and  B. are  all constants.  W  is the constant  width  of  the  excited  region.

In our  simulation,  we  assume  that at  the boundary of  9  there  exists  a  
C`virtual"

gradient region  of  D., which  links the  outside  and  inside regions.  For a  given R  of

the  region  O(R  >  Ro  =  R(D2)),  the 
"trapped"

 motion  of  the  spiral  tip requires  a

specific  value  of  D., satisfying  Eq. (6･3). When  D.  <  D.n, the spiral  tip will  enter

the  gradient region  where  the system  can  find the required  D.,  so  that the spiral  tip

will  rotate  around  the gradient area  at  the boundary of  9; on  the other  hand, when
D.  >  D.n, the `Ctrapped"

 motion  cannot  be sustained  by the central  region.  From
this argument,  at critical  point, we  will  have D.(R)  =  D.n =  D.  ･ D £. As shown  in

32

2.8

 v  2.4Q2.0

1.64
6  8 10

R  (s.u.)
1214

Fig. 8, The  critical  diffusion coeMcient  D.  as  a  function of  R, where  the  line is the best fitting with

   Eq, (6･3). The  error  bars are  estimated  using  Di  and  D2.
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Fig. 8, our  simulation  results  are  consistent  with  this analysis  within  the range  of

error.

   By  applying  the eikonal  equation,  which  determines the  
'relation

 between the
curvature  of  a  travelling wave  front and  its speed  in an  excitable  medium,  and  the

Luther relation,  which  describes the relation  between the  speed  of  chemical  waves

and  the diffusion coeMcient  of  activator,44)  we  prove the 
"trapped"

 state  of  spiral

tip motion  is a  stable  state.  The eikonal  equation  is: N  =  C-  Du  
E
 rc, where  N  is the

normal  wave  speed,  rc is the local curvature  of  the wave  front; the Luther  equation  is:
C  =  a  ･ vX[DI, where  cx is a  constant.  Inserting the Luther equation  into the eikonal
relation,  we  hatre

                          N=  or V]bll-D.K. (6･4)
[Ihking the partial derivative of  R  in Eq. (6･4), we  get

OolRV
 =  [Sa(D.)'i12 - rc] 

OoDRu
(6･5)

At the spiral  tip we  have N  =  O, so  that

aNeR      1

  
=

 

-IEKtip

tip

ODuOR
(6･6)

   In our  system,  assuming  a  continuous  change  of  D.  at  the boundary of  region  O,
we  have OD.10R  <  O. Thus  Eq. (6･6) indicates that  eN/ORItip >  0. That means,

if we  introduce a  small  deviation from the `Ctrapped"
 motion  of  the spiral  tip, the

system  will  return  to the "trapped"
 state  spontaneously,  because we  have IV' <  O

inside the region  O, and  N  >  O outside  the  region  9  (h points to the center  of O
region).  Thus  the  stability  of  the  trapped  state  of  spiral  tip is proved.

g7. Conclusion

   In conclusion,  we  have studied  the two  spiral  instabilities, long-wa:velength insta-
bility and  Doppler  instability, which  have been observed  in the BZ  reaction-diffusion

system.  These two  kinds of  instability mechanisms  of  spiral  waves  represent  typi-
cal  ways  from ordered  spiral  waves  to defect-mediated turbulence in 2D  reaction-

diffusion systems.  [[b achieve  control  of  the two instabilities, we  propose  two  perti-
nent  strategies  respectively.

   The  two  instabilities are  both on  the basis of  the two-dimensional structure,

However, the  three-dimensional effects  inevitably exist  in the  system.  There  are

multiple  chemical  gradients existing  across  the reaction  medium,  which  can  play a
crucial  role  under  some  conditions.  Winfree discusses the effect  of  a  non-negligible

thickness of  a reaction  medium.45)  It turns  out  that, if the  thickness  of  the  medium

is larger than  the  diameter  of  the rotor,  the rotor  becomes three-dimensional. Such
a  rotor  may  spontaneously  generate defects unless  confined  to a  layer thinner  than

about  a rotor  diameter. The  three-dimensional  structure  can  surely  change  the dy-
namics  of  the system,  such  as  the dispersion relation  and  spiral  stabilities.  There  are
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abundant  phenomena  concerned  with  three-dimensional effects.  A  large-scale, three-

dimensional investigation is in hand, including simulation  and  experiment  work.  And
recently,  some  control  methods  for three-dimensional instability are  proposed.
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