
Publication Office, Progress of Theoretical Physics

NII-Electronic Library Service

PublicationOffice,Progressof  Theoretical  Physics

202 Progress of Theoretical Physics Supplement No. 172, 2008

   Symmetry  Properties of  Black  Holes
in Higher Dimensional General  Relativity')

Akihiro IsHIBASHi

[l-7ieory Division, institute of  Particle and  IVuclear Studies,

           KEK)  Tsukuba  305-0801, Japan

   IVe discuss symmetry  properties  of  black holes in general relativity-known  as  black hole
rigidity-of  which  basic assertion  is that  the event  horizon of an  asymptotically  flat, station-
ary  black hole with  certain  matter  fields must  be a  Kiiling horizon and  is rephrased  (combined
together  with  staticity  results)  that such  a  black hole must  be either  static,  or  a[xisymmetric.

A  precise formulation of  the rigidity  theorem for black holes with  non-degenerate  event  hori-
zon  in arbitrary  spacetime  dimensions has been recently  made  by Hollands, Wald  and  the

present  authQr.  [Hollands, S,, Ishibashi, A. and  Wald, R. M., Commun.  Math. Phys, 271
(2007), 699.] In our  formulation, no  assumptions  concerning  the topology  of  cross-sections

of  event  horizen (other than the compactness)  are  made,  Therefore, different from Hawk-
ing's original  proof given in 4-dimensions, our  proof  applies  also  to non-spherieal  black ho!es,
which  are  known  to occur  in higher dimensions but not  in 4-dimensions.

Sl. Introduction

   Many  attempts  to unify  the forces in nature,  such  as  string-theories,  require

more  than 4-dimensions to formulate. Also, recent  phenomenological  ideas, such  as

braneworld models,  have renewed  interest in extra-dimensions.  In order  to develop
such  higher dimensional theories and  derive their physical  consequences,  black hole
solutions  in higher dimensions play an  important role.  Below  is a  very  brief overview
of  recent  results  concerning  basic, mathematical  properties of  asymptotically  flat,
stationary  black holes in higher dimensions (within the  context  of  general relativity)
and  comparison  with  corresponding,  established  results  concerning  stationary  black
holes in 4-dimensions.

(1) Exact  solutions:  In 4-dimensions, due to the black hole uniqueness  theorem,

possible exact  black hole solutions  are  rather  restricted:  Astrophysically relevant

solutions  are  given essentially  by the Kerr metric.  In contrast,  there seems  to be a
much  larger variety  of  exact  black hole solutions  in higher dimensions. For example,

in addition  to a  natural  higher dimensional generalization of the Kerr metric37)  (see
also,  e.g., Ref. 16)), one  has rotating  black-ring solutions  in 5-dimensions,iO) (See
also  Refs, 32),38),46).) Furthermore, combining  black rings  and/or  a  rotating  hole,
one  can  construct  more  complicated  configurations  of  multi  black solutions,  such  as

di-rings, multi-ring  saturns,  orthogonal  di-rings/bi-rings etc  (see e.g,, Refs. 7),8),27)
and  references  therein).

(2) Stability: Once one  obtains  some  exact  solutions,  the next  main  concern  would

be whether  the solutions  are  stable  or  not  since  the  stability  of  a  solution  implies
that  the  solution  macy  describe a  possible final state  of  dynamical  process, e.g., grav-
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itational collapse.  It has now  been estab!ished  that  the Kerr  metric  is stable  against

mass-less  scalar  fields and  linear gravitational perturbations at  least-, at  the level of

mode-by-mode  analysis.48)

   In higher dimensions, the  stability  has not  been fu11y studied  yet, but there

have appeared  some  partial results,  It was  shown,  for example,  that static, vac-

uum  black heles (i.e., higher dimensional Schwarzschild type  black holes) are  stable

against  gravitational perturbations,24)728)729) Eor rotating  black holes, gravitational
perturbations  have been considered  so  far only  on  the  backgrounds  of  odd  dimen-
sional  Myers-Perry  holes with  all angular  momenta  being equal,  (Such a  back-

ground  possesses enhanced  isometries and  is said  to be co-homogeneity  one.)  Ifor
co-homogeneity  one  Myers-Perry holes in odd  d ) 7, some  restricted  class  of  tensor-

type perturbations with  respect  to Cd -  3) base space  has been analysed.3i)  R]r the

same  type Myers-Perry holes in d =  5, decoupled master  equations  for gravitational
perturbations harve recently  been obtained  by Murata  and  Soda,36)

(3) [[bpology:  Apart from analysis  of  exact  solutions,  one  can  show  in more  general
context  that spatial  cross-sections  of  the event  horizon of  stationary  black holes must

be topologically  2-sphere,6),i7),i8) on  the assumptions  of  stationarity,  asymptotic

flatness, and  certain  energy  conditions.

   In higher dimensions, we  have more  variety  in the  topology  of  cross-sections

of  the event  horizon, having already,  as  an  explicit  example,  black-ring solutions

with  non-spherical  horizon topology Si × S2 in 5-dimensions. But other  than ring

solutions,  no  black objects  of  which  connected  component  of  the event  horizon has

non-spherical  topology have  not  been  discovered yet. There  are,  however,  certain

restrictions  on  the possible topology: Ga!loway and  Schoeni2)ii3) have shown  that

the  horizon topology  must  be such  that  its cross-section  admits  a  metric  with  positive
scalar  curvature,

(4) Symmetry;  In 4-dimensions, one  can  prove a  theorem  concerning  Killing sym-

metry  which  states  that the event  horizon of  a  stationary  black hole must  be a  Killing
horizon. It then  fo11ows from this result  that if such  a  black hole is rotating,  then  the

spacetime  must  be axisymmetric.  This symmetry  property is called  the rigidity  prop-
erty.3),4)ii7)7i8)  Combined together with  some  other  results,45)  this theorem  yields

that a  stationary  black hole must  be  either  static, or  axisymmetric.  This symme-

try/rigidity theorem  has recently  been generalized to arbitrary  spacetime  dimensions
by Hollands, Wald, and  the  present author.i9)  We  will present precise statements  of

our  symmetry/rigidity  theorems  and  provide  a brief sketch  of  our  proof in the next
sectlon,

(5) Uniqueness: In 4-dimensions, using  the  theorems  concerning  topology (3)
and  syinmetry  properties (4) mentioned  above  (and with  the help of  non-trivial

identities), one  arrives  at  the celebrated  black hole uniqueness  theoreml),2),30)740)

which  states  that the Kerr metric  is the only  vacuum  solution  that describes an

asymptotically  flat, rotating  black hole. R)r static  case,  see  Refs. 25),26). (This
has been generalized to the  case  including electro-magnetic  field.) [[bgether with

the  (weak version  of) cosmic  censorship  coajecture  and  the stability  result  (2), the

uniqueness  implies that  astrophysically  relevant  black holes formed via  gravitational
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collapse  in our  universe  are  described very  well  by the  Kerr metric.

   In higher dimensions, uniqueness  theorem  of  this type (i.e., type that an  isolated

gravitating system  is completely  specified  by the set  of  global chauges) no  longer holds
as  it stands.  Since in 5-dimensions we  have a  rotating  hole and  (two) rotating  ring

solutions  with  exactly  the same  mass  and  angular  momentum,  clearly,  the uniqueness
theorem  fail to hold. However, for some  restricted  case,  such  as  static,  vacuum

holesi4),i5) or  5-dimensional stationary,  vacuum  black holes with  multiple  rotational

symmetries,  certain  types  of  uniqueness  theorems have been proven.20),33)734) (See
also  Refs, 41),42) and  references  therein.)

(6) Thermodynamics;  The correspondence  between blaek hole mechanics  and

thermodynamics  has been  generalized to higher dimensions almost  as  it stands  within

the context  of  general relativity.  The relevant  parameters appeared  in the  lst-law of
thermodynamics  depend  on  configurations  of  black objects.  (See, e.g., Ref. 44) and
references  therein.)

   In the  subsequent  sections  we  will  take  a  closer  Iook at  the symmetry  properties
of  black holes in higher dimensional general relativity,

S2. Symmetry/rigidity  property

   We  begin with  recalling  that in general relativity,  a black hole horizon is defined
as  the event  horizoll, U, namely,  a  boundary  of  the causal  past  of  idealized distant
observers  or  a  (future) null  infinity. There is another  distinguished notion  of a

horizon, a  Killing horizon, which  is defined as  a  null  hypersurface N  to which  a

Killing symmetry  veetor  K"  is normal.  (Note here that K"  is assumed  to generate
a  one-parameter  group  of  isometries, and  hence, in particular, that the orbits  of  Ka
are  complete.)  It is, in general, not  at  all  obvious  when  an  event  horizon can  be a

Killing horizon. In 4-dimensions it can  be shown  that

(A) The  event  horizon of  a  stationary,  electro-vacuum  black hole must  be a  Killing
horizon, and  (B) if, furthermore, the stationary  black hole is rotating,  then that
black hole spacetime  must  be axi-symmetric.

This assertion  implies that  the event  horizon is rigidly  rotating  with  respect  to infin-
ity. FbT this reason,  this symmetry  property  is called  the black hole rigi'dity.3) The
rigidity  theorem  was  proven for the first time by Hawkingi7),i8) in 4-dimensions.

   There  are  good  reasons  why  the symmetryfrigidity  is interesting:

(i) The  rigidity  property  connects  a  global notion  ef event  horizon to a  local notion
of  Killing horizon. This is especially  relevant  when  one  wants  to explicitly  compute

physical, locally defined quantities associated  with  the event  horizon.

(ii) It helps to establish  (a part of)  the foundation of black hole thermodynamics.
This is because one  can  define a  surface  gravity for a Killing horizon, and  the  sur-

face gravity corresponds  to a  black hole temperature. Since we  can  also  show  that
the  surface  gravity is constant  over  the  Killing horizon, it implies that the  temper-

ature  of  the event  horizon is constant.  Thus, it proves  the  Oth-law of  black hole
thermodynamics.
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(iii) It implies that when  black hole is rotating,  starting  from the existence  of  merely

a  single  (stationary) symmetry,  one  can  get an  additional  symmetry,  i.e., axial-

symmetry.

(iv) In 4-dimensions, having two  Killing symmetries  of  stationary  symmetry  and

axial-symmetry,  one  can  reduce  the Einstein equations  into a  certain  simple  fbrm,

and  then applying  non-trivial  identities, one  can  show  the black hole uniqueness.
Thus, the rigidity  theorem  is a  critical  step  toward  a  proof of  the uniqueness  theorem

in 4-dimensions.

(v) As briefly mentioned  above,  the uniqueness  theorem  no  longer holds as  it stands

in higher dimensions, and  there seems  to be a  much  larger variety  of  possible exact

black hole solutions,  whose  classification  has not  been fully achieved  yet. If the  rigid-

ity holds also  in higher dimensions, then one  may  be able  to place some  important

restrictions  on  possible exact  solutions,  on  the symmetry  ground,

   It should  be noted  that the proof given by Hawking  relies  heavily on  the fact that

event  horizon cross-section  X  is topologically 2-sphere, and  therefbre does not  work

in higher dimensions. A  generalization of  the rigidity  theorem  to higher dimensions

needs  some  new  idea so  that proof would  not  require  any  assumptions  concerning

the  topology  of  spatial  cross-sections  of the event  horizon, other  than  that they are

compact,  connected,  This has been recently  done in Ref. 19). The precise statement

of our  rigidity  theorems and  brief sketch  of  the  proof are  as  fo11ows:

Theorem  1: Consider an  asymptotically  flat, stationary  analytic,  vacuum  black
hole solution  to the Einstein's equations  in arbitrary  dimensions. Assume that  the

event  horizon GPt be analytic,  non-degenerate,  and  topologically R  x  N  with  cross-

sections  X  being compact,  connected,  There exits  a  Killing field K"  in the  entire

exterior  of  the black hole such  that K"  is normal  to 7t and  commutes  with  the

stationary  Killing vector  filed t".

   This establishes  that  the  event  horizon is a  
"Killing

 horizoll",

Theorem  2: If ta' is not  normal  to n  (i,e., t" l Ka),  then  there exist  mutually

commuting  Killing vector  fields q?i) ,･･･  , q(j) (3' 
>-
 1) with  period 2T and  

t"
 

=

K"  +  n(i)v?i) +  
･
 
･
 
･
 +  n(j)q7ab, where  n(j)'s constants,

   This establishes,  
"axjsynimetry"

 of  a  stationary,  rotating  black holes in arbitrary

dimensions. Theorem  2 implies that if the orbits  of  s"  !  t"-K"  on  a  cross-section  X

fail to be closed,  then the  spacetime  has to possess at  least two  linearly independent
rotational  Killing vector  fields g(i).

    Our proof of  Theorem  1 consists  of  the following two  steps:

1.-Find  a  
"candidateii

 Killing vector  field on  the event  horizon 9t

2. Extend  the  candidate  Killing vector  field defined on  7t to the entire  spacetime,

    In Step 1., we  wish  to find a  candidate  Killing vector  field K"  which  possesses
the fo11owing properties:

(i) K"  should  be null  on  the horizon U  (i.e., normal  to 7t) and  commute  with  t"
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(ii) K"  should  satisfy  the Killing equation,  XKgab  =:  O, on  7t

(iii) K"  should  have a  constant  surface  gravity or with  KCV,K"  =  crK"  over  7t.

   How  can  we  find such  a  candidate  Killing vector  field? Since we  assume  that our
spacetime  is stationary,  we  already  have, at  least, one  Killing symmetry,  namely,  t",

Since it generates an  isometry group, it must  be tangent to the event  horizon. But
in general, it is not  necessarily  llull, as  the hole may  be rotating.  So, we  consider

the case  that t" is spacelike  on  the horizon. Then, if we  choose  a  fbliation, or  a

cross-section  of the horizon, X, in an  appropriate  way,5)  so that each  orbit  of  t"
intersects 2] only  at  a  single  point, we  can  decompose ta into a  tangential  direction,
sa,  to the  cross-section  X  and  the null  direction, Ka, normal  to the cross-section,

i,e., t" =  s"  +  K", Since t" is a Killing field, the decomposed components  sa  and

K"  also  satisfy  a type of  equations  similar  to the Killing equation.  In fact, it turns
out  that sa  becomes a  Killing vector  field with  respect  to the chosen  cross-section

£ . One may  consider  the  decomposition, K", as  a  possible candidate  Killing field.
A  key issue at  this point is that decomposition of  t" and  hence Ka  depends on  the
choice  of  a  cross-section  X. Thus, although  it immediately fo11ows that  K"  satisifies

the properties (i) and  (ii), Ka  in general fails to satisify  (iii); there is no  reason  why  a

need  be constant,  So, we  would  like to find a  desired K"  on  71 by choosing  a  
"correct

cross-section  E"  so  that  the corresponding  surface  gravity, di, becomes  constant  over

lt. Since both K"  and  Ka  are  null,  the desired Ka  should  be proportional to the
original  Ka, i.e., K"  =  fK" with  some  function f(x), Our thsk is to find a  solution

to equation  for the  change  of  cross-sections  froin the original  £  to the desired, correct

one,  E]. The  transfbrmation equaion  is given on  X  by

-fsf(x)
 +  cr(x)f(x)  = bl =:  rc . (2･1)

When  one  solves  this equation,  the spacetime  dimensionality comes  to play  a  key
role. Let us  consider  the 4-dimensional case  first, Since in 4-dimensions, the topology
theorem  states  that cross-section  X  must  be topologically 2-sphere. Then, the action,
ip., ofthe  Killing field s"  on  X  must  have a  fixed point, and  thus ip, has closed  orbits

with  some  period, P. Thus, any  point on  this g  is mapped  by the  action  ip, to the
same  point after  the period, P, Since each  point  of  X  corresponds  to a  null  geodesic
generator of  the event  horizon 7t, there is a  discrete isometry F  which  maps  each

null  generator into itself, This discrete isometry, T, helps to set  the  surface  gravity
rc to be

                         rc ,.  ; 
,L

P

 ofip,(x)]ds

and,  furthermore, helps to find the  desired coTrect  2] and  show  Step 2.

   In higher dimensions d >  4, however, there is no  reason  that the isometry s"
need  have closed  orbits  on  X, and  in general, there is n6  discrete isometry analogous
to T. This can  be seen  in 5-dimensional Myers-Perry  black hole with  2-rotations

9(i), n(2). In this case,  .E]  is topologically 3-sphere, and  s"  is given  by a  linear
combination  of  two  rotational  symmetries  g?i) and  p72)i

sa =
 9(ogp?1) +  S2(2)go?2) i (2･2)
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Of course,  each  rotation  Killing vector  g?i) has closed  orbits,  but s"  itself does not

when  2(i) and  n(2) are  incommensurable.  So, there  is, in general, no  dersiered

descrete isometry in higher dimensions. (Note that this could  be the case  even  in

4-dimensions if the horizon topology was  not  2-sphere but was,  for example,  2-torus.)

So, we  need  some  new  method  to show  the rigidity  in higher dimensions.

   The  idea is when  s"  does not  have closed  orbits,  we  apply  the  von  IVeumann

ei:godic  theorem  (see e.g., Ref. 47)), which  yields, in the  present  case,  that

         Long-time average  a"(x)  =  
Tllm.

 -} Y[
Tcr[ip,(=)]ds

 exists  (2･3)

Then, with  the  help of  the  vacuum  Einstein's equations  one  can  show  that dv' is, in

fact, constant  and  is to be identified with

                spatiai average:  A,,k(.x) li) dv(x)dX=  rc (2'4)

Furthermore, with  the  help of  the ergodic  theorem,  one  can  find a  solution  to Eq. (2･1)
as

        f(x) =  rcL
OO

 p(x,T)dT,  p(x,T)  -  exp  (- f
Ta[ip,(x)]ds)

 ,

which  is, in fact, well-defined  since  fbr any  small  E  >  O, one  has P(m,T) <  e(E-rc)T,

for suficiently  large T, and  thus  one  can  obtain  a  candidate  Killing field K"  with

desired properties  on  7t. Furthermore one  can  find a  correct  foliation X  and  complete

Step 1.

   In Step 2., by  using  vacuum  Einstein's equations  and  making  inductive argu-

ments,  one  can  show

             £ e £ e'''Xe(fftgab)=O,  m=O,1,2,....  on7t,  (2･5)
             v
               m  times

Then, by invoking the  analyticity,  one  can  extend  K"  to the  entire  spacetime  and

complete  the proof  of  Theorem 1.

    Our proof  of  Theorem  2 is briefiy sketched  as  follows. By  Theorem 1, we  have

the horizon Killing vector  field K"  and  preferred  cross-section  X. Since s-" =  t" -K"

generates an  abelian  group, 9, of  isometries on  horizon cross-sections  X, if s"'" has

a  closed  orbit,  then  there  exists  U(1) isometry and  we  are  done. If not,  we  can

invoke the fo11owing propbsition (see, e.g.,  Ref. 23)): The closure  of  g on  a  compact

space-in  our  case,  X  must  be a torus of  dimension IV, so  9 is written  as  the direct

product of N  factors of  U(1) Fs U(1)N,  where  Ar =  dim(g) ) 2. Thus, we  have Ai

commuting  Killing fields on  2[]. Then,  we  Lie-drag them  into 7t by  K"  and  then as

in Step 2., we  extend  U(1)N into the entire  spacetime  by invoking the analyticity.

                            fi3. Remarks

A  few remarks  are  in order.
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   It is immediate  to generalize the present  results  obtained  for vacuum  black holes
tu the  case  of Einstein-A-Maxwell system.  Combined with  staticity  theorems  (see,
e.g.,  Refs. 43),45)) the  rigidity  theorems above  are  rephrased  that stationary)  non-

extremal  black holes in d ) 4 Einstein-Maxwell system  are  either  static  or  a.xisym-

metrlc.

    The theorems  above  apply  not  only  to black hole horizon but also  aily horizon
defined as  the 

`tboundary"
 of  causal  past of  a  complete  timelike orbit  of  some  Killing

vector  field. So, for example,  the theorems can  apply  to cosmological  horizon.

    We  assume  that spacetime  is analytic,  so that we  can  use  the analytic  continua-

tion of  the candidate  horizon Killing vector  to the black hole exterior.  Actually one
can  remove  this analyticity  assumption  for the  black hole interior, fo11owing similar
strategy  of  Refs. 11),39). Since the  horizon turns out  to be a  part of  bifurcate hori-
zon  for non-degenerate  case,  we  can  use  a  certain  part of  the  horizon as  an  initial
data surface  fbr the candidate  horizon Killing field. Then, applying  charachteristic

initial value  formulation to extend  the can(iidate  horizon Killing field into the inte-
rior of the  black hole, which  is the domain  of  dependence for the initial date surface.
Although this type of  characteristic  initial value  problem  is ill-defined toward the
exterior  region  and  therefore would  not  appear  to be usefu1  to remove  the  analytic-

ity assumption  for the  black hole exterior.  Nevertheless, a  remarkable  progress  has
recently  been made  along  this direction.2i),22)

   The  present proof  relies  on  Einstein's equations.  [Fheretbre a  generalization to
black holes in other  theories, such  as  theories with  higher derivative terms, seems

highly non-trivial.  Also, as  inspired by higher dimensional theories one  may  be
interested in black holes with  compactified  extra-dimensions.  However, if infinity
or black hole's exterior  has some  non-trivial  topology,  then it is likely that horizon
Killing field K"  (if exits)  may  not  have a  single-valued  analytic  extension.  Ri}r such
a  case,  one  would  need  to do case-by-case  analysis.

   Finally, we  a[t'e also  interested in extremal  black holes with  a  degenerate horizon,
i,e., 7t with  K  =  O, We  believe that  similar  rigidity  results  should  hold also  fbr
extremal  black holes, but we  have not  fuliy analysed  this case  yet.
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