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Polyakov-Nambu-Jona Lasinio Model
and Color-Flavor-Locked Phase of QCD

Hiroaki ABUKI

IN.F.N., Sezione di Bari, I-70126 Bari, Italy*)

The effect of Polyakov loop on the QCD phase diagram at high density is studied within
the Nambu-Jona Lasinio model with Polyakov loop (PNJL model). We point out that the
color neutrality is missing in the standard PNJL model at finite density. Moreover, we discuss
how the color-flavor locked (CFL) phase is to be distorted by the inclusion of Polyakov loop.

§1. Introduction

The phase diagram of strongly interacting matter has been a subject of theoret-
ical/experimental work since the foundation of Quantum Chromodynamics (QCD).
The perturbative QCD can be of some help in the extremely high density regime, but
it is no longer reliable at density of physical interest. The lattice QCD is a powerful
tool to study such a strongly interacting regimes. However there is a well-known dif-
ficulty in simulating QCD on lattice at finite density. So exploring phase structure at
intermediate density, where neither lattice simulations nor perturbative calculations
can be trusted, remains the subject of various model studies which mimic some of
basic features in QCD. The Nambu-Jona Lasinio (NJL) model is one of them!) and
it nicely predicts the chiral restoration of QCD at extreme conditions.?)

The main defect of the NJL model had been the lack of the notion of the con-
finement. To improve this point, Fukushima included the Polyakov loop dynamics
into the NJL model,?) and the model is now called “Polyakov-Nambu-Jona Lasinio”
(PNJL) model. This model has two order parameters, g for the chiral restoration,
and the Polyakov loop @ for the deconfinement. Even though these two serve as
the exact order parameters only in the different limits, (my — 0 and my — 00), the
model enables to interpret nicely some bulk properties of matter observed on the
lattice on the field theoretical ground.®

In this work, we will extend the application of PNJL model to color supercon-
ducting phases at high density 5). In particular, we are interested in: (a) how the
phase structure in (T, m?2/u)-plane will be modified by the inclusion of the Polyakov
loop, and (b) what is the consequence of imposing the color/electrical neutralities
on the PNJL model with and without diquark condensations. The purpose (a) is
regarded as the extension of the earlier work,%:7) while (b) is considered as the ex-
tension of Refs. 8) and 9). We note there is a parallel development on the role of
electrical neutrality in the PNJL model at low density.!?

*) Moved to Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe-
Universitat, D-60438 Frankfurt am Main, Germany; E-mail: abuki@th.physik.uni-frankfurt.de
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8§2. The model

The Wilson line operator is a key quantity whose expectation value plays a role
of order parameter for deconfinement transition in a pure gauge theory. It can be
expressed by the background Euclidean temporal gauge field A4(7, &) = igAf§ (7, )T,
(Ta = 22; {Aa} are the standard Gell-Mann matrices for SU(3).) as

Lg = Prexp (z fol/T dr Ag(T, a:)) . (2-1)

The Wilson line in the anti-triplet representation can be defined as Ly = Lg. In a
pure gauge theory with zero chemical potential for quarks (4 = 0), these are regarded
as the operators associated with heavy (anti)quark excitation in the gluonic heat
bath at temperature T'; loop @ = ﬁ(trLQ)T (anti-triplet loop & = Nic(trLQﬁ) is
related to the Free energy of single (Canti)quark excitation in the gluon medium by
@ = e Fa/T and & = e F@/T. In this case, one finds eventually ¢ = & = &*. In
the full gauge theory with dynamical quarks and with a finite chemical potential for
quarks, however, this is no longer the case because quark and antiquark propagate
differently in each direction of imaginary time. The detailed analysis of a matrix
model shows that ¢ and @ certainly differ from each other but still both stay real;
this is due to the imaginary piece in the action proportional to the imaginary part of
N%trLQ which comes from integration of dynamical quarks and is C-odd quantity.'!)

In the PNJL model, the loop ¢ can be parametrized by eight real parameters

{¢1,p2, -+ ,ps} each of which has a dimension of energy, as
B[Ag] = gtret /T, Ay = SN o T (2:2)

Using this A4 field, the PNJL model is given by the following Lagrangian density
L[q,q; Ag] = qi(P[Ad] + 0 (1 + Sptert))a + GTPuy T a" Ppyg — U(T, B[A4]).  (2:3)

q = (Qur, 4dg Gsb> Qug> Ddrs Gsr Qub, ddb> dsg)” 18 the quark field. Dy = 9, — 044 is
the covariant derivative through which the Polyakov loop can change the nature of

propagation of dynamical quarks. G parametrizes the strength of attractive coupling

in the color-flavor channel P,y = Crysepijenray (Ppy = voP;;n,fyg). In this work, we

take the CFL type diagonal ansatz for diquark condensation,'? i.e.,
B A7 0 0
0 0 As ,

nm

n (n') stands for the flavor (color) index. We work within the chiral SU(2) limit set-

ting m, = mg = 0, and take into account the strange quark mass m, within the high
2

density approximation. So we set dpeg = — e+ 313+ usTs — 7;L—ljdia,g;.(o, 0,1)sx 1,

where Q = diag.(2/3, —1/3,—1/3)¢ x 1c, T3 = 1§ X 53, and Ty = 1¢ X ﬁ)\g. U(T, D)

is the Polyakov loop potential which controls the confinement/deconfinement tran-

sition in the pure gauge sector, whose detailed form will be given later.
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The real part of effective potential®) within the high density effective theory
(HDET) comes out to be

4 2T2 ﬂ_z 4
R2(Ay 0a) = UT, D) — ther — o — Bf
Sul)t 1y)2dl _
-5 [y BT In (] 4 e B/ T))]
A2 we (p+ly)2dl
+Zn < ZA 1f e “) ! [%EA(ZI) - VII - 5%4&‘]-

(2-5)
l| is the quark momentum measured from the Fermi surface p = u. w, is the ultra-
violet cutoff needed to regularize the divergent third line. The complex energies

{E\, Es,--- ,Eg} are defined by choosing the eigenvalues of non-hermitian matrix
Iy — Opefr + 1Ay A €rab€nii
H = i e n¢nabnij : 2.6
( Ay €nabenij =i+ Opbg — 1A% (26)

such that Eq — [l) — p:| when A, — 0 is satisfied. We use the cutoff (w.) depen-

2we
Ql/tg;Ao
at T = 0 in the chiral limit (ms; = 0). With this convention, the effective poten-
tial is only weakly (logarithmically) divergent, so the gap equations and neutrality

conditions have well-defined finite limit as w. — oo.

dent coupling é = %f_’;—Q In ( ) where 4Ag is the magnitude of CFL gap parameter

Parameter reduction via gauge invariance: The effective potential is a function
of three gap parameters {4, } and eight parameters {¢4} for the Wilson line matrix.
In certain cases, the gauge invariance is helpful to reduce the dynamical variables.
A, = 0 is such a case; the number of parameters for A4 can be reduced from N, 21
down to N, — 1 as we see below. Since the Wilson line transforms as Lo — gLgg™!
by the gauge transformation with g being the arbitrary SU(3) matrix, we see

2(Ag) = 2(gAsg™ 1), (2-7)

from the gauge invariance. We can always make A4 diagonal by choosing the suitable
g as gA4g~ ! = p3T3+ ¢gTg, so we can work with this simplified ansatz for A4 without
loss of generality. The effective potential as well as the Polyakov loop @ is a function
of {¢3, ¢s} in this case. This procedure is just like the change of integration variable
from SU(3) to its eigenvalues by integrating out six phase variables. However, once
diquarks come into the problem, this simple reduction does no longer work. In fact, if
we try to diagonalize A4, the diquark condensate also suffers from the gauge rotation

Ag — Ail = gA4g—1, AUU’ — A,ﬂﬂ' = (Ag_l)m]’ . (2'8)

We note that the condensate matrix A’ , is no longer restricted to be of diagonal form
in the color-flavor space. A4 can be diagonalized by g which can be parametrized by
six “phase” parameters; at the same time the diquark condensate acquires this phase

*) We have also an imaginary part of the effective potential, which may viewed as a sign problem.
It can cause a splitting of @ and &, but here we simply discard it.®) Accordingly, we have & = &.
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Fig. 1. T color density with ms = A, = pe,3,8 = 0 as a function of 7.

rotation, so the new diquark condensate is to be parametrized by nine parameters.
Thus in principle, we have two choices; one is (1) to work in the diagonal form of A4
with the generalized off-diagonal ansatz for diquark condensate. The other is (2) to
work in the standard diquark ansatz with A, but with a general A4 parametrized
by eight parameters. These proper treatments require us to deal with all eleven
variational parameters. Leaving these proper arguments to our future plan, we here
work within the simplified ansatz for the ground state that the diquark condensate
is diagonal {A,} even after fixing the gauge which diagonalizes A4; this means we
take only the diagonal entries of A4, {3, ¢s}, as the variational variables.
Although the continuous gauge freedom should be considered to have gone away
to diagonalize A4, there remain six discrete gauge transformations each of which
leaves @ unchanged; these are the elements of permutation of fundamental color
indices. Also in accordance with discarding &2, we further put @ to be real. For
this, we take g = 0, so in this way, the gauge is completely fixed in our calculations.
Finally, we specify the Polyakov loop potential. We adopt the following form 4)

U2 = B e*p 1 b(T)log (1 — 68*P + 4(F*3 + %) — 3(8°9)%),  (2:9)

with bo(T) = ag+a1 () +as (%)2, b(T) = b3 (ITQ)3 Ty is the value of the transition
temperature for deconfinement in pure gauge, i.e., Ty = 270 MeV. The logarithmic
term was first proposed in 3) and it is nothing but the Vandermonde determinant,
i.e., the Jacobian associated with the change of dynamical variables from the SU(3)
matrix to its eigenvalues.'®) For more details for parameter setting used in our
numerical analysis, the readers are referred to Ref. 5).

§3. Results and discussion

Color density associated with color symmetry breaking: Before going into
the full calculation, we study the simplified case with unpaired matter in the chiral
limit, A, = m, = 0, just to illustrate the importance of imposing color neutrality
in the PNJL model at finite . In Fig. 1, we show the color Ty density, (¢'Tzq),
and the Polyakov loop & as a function of 7T'. Surprisingly, Tg color density takes
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Fig. 2. (Reproduced figure with permission from [H. Abuki et al., Phys. Rev. D 77 (2008), 074018]
2
Copyright (2008) by the American Physical Society). (a): Phase diagram in (ii T)-plane at

2p
Ay = 60MeV, p = 500MeV. (b): The same as (a) but without the Polyakov loop.

nonzero value.*) It can be shown that this is the case except for two different limits,
T —-0and T - © (¢ — 1).5) The Polyakov loop @ is the colorless object, so one
might think it is strange to have nonvanishing color density. The reason is simple;
we are breaking color symmetry in addition to Z3 center symmetry by introducing

the constant A4 background field. In fact, & = ]—\lfztrLQ is invariant under the color

rotation Lg — gLQg_l; it changes its value only under color transformation which

is not exactly periodic in imaginary time but only up to Z3, i.e., & — z® under
Lg — gLg(zg)~ !, where =z € Zs. (3-1)

Since we assumed the constant A4 background to parametrize ¢, and A4 in contrast
to @ is not invariant under color rotation, we have broken the color symmetry in
addition to Z3 symmetry. This is unexpected, undesirable feature of the PNJL model
and may be considered as the model artifact. It could be dangerous for theoretical
foundation of the model itself, but we do not discuss further this problem here.
Instead, we simply assume that the model is still useful once we impose the vanishing
color density as the constraint by tuning color chemical potentials {3, /Lg}.**)

The phase diagrams: The phase diagram coming out from our high density PNJL
model is displayed in Fig. 2(a). For comparison, we have also shown in Fig. 2(b), the
phase diagram calculated with the model without the Polyakov loop. From these
figures, the impact of the Polyakov loop dynamics on the quark Cooper pairing is
clear; it has two major effects.

(a) First, we notice that the Polyakov loop dynamics stabilizes the 2SC phase
significantly. In fact, the critical temperature for the 2SC-to-unpaired phase tran-

*) It should be noted that the color density itself is a gauge dependent quantity and thus should
depend on the choice of the gauge. With our diagonal representation of A4 with g = 0, the T3
color density becomes finite as we observed above. If we selected a different gauge, the other entries
of octet color density {(¢"Twq)} should have appeared. The important thing is, however, whichever
gauge we choose, some color density should become finite; in fact the squared sum of the octet color
densities is shown to be the gauge independent quantity.M)

**) We checked that off-diagonal color charge densities (¢! T.q) (for a # 3, 8) are automatically
vanishing for all the situations we are interested in here.
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sition at my; = 0 is almost doubled by inclusion of the Polyakov-loop dynamics.
This point can be understood by the observation that the Polyakov loop suppresses
the thermal excitation of colored quasiquarks which tend to break the Cooper pair
condensate.’) Numerically, the factor of enhancement of 7. is 1.8 which is in good
agreement with our analytical estimate 1.79.%)

(b) Second, as a consequence of the effect (a), we have the color-flavor unlocking
transition even at ms = 0. One may wonder why the SU(3) flavor symmetry should
be broken down to the isospin SU(2) in the (u,d)-sector, and why not either in
(s,u) or (d, s) sector. This is strange because at ms = 0 the flavor SU(3) symmetry
is perfect so how can the flavor-blind Wilson line distinguish them? Actually, the
fact that we have the isospin symmetry intact is directly attributed to our model
assumption mentioned in §2; we are limiting ourselves to treat only two out of eight
parameters for the SU(3). matrix, Lg. As noted, in principle this cannot be justified
in our case because the gauge is already fixed in the diquark sector once we put the
ansatz for diquarks to the diagonal form Ann’ = diag.(A1, A9, A3); therefore there
remains no continuous gauge freedom to rotate Lg to a diagonal form. So this
limitation should be rather viewed as an ansatz for many possible ground states,
such as the color-flavor locking ansatz. For the proper treatment, we should take into
account all the eight parameters to represent the Wilson line Lg. It is possible after
making such a proper treatment, either that the ground state prefers the diagonal
form of Lg or that the ground state we obtained here turns out to be one of several
degenerated ground states. We defer this task in the future.
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