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I discuss the extent of the conformal window for an SU(3) gauge theory with Ny Dirac
fermions in the fundamental representation. I describe some recent work concluding that
the theory is conformal in the infrared for Ny = 12, governed by an infrared fixed point,
whereas the Ny = 8 theory exhibits confinement and chiral symmetry breaking. Thus the
low end of the conformal window N7 lies in the range 8 < Nj < 12. I discuss open questions
and the potential relevance to physics beyond the standard model.

81. Introduction

The conformal window in a gauge field theory with Ny light fermions is the range
of Ny values such that the theory is asymptotically free and the infrared coupling
is governed by an infrared fixed point. In an SU(N) gauge theory with N; Dirac
fermions in the fundamental representation, the conformal window extends from
11N/2 down to some critical value N7 at which a transition is expected to a phase
in which chiral symmetry is broken spontaneously, and confinement sets in. In two
recent papers,t)2) Fleming, Neil, and I provided nonperturbative evidence, using
lattice simulations, that the lower end of the conformal window for the SU(3) gauge
theory lies in the range 8 < N7 < 12.

Gauge theories in or near the conformal window could play a key role in describ-
ing physics beyond the standard model. If the fermions carry electroweak quantum
numbers, and if N; lies outside but near the conformal window, then the theory
could drive electroweak breaking, forming the basis of walking technicolor theories.
If the fermions do not carry electroweak quantum numbers, then N; could lie within
the conformal window, and the theory could describe some new, conformal sector,
possibly coupled to the standard model through SU(N) invariant operators.

To obtain the result 8 < N;é < 12 for Dirac fermions in the fundamental repre-
sentation of an SU(3) gauge group, we employed a gauge invariant, nonperturbative
running coupling derived from the Schrodinger functional of the gauge theory.3) )
Defined within a Euclidean box of volume O(L?), it avoids typical finite volume
effects by using L itself as the sliding scale. For the asymptotically free theories
being considered, it agrees with the perturbative running coupling coupling at small
enough L, and can be used to probe for conformal behavior in the large L limit.
We made use of staggered fermions as in Ref. 6), and therefore restricted attention
to values of Ny that are multiples of 4. The value Ny = 16 leads to an infrared
fixed point that is so weak that it is best studied in perturbation theory. The value
Ny = 4 is expected to be well outside the conformal window, leading to confinement
and chiral symmetry breaking7) as with Ny = 2. We thus focused on the two values
Ny = 8 and Ny = 12. We argued that for Ny = 12, the theory is indeed conformal
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in the infrared. For Ny = 8, we showed that the theory breaks chiral symmetry and
confines. There is no evidence for an infrared fixed point.

§2. The conformal window

The existence of a conformal window in SU(N) gauge theories has been known
since the computation of the two-loop beta function by Caswell in 1974.8) If the
number of massless fermions Ny is near but just below the number N ]?f at which
asymptotic freedom sets in, then the two-loop term is opposite in sign to the one-
loop term and the resultant infrared fixed point is weak, accessible in perturbation
theory. There is no confinement and chiral symmetry is unbroken. As Ny is reduced,
the strength of the infrared fixed point grows, with N; ultimately reaching the value
NJS at which the transition to the chirally broken and confining phase is thought
to set in. There is no a priori reason to expect the infrared fixed point to remain
perturbative through this window.

If the theory is formulated in the continuum and a running coupling g?(L) is
defined at some length scale L, we have L(8/0L)g%(L) = B (g*(L)), where

B (72(L)) = big (L) + bag® (L) + bsg* (L) + bag"(L) + - - - . (2:1)

For the case of SU(3), the first two, universal coefficients are

bi= gy [11 = 3N;],  bo=rgk [102 - $N/]. (2:2)

[COR

The next two coefficients depend on the renormalization scheme. In the MS scheme,

they are given by?)
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by~ = (@ )e (29243.0 — 6946.30N; + 405.089N5 + 1.49931Nf) . (2-4)

For Ny close to 33/2, the two-loop infrared fixed point value g2 is very small, and
therefore corrected very little by the higher order terms.

For Ny = 12, there is a two-loop infrared fixed point at g2 ~ 9.48, corrected to
~ 5.47 at three loops in the MS scheme, and to ~ 5.91 at four loops. The convergence
of the loop expansion is not guaranteed, but the fact that the expansion parameter
at the fixed point g2/4r is relatively small suggests that it could be reliable, and
therefore that Ny = 12 lies inside the conformal window. For N; = 8, there is no
two-loop infrared fixed point. A fixed point can appear at three loops and beyond in
some schemes, but its scheme dependence and typically large value means that there
is no reliable evidence for an infrared fixed point accessible in perturbation theory.
A nonperturbative study is essential.
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§3. The Schrodinger functional

The Schrodinger functional is the partition function describing the quantum
mechanical evolution of a system from a prescribed state at time ¢ = 0 to another
state at time ¢ = T in a spatial box of size L with periodic boundary conditions.?)?)
Dirichlet boundary conditions are imposed at ¢ = 0 and ¢t = T where T is O(L). They
are chosen such that the minimum-action configuration is a constant chromo-electric
background field of strength O(1/L). This can be implemented in the continuum?
or with lattice regularization.®)

The Schrodinger functional can be represented as the path integral

ZW,¢,GW, (T = / [DADy DPeSeWW)=Sp(WW' L) (3.0)

where A is the gauge field and v, 1 are the fermion fields. W and W' are the
boundary values of the gauge fields, and ¢, ¢, ¢’ ,Z’ are the boundary values of the
fermion fields at £ = 0 and ¢ = T', respectively.

Although the Schrodinger functional can be formulated completely in the contin-
uum, from here on I will introduce a Euclidean spacetime lattice. The quantity Sg
is chosen to be the standard Wilson gauge action!!) with a boundary improvement
counterterm. For the fermionic action, we made use of the staggered approach as in
Ref. 6), which reduces the 16 doubler species of a naively discretized fermion field
to 4 degrees of freedom. In the continuum limit, a single staggered fermion field can
be interpreted as four degenerate Dirac fermion fields.

The gauge boundary values W, W’ were chosen such that the minimum-action
configuration is a constant chromoelectric field whose magnitude is of O(1/L) and
is controlled by a dimensionless parameter 7.!2) The Schrédinger functional (SF)
running coupling is then defined in terms of the response of the action to variations
in 7:

k 0

——logZ

FLT) o | .

n=0

k=12 (%)2 [sin @T;) +sin (;Li;ﬂ . (3-3)

The factor k is chosen so that §2(L,T) equals the bare coupling at tree level. In
general, g2(L,T) measures the response of the system to small changes in the back-
ground chromo-electric field.

The fermionic Dirichlet boundary values ¢, ¢, (', ¢’ are subject only to multi-
plicative renormalization for staggered fermions.'®) We took them equal to zero,
simplifying the calculation.

The staggered approach to discretization of fermions can be thought of as split-
ting the 16 degrees of freedom of a single spinor over a 2* hypercube of lattice sites.
This framework requires an even number of lattice sites in each direction. Thus with
periodic boundary conditions in space, the spatial extent L/a of the lattice must be
even. However, in the Schrodinger functional formalism, the Dirichlet boundaries in

where
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the time direction require an odd temporal extent 7'/a in order for the number of
lattice sites to be even, since the sites located at t = 0 and £ =T are distinct.

As a result, one can simulate only with 7" = L + a. In the continuum limit
T = L is recovered, but at a finite lattice spacing this results in the introduction of
O(a) lattice artifacts into observables. This is undesirable, since staggered fermion
simulations contain bulk artifacts only at O(a?) and higher. Fortunately, simulating
at T = L =+ a and averaging over the observed values eliminates this effect.®) We
adopted this technique, defining the central observable

1 1 1 1

(L) 2 {52(L,L—a> TRCLra)’

which depends on only one large distance scale L. To be more explicit, this running
coupling can be written as g%(3, L/a) where 8 = 2N/g3. From this point on I will
fix N =3, and so 8 = 6/g3.

The SF coupling g?(L) has been normalized to give the bare lattice coupling
gg at tree level. With the lattice as a regulator, it can be expanded as a power
series in g2 with coefficients depending on a/L. By rearranging this series in terms
of a coupling defined at an arbitrary scale and setting to zero terms that vanish as
a — 0, a continuum beta function can be defined. Its perturbation expansion leads
to the universal coefficients b; and by of Eq. (2-2) at the one- and two-loop levels.
The three-loop, scheme-dependent coefficient has been computed in this Schrodinger
functional scheme by combining the two-loop perturbative computation of the SF
running coupling in lattice perturbation theory with a similar lattice computation
of the MS coupling constant.'9) The result is

(3-4)

v | b2ca bi(ez — )
SF __ ;MS 2C2 1(c3 — €3
b =T T T T e (3:5)

where b1° is given by Eq. (2-3) with ¢y = 1.256 +0.040N; and c3 = 3 + 1.197(10) +
0.140(6)N; — 0.0330(2)NJ%. The perturbative behavior based on the MS scheme,
is qualitatively unchanged by the modification of the three-loop coefficient. For
N = 12, the three-loop SF coupling has a fixed point at G2 = 5.18, compared with
G2 ~ 5.47 at three loops in the MS scheme.

The four-loop coefficient in the SF scheme has not yet been computed. But
the fact that in the MS scheme the four-loop correction shifts the fixed point by
less than 10% from its three-loop value suggests that the same may be true in the
SF scheme. This indicates that perturbation theory could be reliable to describe
infrared behavior for Ny = 12, and that the infrared fixed point might truly exist.
For Ny = 8, since the universal one- and two-loop coefficients are both positive, there
is no reliable, perturbative evidence for the existence of an infrared fixed point. As
already noted, a nonperturbative study is essential.

§4. Lattice simulations

To measure the running coupling on the lattice, we generated an ensemble of
gauge configurations distributed with the appropriate weighting by the Euclidean
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action. The running coupling was then computed as an average over this ensem-
ble. Simulations were performed using the MILC code,'® with some customization.
Evolution of the gauge configurations was accomplished using the hybrid molecular
dynamics (HMD) approach, with the fermionic contribution included using the R
algorithm.!?)

Sets of gauge configurations were generated at each box size L/a and bare cou-
pling 5. Two independent ensembles were created at T/a = L/a + 1, and then
averaged together as in Eq. (3-4). The data were collected over a wide range of
values and for 6 < L/a < 20, in order to capture the evolution of (L) over a large
range of scales. In the range of 8 values employed, for both Ny = 8 and Ny = 12,
there is no evidence for a bulk phase transition. We explored this issue by examin-
ing the plaquette time series within this range and at lower values of 5. At lower
values, we indeed found evidence for a bulk phase transition. These lower values are,
however, well separated from the minimum £ used in our analysis.

The goal is to map out the behavior of the running coupling over a large range of
scales L. However, the range over which one can measure the coupling strength with
fixed lattice spacing a before the computational expense becomes prohibitive is still
rather limited. To achieve our goal, we used a procedure known as step scaling.®)-17)

Step scaling provides a systematic way to combine multiple lattice measurements
of the running coupling g%(L) into a single measurement of the continuum evolution
of the coupling as the scale changes from L — sL, where s is a scaling factor called
the step size. In a continuum setting, the evolution is described by the “step-scaling
function”,

o(5,52(L)) = FA(sL), (4-1)

which can be thought of as a discrete version of the usual continuum evolution
described by the beta function. In a lattice calculation, the extracted step-scaling
function will be a function also of a/L, which we must extrapolate to the continuum:

o(5,5%(L)) = lim (s, g%(L),a/L). (4-2)

Step scaling is generically implemented by first choosing an initial value v =
g2(L). Several ensembles with different values of a/L are then generated, with 3
tuned so that the coupling measured on each is equal to the chosen value, g2(L) = u.
A second ensemble is generated at each 5, but with L — sL. The value of the
coupling measured on this larger lattice is exactly X (s,u,a/L). An extrapolation
a/L — 0 can then recover the continuum value o (s, u). Taking o(s,u) to be the new
starting value, one can then iterate this procedure until we have sampled §2(L) over
a large range of L values. In practice we took s = 2.

There is a natural caveat on the step-scaling procedure. In the limit a/L — 0
with g?(L) fixed, g3(a/L) depends on the short-distance behavior of the theory,
and it is important that it remains bounded so that it does not trigger a bulk
phase transition. If asymptotic freedom governs the short distance behavior, this
is automatic since g3(a/L) — 1/log(L/a). While this is our principal focus, the
existence of an infrared fixed point for the Ny = 12 theory will lead us to consider
also values of g?(L) lying above the fixed point. Then g2(a/L) increases as a — 0,
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with no evidence from our simulations that it remains bounded and therefore that the
continuum limit exists. Nevertheless, one can consider small values of a/L providing
that g2(a/L) remains small enough not to trigger a bulk phase transition.

Carrying out the above procedure directly can be expensive in computational
power since each tuning of 8 may require several attempts. We instead measured
g*(L) for a limited set of values for 3 and L/a, and then generated an interpolating
function. This function was used to tune /S as described above. In Ref. 2), we
employed a set of interpolating functions, one for each L/a, focused on the lattice
observable 1/¢%(8,L/a). We used a fit at each L/a with n-th order polynomial
dependence on g& = 6/8:

1 B - 6"

i=1

The order n of the polynomial was varied with L/a in order to achieve the optimal
x? per degree of freedom when fitting to the data. The values of the parameters
with associated errors, determined by fits to the simulation data for both Ny = 8
and Ny = 12, are discussed in Ref. 2).

This function is used for interpolation within the measured range, as a basis for
the step-scaling procedure. More elaborate interpolating functions could be used, in
particular, modeling explicitly the L/a dependence or including nonanalytic terms
in g%, but such functional forms do not significantly alter the fit quality or the results
of step scaling based on the collected data set.

We accounted for numerous sources of statistical and systematic error.?) We
concluded that potential systematic errors in our procedure are small compared to
current statistical errors.

§5. Results

5.1. Ny =38

The simulation data for g(L) as a function of 8 and L/a are displayed in Ref. 2).
The ranges are § = 4.55-192 and L/a = 6,8,10,12,16. The lower limit on 8 was
chosen to insure that the lattice coupling is weak enough so as not to induce a bulk
phase transition. The upper limit was taken to be large so that we could check the
agreement of our simulations with perturbation theory when the coupling is very
weak. The final results depend sensitively only on simulations below 8 = 10. The
data becomes more sparse with increasing L /a, reflecting the growing computational
time involved. In particular, only a very limited amount of L/a = 20 data, at very
weak coupling, is available at Ny = 8, so we excluded these points from our analysis.
The L/a = 10 data is thus also excluded, since it cannot be used in step scaling at
s = 2 without the L/a = 20 points. The resultant values of g?(L) are perturbative
(¢%(L)/4m < 1) throughout much of the range, except for small 3.

In order to carry out the step-scaling procedure, we employed the interpolating
function of Eq. (4:3). The resulting best-fit mean values and errors for the parameters
at each L/a are discussed in Ref. 2). In Fig. 1, data points are shown together with
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Fig. 1. (color online) Measured values g*(L) versus § for Ny = 8. The interpolating curves shown
represent the best fit to the data, using the functional form Eq. (4-3). The errors are statistical.

the interpolating functions for g2(L) as a function of 3, for each of L/a = 6,8, 12, 16.

Figure 2 shows a typical continuum extrapolation from our 8-flavor data. The
points shown represent steps from L/a = 6 — 12 and 8 — 16. Constant extrapola-
tion (a weighted average of the two points) is used since the lattice-artifact contri-
butions to X(2,u,a/L) are small compared to the statistical errors. We estimated
the systematic error in this procedure and found that it is small compared to the
statistical error.

Our results for the continuum running of g2(L) are shown in Fig. 3. Lg is
the scale at which g%(Lg) = 1.6, a relatively weak value. The points are shown
for values of L/Lg increasing by factors of 2. The (statistical) errors are derived
as described in Ref. 2). For comparison, the perturbative running of g?(L) at two
loops and three loops is shown up through g?(L) ~ 10 where perturbation theory
is no longer expected to be accurate. The results show that the coupling evolves
according to perturbation theory up through g?(L) = 4, and then increases more
rapidly, reaching values that clearly exceed typical estimates of the strength required
to trigger spontaneous chiral symmetry breaking.'® The dynamical fermion mass is
of order of the corresponding 1/L, and since the coupling is strong here, the theory
will confine at roughly this distance scale. There is no evidence for an infrared fixed
point or even an inflection point in the behavior of g%(L).
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Fig. 2. (color online) Step-scaling function X(2,u,a/L) at various u, for each of the two steps
L/a =6 — 12 and 8 — 16 used in the Ny = 8 analysis. Note that X(2,u,a/L) > u in each
case, with the difference increasing as u increases.

52. Nj=12

The simulation data for §2(L) as a function of 3 and L/a are also displayed in
Ref. 2). The table ranges from f = 4.2-192 and L/a = 6-20. The lower limit on
B insures that the lattice coupling is weak enough so as not to induce a bulk phase
transition. As in the Ny = 8 case, the upper limit was taken to be large in order
to explore agreement with perturbation theory, but data above § = 10 do not have
significant influence on our analysis. L/a = 20 data were included here and not
in the Ny = 8 case because of concerns about the magnitude of the lattice artifact
corrections, compared to the continuum running. In the end, artifact corrections
were found to be small compared to our statistical error. The interpolating functional
form Eq. (4-3) was again employed, and the resulting best-fit mean values and errors
of the parameters at each L/a are discussed in Ref. 2). In Fig. 4, data points are
shown for g2(L) as a function of 3, together with the interpolating functions for each
of L/a =6,8,10,12, 16, 20.

The data and the interpolating curves already suggest the existence of an infrared
fixed point for Ny = 12. For small 8, the general trend is that §2(L) decreases
with increasing L. This behavior and the fact that for larger 3, g2(L) increases
with increasing L, are reflected in a crossover behavior in the interpolating curves.
We first implemented the step-scaling procedure choosing an initial u = g2(L) well
below a possible fixed-point value so that a continuum limit is guaranteed to exist.
A constant continuum extrapolation (a weighted average of the available values of
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Fig. 3. (color online) Continuum running for Ny = 8. Purple points are derived by step-scaling us-
ing the constant continuum-extrapolation of Fig. 2. The error bars shown are purely statistical.
Two-loop and three-loop perturbation theory curves are shown for comparison.

2 (2,u,a/L)) was again employed for each u. Now, since we have data at L = 20,
the extrapolation is a weighted average of three points corresponding to the steps
6 — 12, 8 — 16, and 10 — 20. Examples of such a continuum extrapolation are
shown in Fig. 5. The systematic error is again estimated to be small compared to
the statistical error.

Our results for the continuum running of g2(L) from small values are shown in
purple in Fig. 6. Ly is again taken to be the scale at which §%(Lg) = 1.6. The
points are shown for for values of L/Lg increasing by factors of 2. The (statistical)
errors are derived as described in Ref. 2). For reference, the two-loop and three-loop
perturbative curves for g2(L) are also shown in Fig. 6. From the figure, we conclude
that the infrared behavior is indeed governed by a fixed point whose value lies within
the statistical error band. Because of the underlying use of an interpolating function,
the error bars of adjacent points in Fig. 6 are highly correlated. As the running
coupling approaches the infrared fixed point, this correlation approaches 100%, so
that the error bars asymptotically approach a stable value as the number of steps is
taken to infinity. The range of possible values of the fixed point from our simulations
is consistent with the three-loop perturbative value in the SF scheme, well below
estimates'® of the strength required to trigger spontaneous chiral symmetry breaking
and confinement.

The infrared fixed point also governs the L — oo behavior starting from values

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Lattice Ezplorations of TeV Physics 81
12 0 l
! L/a=6
o L/a=10 |

L/a=12
Lla=16
L/a=20

(DR
64_
4__
2 | n. . . I . . . | . . | ! . . . J_—
4.2 4.4 4.6 4.8 5.0

Fig. 4. (color online) Measured values §°(L) versus 8, Ny = 12. The interpolating curves shown
represent the best fit to the data, using the functional form of Eq. (4-3).

of g?(L) above the fixed point. As discussed already, the continuum limit is then no
longer guaranteed to exist and the step-scaling procedure cannot be naively applied.
Instead, one can restrict the discussion to finite but small values of a/L, small enough
to minimize lattice artifacts but large enough so that for g2(L) near but above the
fixed point, g2(a/L) is small enough not to trigger a bulk phase transition. The
step-scaling procedure then leads to the continuum running from above to the fixed
point, also shown in Fig. 6. The statistical-error band is derived as in the approach
from below.

§6. Summary

For an SU(3) gauge theory with Ny Dirac fermions in the fundamental represen-
tation, the value Ny = 8 lies outside the conformal window, leading to confinement
and chiral symmetry breaking, while Ny = 12 lies within the conformal window,
governed by an infrared fixed point. The fixed point value is bounded as shown in
Fig. 6. This is, as far as I know, the first nonperturbative evidence for the existence
of infrared conformal behavior in a nonsupersymmetric gauge theory.

The Ny = 8 and Ny = 12 results imply that the lower end of the conformal
window, N}:, lies in the range 8 < NJ'% < 12. This conclusion is reached employing the
Schrédinger functional (SF) running coupling, §%(L), defined at the box boundary L
with a set of special boundary conditions. This coupling is a gauge invariant quantity,
valid for any coupling strength and running in accordance with perturbation theory

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

82 T. Appelquist
4.5 1 A ‘ 1 T ' ' t ' T ]
40 _u=4.0_ - X X N
350 ]
< 30- u=3.0 # o - ]
=S i i
C\\l: L
n 25) :
oL u=20 :
- u=16_ A _ _ A _ _ _ _ 4 A ]
1.5¢ .
000 001 002 003 004

(a/L)?

Fig. 5. (color online) Step-scaling function X(2,u,a/L) at various u, for each of the three steps
L/a =6 — 12,8 — 16, 10 — 20 used in the Ny = 12 analysis. Note that X (2,u,a/L) — u as
the starting coupling v approaches the fixed point value.

at short distances.

For N; = 8, we simulated G(L) up through values that exceed typical estimates
of the coupling strength required to trigger dynamical chiral symmetry breaking,'®)
with no evidence for an infrared fixed point or even an inflection point. For Ny = 12,
the observed infrared fixed point is rather weak, agreeing within the estimated errors
with the three-loop fixed point in the SF scheme, and well below typical estimates
of the coupling strength required to trigger dynamical chiral symmetry breaking.!®)

Whether perturbation theory can be used reliably to reproduce the behavior in
the vicinity of the Ny = 12 fixed point remains to be seen. The three-loop value of
the fixed point is substantially different from the two-loop value. On the other hand,
in the MS scheme where the four-loop beta function has been computed, the four-
loop fixed point is shifted by only a small amount from the three-loop value. The
relative weakness of this fixed point, together with the fact that NJ% cannot be much
smaller, raises the question of whether the theory remains perturbative throughout
the conformal window.19)

It is important to confirm these results by employing other definitions of the
running coupling, for example, based on the Wilson loop and static potential,2?®) and
by examining scheme-independent quantities. Most notably, spontaneously chiral
symmetry breaking as a function of Ny should be studied through a zero-temperature
lattice simulation of the chiral condensate. Simulations of g?(L) for other values of
Ny, in particular Ny = 10, are crucial to determine more accurately the lower end
of the conformal window and to study the phase transition as a function of Ny. All
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Fig. 6. (color online) Continuum running for Ny = 12. Results shown for running from below
the infrared fixed point (purple triangles) are based on §*(Lo) = 1.6. Also shown is continuum
backwards running from above the fixed point (light blue squares), based on §*(Lo) = 9.0. Error
bars are again purely statistical, although strongly correlated due to the underlying interpolating
functions. Two-loop and three-loop perturbation theory curves are shown for comparison.

of these analyses should be extended to other gauge groups and other representation
assignments for the fermions.21)27)

The phenomenological relevance of these studies remains to be seen. A theory
with Ny outside but near the conformal window (S N§) could describe electroweak

breaking and provide the basis for walking technicolor.?8) In this class of theories,
as Ny — Ny from below, a hierarchy emerges between the electroweak scale and the
larger mass scale where the gauge coupling becomes strong. This could be signaled
by the appearance of a plateau of finite extent in g?(L), and by the development of a
hierarchy between the chiral condensate and the electroweak scale. It is also impor-
tant to explore the particle spectrum in this limit and to compute the electroweak
precision parameters, in particular the S parameter.

References

1) T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev. Lett. 100 (2008), 171607,
arXiv:0712.0609.

2) T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev. D 79 (2009), 076010,
arXiv:0901.3766.

3) M. Liischer, R. Narayanan, P. Weisz and U. Wolff, Nucl. Phys. B 384 (1992), 168, hep-
lat /9207009.

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

84 T. Appelquist

4) S. Sint, Nucl. Phys. B 421 (1994), 135, hep-lat/9312079.
5) A. Bode et al. (ALPHA Collaboration), Phys. Lett. B 515 (2001), 49, hep-lat/0105003.
6) U. M. Heller, Nucl. Phys. B 504 (1997), 435, hep-lat/9705012.
7) C. Z. Sui, Ph.D. thesis, Columbia University, New York, NY (2001), UMI-99-98219.
8) W. E. Caswell, Phys. Rev. Lett. 33 (1974), 244.
9) T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B 400 (1997), 379,
hep-ph/9701390.
10) A. Bode, P. Weisz and U. Wolff (ALPHA collaboration), Nucl. Phys. B 576 (2000), 517
[Errata; 600 (2001), 453], hep-lat/9911018.
11) K. G. Wilson, Phys. Rev. D 10 (1974), 2445.
12) M. Liischer, R. Sommer, P. Weisz and U. Wolff, Nucl. Phys. B 413 (1994), 481, hep-
lat/9309005.
13) R. Sommer, hep-lat/0611020.
14) C. DeTar et al. (MILC) (2002), http://www.physics.utah.edu/ detar/milc/
15) S. A. Gottlieb, W. Liu, D. Toussaint, R. L. Renken and R. L. Sugar, Phys. Rev. D 35
(1987), 2531.
16) M. Liischer, P. Weisz and U. Wolff, Nucl. Phys. B 359 (1991), 221.
17) S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto and A. D. Sokal, Phys. Rev.
Lett. 74 (1995), 2969; hep-lat/9409004.
18) T. Appelquist, A. Ratnaweera, J. Terning and L. C. R. Wijewardhana, Phys. Rev. D 58
(1998), 105017, hep-ph/9806472.
19) E. Gardi and G. Grunberg, J. High Energy Phys. 03 (1999), 024, hep-th/9810192.
20) E. Bilgici et al., arXiv:0808.2875.
21) Y. Shamir, B. Svetitsky and T. DeGrand, Phys. Rev. D 78 (2008), 031502,
arXiv:0803.1707.
22) S. Catterall, J. Giedt, F. Sannino and J. Schneible, J. High Energy Phys. 11 (2008), 009,
arXiv:0807.0792.
23) L. Del Debbio, M. T. Frandsen, H. Panagopoulos and F. Sannino, J. High Energy Phys.
06 (2008), 007, arXiv:0802.0891.
24) A. J. Hietanen, J. Rantaharju, K. Rummukainen and K. Tuominen, J. High Energy Phys.
05 (2009), 025, arXiv:0812.1467.
25) L. Del Debbio, A. Patella and C. Pica, arXiv:0812.0570.
26) Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, arXiv:0809.4888.
27) L. Del Debbio, A. Patella and C. Pica, arXiv:0805.2058.
28) T. Appelquist and L. C. R. Wijewardhana, Phys. Rev. D 36 (1987), 568.

NI | -El ectronic Library Service



