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             Heavy  Quark Diffusion in AdS/CFT

                          Derek TEANEY

     Department  of Physics and  Astronomy,  Stony Brook  Uhiversity,

                 Stony Bfook, IVY11794-9800, USA

  I elucidate  the  origin  of  thermal  noise  in AdSICFT  by studying  quanturn  fluctuations.
The  Schwinger-Keldysh cont･our  plays an  essential  role  in this calculation.  The  results  show

how  a  quark  diffuses in the  context  of  AdS/CFT.

                           gl. Motivation

   The  purpose  of  this short  note  is to clarify  how  thermal  noise  arises  within

the context  of  AdS/CFT,')  Recently the AdSICF[V  correspondence  has been used

to calculate  several  items of  great interest to the  hearvy ion physics community.

This list includes: the drag of  heavy quarks,i)r3) higher order  hydrodynamics,4),5)

and  radiative  processes.6) All of  these  processes  are  intrinsically related  to noise  in

thermal  field theory. However,  noise  does not  appear  naturally  within  the AdSICFT
context.  This is essentially  manifest  since  it is difficult to acquire  stochastic  terms

by solving  linearized classical  equations  of  motion.  However it turns out  that the

quantum  mechanics  of  AdSs  produces  the required  thermal  noise.

   [[b address  the question of  noise  we  will  consider  the simplest  stochastic  process

   Brownian  motion.  General considerations  of  heavy quarks  would  indicate that
the  heavy  quark  should  obey  a  Langevin  equation  of  motion

             dxi pi

              dt M'

             E!/ll!' =  gi (t) -  nDp, , <ei (t)c, (t')> =  K6ip(t  -  t'). (i-i)

(Fbr a  brief review  of  the  Langevin equation  see  Ref. 7).) The  drag  and  fluctuation

coeMcients  are  related  in turn by the Einstein relation

                                    rc

                             nD=2MT･  (1+2)

The drag coeMcient  opD can  be related  to the diffusion coefilcient

                                T  2T2

                          
D=

 Mep.=.･  (1･3)

For a  brief review  of  the Langevin equation  and  a  derivation of  these  results,  see

Ref. 7).

   
')
 This  is a  preliminary account  of  work  done  in collaboration  with  D. T. Son  and  J. Casalderrey-

Solana.
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   Previously the  drag  coeficient  and  the noise  coeficient  have becn computed  us-

ing the AdS/CFT  correspondence  and  the results  obey  the expected  Einstein relation

of  Eq, (IE2).2),3)78) However if the gravity theory is dual to the gauge  theory then

the  whole  Langevin  process should  emerge  from the within  the gravity theory and

not  just this or  that coeMcient.  This will  require  including the  quantum  mechanical

motion  of  a  string  in AdSs.

52. Stringequationsofmotion

   Strings in AdSs  are  dual to heavy  quarks  and  the dynamics of  these objects  is
dictated by  the  Nambu-Goto  action

                      SivG ==  
-2.iezfdTda

 x/=7IIIg. (2･i)

AdSs  with  a  black hole is given by  the  canonical  form

               d,2=  ;,2 (-f(z)dt2+dx2)+ fR(

2

.d):

2,

 +R2do,2,  (2 2)

where  i =  l}'L, zH  =  llltt, and  f(z) =  1-  (zlzH)4. Changing coordinates  to 2 =  2/zH

and  subsequently  dropping  the  
"bar"

 gives

            ds2 =  (TT)2 {l7; (-f(x)dt2 +  dm2) +  fRi.d):

2,

 + R2ds?g, (2 3)

which  is the fbrm adopted  for these  proceedillgs.

   Initially a  static  quark  string  at  rest  at  the  origin  is given by  the  map

                 (T, a)  F->  (t=7,z=qx= O, S2s =const).  (2-4)

Considering now  the  dynamics  of  small  fluctuations we  have  x  -  x(t,z)  and  the

action  for these small  fluctuations is

            s ==  -("2T.)eRz
2

f d:gZ [i -S(Xf)2  +  S(TT)2f(x')2] . (2 s)

From  this action  we  derive an  equation  ef  motien  iii Fourier space

                        .rot;x+e.
 (lt a,x) =o,  (2 6)

with  tv :=  av1(TT).

   The  usual  AdSs  prescription9)  is to find the  retarded  solution  to the  equation  of

motion  fbr the  source  in bulk and  to associate  the corresponding  retarded  correlator

of  the  field theory  operators  with  the  boundary limit. In this case  the  source  is the

fluctuation in position of  the  string  and  the operator  is the subsequent  fbrce on  the

quark. Extracting out  the  overall  constant  from  the  solution  of  the  above  equation
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(i･e･ x(w,z)  =  xo(w)X(w,i)  with  X(w,O)  =  1) the  iisual  AdSs  prescription is the

fo11owing

                   GfR(w)=  li.moA(z)X(-ro,z)0.X(ro,z), (2･7)

where  A(z) is the  coefllcient  of the kinetic term. Usually the limit diverges and  these

divergences need  to be  renormalized  by  the  process of  holographic renormalization.

    In the  present  context  the  solution  Eq, (2･6) fbr small  frequency close  to the

boundary  is (after Appendix  A)

          GR(cv) 
-

 li.m, A(z)X(-to,  x)O.X(to,z)  
-

 
-A4t3w2

 +  aR(w) , (2･8)

where  Me  is the zero  temperature  mass  of  the quark. The  mass  terin is the 
ttdiver-

gent" term  of  the  retarded  correlator  and  the  regular  piece is the  retarded  force-force
correlator.  In the Appendix it is shown  that to order  w2  inclusive this correlator  is

              -Mew2+GR(w)  .t -Mki.(T)w2  -iStT  rc+O(w3),  (2･9)

where  we  have defined the kinetic mass  and  the momentum  broadening coeMcient

                                   V51T
                   Mkin(T)=A4E)-  2 

rc 
==
 V[XTT3.  (2'10)

The  notation  and  notion  of  kinetic mass  is taken  from Ref. 1). In the  next  sections

we  will  show  how  this correlator  appears  in a  dynamical  context.

         g3. Brownian  motion  in thermal  quantum  mechanics

   [[b start  we  review  how  Brownian motion  occurs  in quantum  mechanics  (see for
example  10) and  11), and  references  therein). Schematically the  real  time  quantum
mechanical  partition function for a  heavy  particle coupled  to a  bath through  an

ensemble  of  forces is

        zQ  =  <fDxlDm2eif}M"?-ifiMV22 eZfdtiFiX'  e-Zfdt2F2X2>B.th  (3'1)

Here  the  integration over  the  
"1"

 coordinates  represents  the  amplitude  while  the in-

tegration  ever  the  
Lt2"

 coordinates  represents  the  conjugate  amplitude  fbr the  quark.
When  we  integrate over  the  bath  coordinates  we  are  left with  a  reduced  action  for the

dynamics  of  the  heavy  particle. Using  the  fact that  the  fbrce term  is small  compared

to the  inertial term  we  make  the  fo11owing approximation:

        <e' f 
dtlFIXI

 e-Z  J' 
dt2F}]=2

 >b.th ft e7S  f 
dt
 
dt'SaSb

 
Xa(t)

 
<Ih(t)I'b(e')>

 
Xb(t')

 , (3,2)

where  the  a  and  b denote  run  over  1 and  2 and  sa  =  ± respectively.  The  contour

ordered  averages  of  forces select  different time  orderings  of  fbrce operators.  For
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mstance

           iGii(t 
-  t') =- <Fl(t)I71(t')> -  <T[P(t)P(t']> ,

           iGi2(t 
-
 t') E  <Fi (t)F}2(t')> =  <#(t').P"(t)> =  iG2i(t' 

-
 t)

           iG22(t -  t') =- <,F>(t)Ii>(t,)> =  <di[P(t)P(ti)]> .

In equilibrium  these  correlators  are  related  to the  retarded  correlator  by

               iGii(w) =  iRe GR(w) -  coth  (Sltt) ImGR(w)  ,

               iGi2(w)  =  
-2n(on)ImCR(w)

 =  iG2i(-w)  ,

               i(;'22(w) =  
-iRe

 GR(w) -  coth  (iii ) ImGR(w)  ,

with  n(w)  =  1/(exp(wlT)  
-

 1).

   Rather  than integrating over  the  xi(ti)  and  x2(t2)  we  change  variables

"ra"
 basis

            Xr  =  (Xl(t) +  X2(t))/2  , Ma(t)  =  (Xl (t) '  X2  (t))/2 i

which  leads to the fo11owing reduced  path  integral:

                        ZHQ  =  f Dx.Dx.e'Seff ,
with  the action

        iSkff =  
-i
 f dtxa(t) Me  al'. (t) '  f dt f dt'x.(t)iGR(t -  t')x.(t')

                  
-
 ± f dt ./ dt'Xa(t)Gsyrn (t -  t')xa(t') .

In writing  this result  we  have  made  liberal use  of  the identities

        asym(t 
-
 t') =  i [Gii +  G22 +  C12 +  G2i] =  <{"fr(t), i>(O}> i

            iGR(t) -  g [Gii -  G22 -  Gi2 +  G2il -  e(t) <[,tli(t), iii(o)]> .

[[b proceed  further we  introduce the Fourier transfbrm  of  the gaussian term

     exp  ( r  3 f dt f dt'xa(t)Gsym(t -  t')x.(t'))
                 =  f DC  exp  (z /

'

 dtC(t)x.(t) 
-
 i6(t)G,-,i. (t -  t')C(t')) ,

and  integrate over  x.(t)  which  gives a  functional 6-function, The  result  is

        Z =  f DXrDC  lil] 6t (M8Xr(t) +  f
`

 dt'GR(t 
-
 t')X. (t') 

-
 6(t))

            xexp(-Sfdtf  s,.                            dt'C(t)G-i (t -  tt)c(ti)) ,

 (3-3)

 (3･4)

 (3･5)

 (3･6)
 (3･7)

 (3･8)

to the

 (3･9)

(3-10)

(3･11)

(3-12)

(3-13)

(3-14)

(3･15)
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The  meaning  of  this path  integraliO) is that  one  is supposed  to solve  the  classical

equation

                Mex.(t)+f
tdt'GR(t-t')x.(t')-C(t)-O,

 (3･16)

with  the colored  noise

                        <c(t)c(t')> = G,,. (t-t'), (3･17)
In equilibrium  the noise  is related  to the imaginary part of  the retarded  greens
function by the fluctuation dissipation relation

                   G,,.(tu) =  -2  ImGR  (w) (3+n(av)) (3-18)

Equation  (3･16) is a  finite memory  version  of  the  Brownian  dynamics  discussed in

the introduction.

S4. AdS/CFT

   Clearly the  contour  structure  was  essential  to determining the  noise  in thermal

quantum  mechanics,  The  contour  structure  real  time partition  function of  the field
theory  has been  associated  with  the full Kruskal plane in the gravity dual.8)ii2) The

string  which  was  originally  mapped  as  in Eq. (2･4) actually  passes right  through  the

event  horizon of  the  black hole and  fi11s the  full Kruskal  plane.2) This  is shown  in

Fig. 1,

   We  then  wish  to consider  the real  time  partition function of  string  path  integral

          ZHQ  
=

 f l,I dX2(ti) lll,( d{nS(t2) I, I. d{ni(t, z)cix2(t,  z)etSivG  . (4･i)

Here we  ha;ve written  the  path integral explicitly;  xY(t)  is the  endpoint  of  the  string

in the  right  quadrant  and  xS(t)  is the  endpoint  in the  left quadrant.  xi(t,z)  labels
bulk fluctuations in the right  quadrant  and  x2(t,x)  labels the fluctuation in the
left, Here  SNG  is the small  fluctuations path integral written  above  in Eq.  (2･5).
Imagine integrating out  the bulk fluctuations to yield an  effective  action  for the
boundary variables  x7  and  mS.  Since the  integra} is gaussian (fbr small  fluctuations)
the  integration over  the  bulk coordinates  is simply

                 f[Dx:] [DxS] det [D] eZSeff [Xci(XY(`i)7¢ e(`2))] , (4.2)

where  S.ff is the  Nambu-Goto  action  evaluated  with  the classical  path  X.1 which

passes through  the end  points cc2(ti)  and  xg(t2).  For a  classical  path  this reduces  to

a  boundary term  as  usual  in AdS/CFT.

   Following the logic of  the Herzog-Son construction  fbr the real  time path  integral
in AdS/CFT  this boundary term  reduces  to the fbllowing:2)i8),i3)

     ,..--sfg/
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Fig. 1. Kruskal  diagram  for the  AdS  black  hole. The  coordinates  (t,2) span  the  left (L) quadrant.
   The  dotted lines and  the  dashed  hyperbolas represent  the  future and  past horizons and  singular-

   ities. The  thick hyperbolas on  the sides  are  the t･wo boundaries (x =  O). The  quark  propagat･es

   along  the  1 and  2 axes  of  the Schwinger-Keldysh cont,our  which  corresponds  t･o a  string  whose

   endpoints  fo11ow these  houndaries.  The  minimal  surface  with  these  boundary  conditions  is the

   full Kruskal plane.

      xxr(-cv)  [-iAilElcv2 +  iaii(w)] x:(cv)  
-
 xy(-cv)  [e+waiai2(cv)] xs(cv)

      +xs(-av)  [+iMew2 +iC22(w)] mg(w)-x3(-w)  [e-cuai02i(w)] x7(w)  , (4-3)

Here the different functions (Gii(w) etc.)  are  related  to the  AdS/CFT  retarded

correlator  (GR(w) in Eq. (2･9)) via  the  KMS  relations  given in Eqs. (3･6) 
-
 (3･8).

The  determinant

                   det[D]=det  [+ .to,}+0.  (l, O. )], (4 4)

is an  opaque  object  but the  important  point is that  it is independent  of  x2

and  can  safely  be  ignored. After a  change  of  variables  and  reverting  to time

Xr(t)  =xr(t)

 +  xa(t  +  ia)
Xa,(t) =x?(t)

 
-x3(t

 +  ia)

and  xS

2
,

2
, (4･5)

the partition function for a  string  in AdSs  Eq. (4･3) reduces  to the partition function
of  a  heavy particle coupled  to  a  thermal  bath as  in Eq. (3･10).
   At this point the  procedure  is identical to the  usual  Caldeira&Legget and  Feyn-

man&Vernon  procedure  in quantum  mechanics.iO)'ii)  In the low frequency limit we
have

                       cR(w) =+  YllllT cv2 -z51tiT rc, (4 6)

NII-Electronic  
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      or

                                 VXT d2                                                  rc d
                     a.(t -  tt) ..  -                                        6(t -  t') +                                                      6(t-t'). (4-7)
                                   2  dt2                                                 2T  dt

      The  symmetrized  correlator  is also  given by  the  fiuctuation dissipation relation  of

      Eq. (3-18)

                               Gsym(t-t') ==:  rc6(t-t')-  (4'8)

          Taking  Eqs. (4･7) and  (4･8) and  substituting  into the  generalized Langevin  equa-

      tion (3-16) yields a  Langevin  equation  of  motion  for the average  endpoint  ofthe  string

      Xr

                        d2xr K                                 dXr

                        dt2 
+l2itir dt 

=C(t)

 <g(t)C(t')>-K6(t-t'), (4.g)                 Mkin(T)

      with

                                    V]XT
                                            and  K==  OITT3. (4･10)                     Mki.(T)=Me-  2
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                                   Appendix  A

                                 Small Fluctuations

          Our  starting  point is Eq. (2･6). Near  the  boundary z  =  O the solution  to this

      equatlon  ls

                  x(w,2)  =  m.(w)  +  x.(w)  tv2Z2
2

 +  x.(w)C(3tr')x3  + o(x4). (A･1)

      Here we  have used  the  fact that f(z) =  1-  z4  to solve  these equations  The  constant

      C  (a function of  w)  remains  to be determined  from the  boundary  condition.  The

      coeficient  in front of  the  kinetic term  of  Eq. (2-5) is to order  z4

                                        (zT)3R2 1

                                
A(Z)=-

 2.ez 7,' (A'2)

      We  recall  that  the  solution  is written  x(w,  i)  =  x.(w)X(to,  z)  with  X(ro, O) -- 1 and
      substitute

                         aR(w)=ILnoA(z)X(-ro,z)e.X(ro,z),  (A-3)

                               =-(",T.),

3,,R2
 [!I;

2L+C(to)]･

 ("'`)

                               --Maw2-v51(T2T.)3c(ro).  (A･s)
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[[b get the  the  last line we  have reinstated  the  
"bar"

 in g- -- z/zH,  recalled  definitions

(zH =  1/(TT), ro =  w/(TT),  z  =  R2/r), expressed  the string  tension as  Tb =  de. ,

exploited  fundamental  relation  R2/eZ =  Ol, and  finally used  the  zero  temperature

result  for the energy  ofa  string  as  tension times length, M&  
=

 [Tbr.. Thus  we

see  that the divergent boundary  terms  conspire  to give the  zero  temperature  kinetic

term

GR  (w) =  
-Mew2

 +  CR  (w) , (A6)

where  GR(w)  is the regular  (in z) part of the retarded  propagator.

   [I]b determine the regular  part of  the retarded  propagator  we  must  analyze  the

solutions  ofEq.  (2･6). The  basic procedure  is straightforward  and  standard:  (1) Near
the horizon z  =  1, a  short  exercise  shows  that the solution  behaves as  (1 -  z)

± Ztu!4;

the infa11ing (-ito/4) solution  should  be selected  for retarded  boundary conditions.

(2) Then  writing  X(z, to) as  (1 -  x)-ttu!4g(z,  tn) one  solves  fbr g(z, tn) demanding
regularity  at  the horizon. (3) In practice the resulting  equation  for g(z, to) can  only

be solved  order  by  order  in the  frequency. Following this procedure  one  finds that

x(w,z)  =  xo(w)o  -  z4)-zto/4  [1 +  +2ro lli
3L

 +  to2{l
2L

 -  !Il
?:z3]

 +  o(z4, ro3)

Substituting this solution  into Eq
in the  text Eqs. (2･9) and  (2･10).

(A･7)

, (A･3) we  determine the retarded  correlator  quoted
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