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 Polyakov-Nambu-Jona  Lasinio Model
and  Color-Flavor-Locked Phase  of  QCD

Hiroaki ABuKI

LN.F.N.,  Sezione di Bari, I-70126 Bari, ltaiy')

   The  effect  of  Polyakov loop on  the  QCD  phase diagram  at  high density is studied  within

the Nambu-Jona  Lasinio model  with  Polyakov loop (PNJL model).  We  point  out  that･ the
color  neutrality  is missing  in the  standard  PNJL  model  at  finite density. Moreover, we  discuss
how  the  color-flavor  locked (CFL) phase is to be distorted by the inclusion of Polyakov  loop.

51. Introduction

   The phase  diagram of  strongly  interacting matter  has been a  subject  of  theoret-

ical/experimental work  since  the  foundation of  Quantum Chromodynamics  (QCD).
The  perturbative QCD  can  be of  some  help in the extremely  high density regime,  but
it is no  longer reliable  at  density of  physical  interest, The  lattice QCD  is a  powerfu1
tool  to study  such  a  strongly  interacting regimes.  However  there is a  well-known  di"
ficulty in simulating  QCD  on  lattice at  finite density. So exploring  phase  structure  at

iiitermediate density, where  neither  Iattice simu}ations  nor  perturbative calculations

can  be trusted, remains  the subject  of  various  model  studies  which  mimic  some  of

basic features in QCD, [Fhe Nambu-Jona  Lasinio (NJL) model  is one  of  theml) and

it nicely  predicts  the chiral  restoration  of  QCD  at  extreme  conditions,2)

   The  main  defect of  the  NJL  rnodel  had  been  the  lack of  the  notion  of  the con-

finement. [[b improve this point, Fukushima included the Polyakov  loop dynamics
into the  NJL  model,3)  and  the  model  is now  called  

"Polyakov-Nambu-Jona
 Lasinio"

(PNJL) model.  This model  has two  order  parameters, qq- fbr the chiral  restoration,

and  the Polyakov loop di fbr the deconfinement. Even  though  these  two  serve  as

the exact  order  parameters  only  in the different limits, (rnq -  O and  mq  
->

 oo),  the

model  enables  to interpret nicely  some  bulk properties  of  matter  observed  on  the

lattice on  the  field theoretical  ground.4)

   In this work,  we  will  extend  the application  of  PNJL  model  to color  supercon-

ducting  phases at  high density 5). In particular, we  are  interested in: (a) how  the

phase  structure  in (T, m?/pa)-plane  will  be modified  by the inclusion of  the Polyakov

loop, and  (b) what  is the consequence  of  imposing  the  color/electrical  neutralities

on  the PNJL  model  with  and  without  diquark condensations.  The  purpose  (a) is
regarded  as  the extension  of  the earlier  work,6)'7)  while  (b) is collsidered  as the ex-

tension of  Refs, 8) and  9). We  note  there  is a  parallel development on  the  role  of

electrical  neutrality  in the PNJL  model  at  low density.10)

   
')
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fi2. The  model

   The  Wilson line operator  is a  key  quantity whose  expectation  value  plays a  role

of  order  parameter  for deconfinement transition in a  pure  gauge theory. It can  be
expresscd  by the background  Euclidean temporal  gauge  field A4(T, x)  i  igAg(7, m)7'h

([l-h =  21t' ; {A.} are  the standard  Gell-Mann matrices  for SU(3).) as

                     LQ  =eexp  (i JlllT dTA4(T, a:)).  (2･1)

The  Wilson line in the  anti-triplet  representation  can  be defined as  LQ  !  Lt?, In a

pure gauge theory with  zero  chemical  potential for quarks (pa =  0), these are  regarded

as  the  operators  associated  with  heavy (anti)quark excitation  in the gluonic  heat
bath at  temperature  T; loop di =

 ]eE<trLq>T  (anti-triplet loop di =

 
,iX

 <trLQ>v･) is

related  to the Free energy  of  singletanti)quark  excitation  in the gluon medium  by
di =  eniio!T  and  di =  e-Fk)IT.  In this case,  one  finds eventually  di =  ip =  di'･ In
the  fu11 gauge theory with  dynamical quarks  and  with  a  finite chemical  potential fbr

quarks, however, this is no  longer the case  because  quark  and  antiquark  propagate
differently in each  direction of  imaginary  time. The detailed analysis  of  a  matrix

model  shows  that di and  di certainly  differ from  each  other  but still both stay  real;

this is due  to the imaginary piece in the action  proportional to the imaginary part of

". trLQ  which  comes  from integration of  dynamical quarks  and  is C-odd quantity,ii)

   In the  PNJL  model,  the loop di can  be parametrized  by eight  real  parameters

{qii P2, ' ' ' i
 eps} each  of  which  has a  dimension  of  energy,  as

                 ¢ [A4]= 7G/.treiA41T, A4 ==  Z)6"L?riq.7h. (2-2)
Using this A4 field, the PNJL  model  is given by the  fo11owing Lagrangian density

  L[q, q-; A4] =  q-(i(IP[A4] +  oro(pa +  tipa.ff))q +  fq-ll,,,q-Tq7'R.,q -  Z･t(T, di[A41). (2･3)

q =  (quriqdg,qsb, qug,qdr, qsr,qub, qdb,qsg)T  is the quark  field. 1)p =  ept -  6t,oA4 is
the  covariant  derivative through  which  the  Polyakov  loop can  change  the nature  of

propagation  of  dynamical  quarks, G  parametrizes the  strength  of  attractive  coupling

in the color-fiavor  channel  R]nr =  C'rscniJ'En,ab (R]n, =  
"roP,ln,7o)･

 In this work,  we

take  the  CFL  type  diagonal ansatz  for diquark condensation,i2)  i.e.,

                            !A, o 0N

                g<qT ll,,, q> =-  t O A2  O 1 iAnr/･  (2･4)
                            NO  O A3

 /.,

n (n') stands  for the flavor (color) index. We  work  within  the chiral  SU(2) limit set-
ting  m.  =  md  =  O, and  take  into account  the  strange  quark  mass  m.  within  the  high
                                                     2

density approximation.  So we  set  61i.ff 
::=

 
-paeQ+pa3[Z'h

 +lis7I3 -  E"li}i" diag.(O, O, 1)f × 1.,

where
 
(?
 

=

 
diag,(2/3,

 
-1/3,

 
-1/3)f

 
×
 
lc,

 
[TI]
 

=

 
lf
 
x
 iA3, 

and
 
[Ils

 
=

 
lf
 
×
 Vl;As- 

U(T,
 
di)

is the Polyakov loop potential which  controls  the confinementfdeconfinement  traii-

sition  in the pure  gauge  sector,  whose  detailed form will  be given later.
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   The  real  part  of  effective  potential')  within  the high density effective  theory

(HDET) comes  out  to  be

                             p2  ptZT2  7.ZT4
   eeS2(An,9a) =  U(T,di)-EIF7-  6 

-
 180

                   -  2?l=i [St'{[tllSt)2+,6,".e"ff)`
 +  f ("+S:1 

),2d`11
 2T  ln(pl1 +  e-EA(lll)/T  D]

                   +  z, E2iL -  Ell,=, JL"£,. ("'g:i 
),2d`N

 [nE]A(lll) -  llll -  6LLgl.E] ･

                                                                  (2-5)
llL is the  quark  momentum  measured  from  the  fermi surface  p =  pa. w,  is the  ultra-

violet  cutoff  needed  to regularize  the divergent third line, The  complex  energies

{Ei , E2, ･ ･ - ,
 Eg}  are  defined by  choosing  the  eigenvalues  of  non-hermitian  matrix

               7t-(
iii-.6,g,e.ff,,r;,IA`

 -,:i

A.ng7k.b.En-",.z),
 (26)

such  that  EA  ->  ll" 
-
 lteff when  An  -  O is satisfied.  We  use  the  cutoff  (w.) depen-

dent coupling  e =J  Ztll ln (iT,f;k;2iW,A,) where  Ao is the magnitude  of  CFL  gap  parameter

at  T  =  0 in the chiral  limit (7n. =  O), With  this convention,  the effective  poten-
tial is only  weakly  (logarithmically) divergent, so  the  gap equations  and  neutrality

conditions  have well-defined  finite limit as  w.  -  oo.

Parameter  reduction  via  gauge  invariance:  The  effective  potential is a  function
of  three gap parameters  {Any} and  eight  parameters  {v.} for the Wilson line matrix.
In certain  cases,  the  gauge  invariance is helpfu1 to reduce  the dynamical variables.

Any =  O is such  a  case;  the number  of  parameters  fbr A4 can  be reduced  from  IV3 -  1

down  to Ar. -  1 as  we  see  below. Since the  Wilson  line transfbrms  as  LQ  -  gLQg-i

by the  gauge  transformation with  g being the  arbitrary  SU(3) matrix,  we  see

                          S2CA4)=9(gA4g-i),  (2･7)

from  the  gauge  invariance. We  can  always  make  A4 diagonal by  choosing  the  suitable

g as  gA4g"i  =  ip371] +ips[I-I3, so  we  can  work  with  this simplified  ansatz  fbr A4 without

loss of  generality. The  effective  potential as  well  as  the  Polyakov  loop di is a  function
of  {ip3, ips} in this case,  This procedure  is just like the change  of  integration variable

from SU(3) to its eigenvalues  by  integrating out  six  phase  variables.  However,  once

diquarks come  into the problem,  this simple  reduction  does no  longer work.  In fact, if
we  try to diagonalize A4, the diquark condensate  also  suffers  from the gauge rotation

A4 -  A2  =' gA4gMii  Ann' -  A'nyn' i  (A9-i)nn, ' (2･8)

We  note  that  the  condensate  matrix  Aen, is no  longer restricted  to be of  diagonal form
in the color-flavor  space.  A4 can  be diagonalized by g which  can  be parametrized  by
six  

`Cphase"
 parameters; at  the  same  time  the  diquark condensate  acquires  this phase

   
'>

 We  have  also  an  irnaginary  part of  the effective  potential, which  may  viewed  as  a  sign  problem.
It can  cause  a  splitting  of  di and  di, but here we  simply  discard it･,8) Accordingly, we  have di =  di.

NII-Electronic  
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Fig, 1. Th color  density with  m.  =  A," =  pa.,3,s =  O as  a  function of  T,

rotation,  so  the new  diquark condensate  is to be parametrized  by nine  parameters.
Thus  in principle, we  have  two  choices;  one  is (1) to work  in the  diagonal fbrm of  A4
with  the generalized off-diagonal  ansatz  fbr diquark condensate.  The other  is (2) to
work  in the  standard  diquark ansatz  with  An  but with  a  general A4 parametrized

by eight  parameters. These  proper  treatments require  us  to deal with  all eleven

variational  parameters,  Leaving these proper  arguments  to our  future plan, we  here
work  within  the  simplified  ansatz  for the  ground  state  that  the  diquark  condensate

is diagonal {An} even  after  fixing the gauge  which  diagonalizes A4; this means  we

take  only  the  diagonal entries  of  A4, {g3,ps}, as  the  variational  variables.

   AIthough the continuous  gauge  freedom should  be considered  to have gone  away

to diagonalize A4, there remain  six  discrete gauge  transfbrmations each  of  which

leaves ip unchanged;  these are  the elements  of  permutation  of  fundamental color

indices. Also in accordance  with  discarding trS?, we  further put ip to be  real,  for

this, we  take  gs =  O, so  in this way,  the  gauge  is completely  fixed in our  calculations.

   Finally, we  specify  the Polyakov loop potential. We  adopt  the fo11owing form 4)

tt.T 
di)
 =  -  

b2
 ST) di'di +  b(T) log (1 -  6di'di +  4(di'3 +  di3) -  3(di'¢ )2) , (2･9)

with  b2(T) =  ao+ai  (ISI)+a2 ({9)2, b(T) =  b3 ({ll)3. 7b is the value  ofthe  transition

temperature  for deconfinement in pure gauge, i.e., 7b ==  270MeV.  The  logarithmic

term  was  first proposed  in 3) and  it is nothing  but the Vandermonde  determinant,
i.e., the Jacobian  associated  with  the change  of  dynamical  variables  from  the SU(3)
matrix  to its eigenvalues.i3)  For more  details fbr parameter  setting  used  in our

numerical  analysis,  the readers  are  referred  to Ref. 5).

g3. Results and  discussion

Color  density  associated  with  color  symmetry  breaking: Before going into
the fu11 calculation,  we  study  the  simplified  case  with  unpaired  matter  in the chiral

limit, An 
=

 ms  
=

 O, just to illustrate the  importance  of  imposing  color  neutrality

in the PNJL  model  at  finite pa. In Fig. 1, we  show  the  color  [Il3 density, <qi[Tkq>,
and  the Polyakov loop di as  a  function of  T, Surprisingly, 7-g color  density takes
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2. (Reproduced figure with  permission  from [II. Abuki et  al., Phys. Rev. D 77 (2008), 07,1018]

Copyright (2008) by the  American  Physical  Society). (a): Phase  diagram in (:, .T)-plane at

Au =  60 MeV, IL =  500 MeV. (b): [I]he same  as  (a) but without  the  Pol.vakov looP.

nonzero  value,")  It can  be shown  that  this is the  case  except  for two  different limits,

T  -  O and  T  -  oc  (di -  1).5) The  Polyakov  loop di is the colorless  object,  so one

might  think  it is strange  to have  nonvanishing  color  density. The  reason  is simple;

we  are  breaking color  symmetry  in addition  to Z3 center  symmetry  by introducing
the constant  A4 background  field. In fact, di =  7(IItrLQ is invariant under  the color

rotation  LQ  -  gLQg-i;  it changes  its value  only  under  color  transfbrmation which

is not  exactly  periodic in imaginary time  but only  up  to Z3, i.e., di -)F zdi  under

                     LQ-gLQ(zg)-i,  where  zEZ{s.  (3･1)
Since we  assumed  the constant  A4 background to parametrize  di, and  A4 in contrast
to di is not  invariant under  color  rotation,  we  have  broken  the  color  symmetry  in

addition  to Z3 symmetry.  This is unexpected,  undesirable  feature of  the PNJL  model

and  may  be considered  as  the  model  artifact.  It could  be dangerous for theoretical
foundation of  the model  itself, but we  do not  discuss further this problem  here.
Instead, we  simply  assume  that  the  model  is still usefuI  once  we  impose  the vanishing

color  density as the censtraint  by tuning color  chemical  potentials {p3, pas}.")
The  phase  diagrams:  The  phase  diagram  coming  out  from our  high density PNJL

rnodel  is displayed in Fig. 2(a). R]r comparison,  we  have also  shown  in Fig. 2(b), the

phase  diagram  calculated  with  the  model  without  the  Polyakov  loop. Erom  these

figures, the impact of  the Polyakov loop dynamics on  the quark  Cooper pairing  is
clear;  it has two  major  effects.

    (a) First, we  notice  that the  Polyakov  loop dynamics stabilizes  the 2SC  phasc
significantly.  In fact, the  critical  temperature  for the  2SC-to-unpaired  phase  tran-

   
T)

 It should  be noted  that  the  color  density itself is a  gauge  dependent quantity  and  thus  should

depend  on  the choice  of  the  gauge.  "'ith our  diagonal representation  of  A4 with  gs  =  O, the  71i

celor  density becomes finite as  we  observed  above.  If we  selected  a  different gauge, the  other  entries

of  octet  color  density {<qt[lhq>} should  have appeared,  The  important t･hing is, however, whichever

gauge  we  choose,  some  color  density should  become  finite; in fact the squared  sum  of  the  octet  color

densities is shown  to be the gauge  independent quantity.i4)

  
*')

 We  checked  that  off-diagonal  color  charge  densities <qt7},q) (for a  l 3, 8) are  automatically

vanishing  for all  the situations  we  are  iriterested in here,
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sition  at  m,  =  O is almost  doubled  by  inclusion of  the Polyakov-loop dynamics.
This point  can  be understood  by the observation  that the Polyakov  loop suppresses

the  thermal  excitation  of  colored  quasiquarks which  tend  to break the Cooper pair
condensate.5)  Numerically, the factor of  enhancement  of  [I'}, is 1,8 which  is in good
agreement  with  our  analytical  estimate  1.79.5)

    (b) Second, as  a  consequence  of  the  efiect  (a), we  have  the  color-flavor  unlocking

transition even  at  m.  =  O. One  may  wonder  why  the SU(3) flavor symmetry  should

be broken  down  to the  isospin SU(2) in the  (u,d)-sector, and  why  not  either  in

(s, u)  or  (d, s) sector.  This  is strange  because at  m.  =  0 the  flavor SU(3) symmetry

is perfect so  how  can  the flavor-blind Wilson line distinguish them?  Actually, the
fact that we  have the  isospin symmetry  intact is directly attributed  to our  model

assumption  mentioned  in S2:, we  are  limiting ourselves  to treat only  two  out  of  eight

parameters  fbrthe SU(3). matrix,  LQ.  As  noted,  in principle this cannot  bejustified
in our  case  because thc  gauge  is already  fixed in the  diquark  sector  once  we  put  the

ansatz  fbr diquarks to the diagonal form Annr :=  diag,(Ai,A2,A3); therefbre there
remains  no  continuous  gauge  freedom  to rotate  LQ  to a  diagonal form. Se this

limitation should  be rather  viewed  as  an  ansatz  fbr many  possible  ground  states,

such  as  the color-flavor  Iocking ansatz.  For the  proper  treatment,  we  should  take  into

account  all the eight  parameters  to represent  the Wilson line LQ. It is possible after
making  such  a  proper  treatment, either  tliat the  ground  state  prefers the  diagonal
fbrm of  LQ  or  tha,t the  ground  state  we  obtained  here turns  oiit  to bc one  of  several

degenerated  ground  states.  We  defer this task  in the  future.
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