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   I discuss the extent  of  the  conformal  window  for an  SU(3)  gauge theory  wjth  Nf  Dirac
ft}rinions in the  fiindaincntai rapresent,at,ioii.  ! clescribe  soine  reicellt  w()rk  cenc:luding  that

the theory  i's conformal  in the int'rared tbr Nf  =  12, governed  by an  infrared fixed point,
whercas  the  A:'f =  8 theory  exhibits  confinement  andi  chiral  sy. mmetry  breaking. Thus  the

low end  of  the confOrmal  window  NfC lies ill the  ran.ifc 8 S NfC･ f 12. I cliscuss  epen  questions
and  tbe potential re]cvance  to physics beyond  the standard  model.

Sl. Introduction

   The  confbrmal  window  in a  gauge field theory  with  AIf light fermions is the  range

of  ALf values  such  that  the  theory. is asymptotically  free and  the infl]ared coupling'

is governed  by an  inft'ared fixed poiiit, In an  SU(N)  gauge  theory  with  IYf Dirac
ferrriions in the  fundainental representation,  the  conforinal  window  extends  from

111V/2 down  to some  critical  value  IV,f at which  a  transition is expected  to a  phase
in which  chiral  sy, mmetry  is broken spontaneously,  and  confi,nement  sets  in. In two
recent  papers,i)72) Fleming, Neil, and  I provided nonperturbative  evidence,  using

lattice simulations,  that･ the  lower end  of  the  confbrmal  window  for the  SU(3)  gauge
theory lies in the range  8 <  ny <  12.

    Gauge  theories  in or  near  the conformal  window  could  play. a  key role  in describ-
ing physics  beyond  the  standard  model.  If the  fermions carry  electroweak  quanturn
numbers,  and  if IYf lies outside  but near  the  coiiformal  window,  then  the  theory

could  drivc electrovveak  breaking, forming the  basis of  walking  technicolor  theories.

If the  fermions do not  carry  elcctroweak  quantum  numbers,  then  ATIf could  lie within

thc  conformal  window,  and  the theory  could  d¢ scribe  seme  new,  cenformal  sector,

possibly  coupled  to the standard  medel  through  SU(N)  invariant operators.

    To obtain  the result  8 <  AI,Cf <  12 for Dirac fermions in the fundamental repre-
sentation  of  an  SU(3)  gauge  group, we  employed  a  gauge  invariant, nonperturbative

running  coupling  derivcd from the Schr6dinger functional of the gaugc theory.3)-5)

Defined within  a  Euclidean box of  volume  O(L4), it/ avoids  t,ypical finit/e volume

effects  by  using  L  itself as  the sliding  scale,  Fbr the asymptotically  free theories
being considered,  it agrees  with  the  perturbative running  coupling  coupling  at  small

enough  L, and  can  be used  to probe  for confbrmal  behavior in the  large L  limit,

We  made  use  of  staggered  fermions as  ill Ref. 6), and  therefore  restricted  at･tention

to values  of  Ai,f that  are  multiples  of  4. The  va,lue  Nf  =  16  leads to an  infrared

fixed point  that  is so  weak  that  it is best studied  in perturbation  theory, Thc  valuc

Arf ==  4 is expected  to  be  well  outside  the  conformal  window,  leading to confinement

and  chiral  symmetry  breaking7) as with  Nf  =  2. VVre thus focused on  the  two  values

IYf =  8 and  Nlf =  12. We  argued  that for iVf =  12, the theory is indeed conibrmal
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in the  infrared. For Ai) =  8, we  showed  t･hat the theory breaks chiral  synimetry  and

confines.  There is no  evidence  for aii  infrared fixed point,

S2. The  confbrmal  window

   The  existence  of  a  conformal  window  in SU(Ar)  gauge  theories  has been known

since  the  cornputation  of  the two-loop beta function by Caswell in 1974.8) If the

number  of  massless  fermions ACf is near  but just below  the number  IY7'f at which

asymptotic  freedom  sets  in, theii the two-loop term  is opposite  in slgn  to the one-

loop term  and  the resultant  infrared fixed point is weak,  accessible  in perturbation
theory.  There  is no  confinement  and  chira]  symmetry  is unbroken,  As AJIf is reduced,
the strength  of  the infrared fixed point grows, with  Nlt･ ultimately  reaching  the  value

N7  at which  the  transition to the chirally  broken and  confining  phase  is thought

to set in. There  is no  a  priori reason  to expect･  the infrared fixed point to remain

perturbatixre through  this window.

   If the theory is formulated in the continuum  and  a running  coupling  g2(L) is
defined at some  length scale  L, we  have L(0/OL)g2<L) =  B (g2(L)), where

          B (g2(L)) =  big4(L) +  b2g6(L) +  b3g8(L) +  b4giO(L) +･-･  , (2･1)

For the case  of  SU(3), the first two, universal  coefficients  are

b,. -  (,?), [11 -  Z A[f･] , b2 =  (,#), [102 
-
 
{li,/

 IYf] , (2･2)

The  next  twe  coeficients  depend on  the renormalization  scheme.  In the  MS  scherrie,

they  are  given by9)

                 b2g,gs =  (4;), [28257- 
5:g3

 Aif + 
3s245

 A{?] . (2.3)

and

        b5,ill･iS .,. (4;), (29243.o 
-
 6946.301Vlf + 405.0891Y7 + 1.499311Vl?) . (2･4)

For ACf close  to 33/2, the  two-loop infrared fixed point value  g? is very  small,  and

therefore corrected  very  little by  the higher order  terms.

   for N.t･ =  12, there is a  two-loop inftared fixed point at gtt [y  9.48, correeted  to
i>t 5.47 at  three leops in the MS  scheme,  and  to -t 5.91 at  four loops, The  conveTgence

of  the }oop expansion  is not  guaranteed,  but the fact that the expansion  parameter
at  the fixed point  g:/4T is relatively  small  suggests  that it could  be reiiable,  and

thercfore  that  AIf =  12 lies inside the  confbrmal  window.  Epr Allf ==  8, there is no
two-loop  infrared fixed point. A  fixed point can  appear  at  three loops and  beyond in
some  schemes,  but its scheme  dependence and  typically large value  means  that  there

is no  reliable  evidence  fbr an  infraTed fixed point  accessible  in perturbation  theory.
A  nonperturbative  study  is essential.
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S3. The  Schr6dinger functional

   The  Schr6clinger funct･ional is the partitioii function describing the quantum
mechanical  evolution  of  a  system  from a  prescribed  state  at  time  t =  O to another

stat･e at  tirne t =  T  in a  spatial  box  of  size L  with  periodic  boundary conditioiis.3)  
5)

Dirichlet boundary conditions  are  imposed at  t -  O and  t =  T  where  T  is O(L). [I]hey
aTe  chosen  such  that  the minirnum-action  configuration  is a constant  chromo-electric

background field of strength  O(1!L). This can  be iinpleinented in the  continuum3)

or  with  lattice regularization.'iO)

   The  Schr6dinger i'unctional can  be represented  as  the patlL integral

Z[Wl  C,4 W',4, (' 
']
 ==  f[DADvDIJI]e-Scr(VZW')-Sp･(vzW,c,l,<'.l'),

                   '
(3･1)

where  A  is the  gauge  field and  
'ip,

 V are  t･he fermion ficlds. PTJ and  W'  are  the
boundary  values  of  the gauge  fields, and  C,l,C',lt are  the  boundary values  of  thc

fermien fields at  t =  0 and  t ==  T, respectively.

   Although the Schr6dinger functional can  be formulated completely  in the contin-

uum,  from  here on  I will  introduce a  Euclidean spacetime  lattice. The quantity SG
is chosen  to be the standard  VLTilsen gauge  actionii)  with  a  boundary improvement
coullterterm.  For the fermionic actiorL,  we  made  use  of  the  staggered  approach  as  in

Ref. 6), which  reduces  the 16 doubler species  of  a  naively  discrctized fermion field
to 4 degrees of  frccdom. In the  continuum  limit, a single  staggered  fermioii field can

be interpreted as  four degenerate Dirac fermion fields.

    The  gauge  boundary values  "J, VP"' were  chosen  such  that t･he minimum-action

configuratien  is a  constant  chromoelectric  field whose  magnitude  is of  O(1/L)  and

is controlled  by a  dimension}ess parameter  T],i2) The  Schr6dinger functional (SF)
running  coupling  is then defined in terms  of  the  respoiise  of  the action  to variations

in ep:
                           k O

                        g2 (L, T) 
=-bE

 
IOgZ

 
,..,

 
:

 (3'2)

where

                 k.. 12 (:)
2

 [si,, (23TLai)+s. (3TLai;)] (3 3)

[I]he factor k is chosen  so  that b2(L,T) equals  the  bare coupling  at t･ree level. In

gcneral, g2(L,T) measures  t･he response  of  the system  t･o small  changes  in the back-

ground  chrerno-electric  field.

    Thc  fermionic Dirichlet boundary. values  C,C,<',C' are  subject  only  to multi-

plicative renormalization  for staggered  fermions.i3) "ie took  them  equal  to zero,

simplifying  the  calcu]ation,

    The  staggered  approach  to discretization of  fermions can  be thought  of  as  split-

ting the 16 degrees of  fireedem of  a  single  spinor  over  a  24 hypercube  of  lattice sites.
This fr'amewerk requires  an  even  number  of  lattice sites  in each  direction. Thus  with

periodic  boundary  conditions  in space,  the spatial  extent  L/a  of  the lattice must  be
evell.  Howcver,  in the  Schr6diiiger functional formalism, the  Dirichlet boundaries in
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the time directien require  an  odd  temporal  extent  T/a  in order  for the number  of

la-ttice sites  to be even.  since  the sites  located at  t =  0 and  t =  T  are  distinct,                    '

   As a  result,  one  can  simulate  only  with  T  =  L  ± a. In the continuurn  limit

[IT =  L  is recovered,  but at  a  finite lattice spacing  this results  in the introduct･ion of

O(a) lattie(,i artifacts  into observablcs.  This is undesirable,  siiice  staggered  fermion

simulations  contain  bulk artifacts  only  at  O(a2) and  higher. Fortunately, simulating
at  T  ]::  L  lt a  and  averaging  over  the  observed  values  eliminates  this efrt]ct,6)  We
adopted  this technique, defining the central  observable

                  y2 1L) =i  [g2 (L, 
IL
 -  a)  + g2 (L, 

IL
 +.)]7  (3 4)

which  depends on  only. one  large distanee scale  L. To  be more  explicit,  this rurming

coupling  can  be written  as  g2(6,L/a) where  5 i  21Vlgo2, From  this point on  I will
fix N  =  3, and  so  rs =  6/go2.

    The  SF coupling  g2(L) has been normalized  to give the bare lattice coupling

go2 at  tree level. With  the  lattice as  a  regulator,  it can  be expanded  as  a  power
series  in g3 with  coeflicients  depending  on  a/L.  By  rearranging  this series  in terms
of  a  ceupling  defined at  an  arbitrary  scale  and  setting  to zero  terms  that vanish  as

a  -  O, a  continuum  beta  function can  be defined. Its pertuTbation expansion  leads
to the universal  coeflicients  bi and  b2 of  Eq. (2･2) at  the  one-  and  two-loop  levels,
The  three-loop,  scheme-dependent･  coeficiellt･  has been computed  in thls Schr6dinger
functional scherne  by combining  the  two-loop  perturbative computation  of  the SF
running  coup!ing  in Iattice perturbation theory with  a  similar  lattice computation

of  the MS  coupling  constant,iO)  The  result  is

                      b,sF= bg.ISs + 
bill2

 m  
bi(C136

 i, 
Ci),

 (3 s)

where  b3MS is given by Eq. (2･3) with  c2 =  1.256+O.040AJIf and  c3 =  c; +1.197(10)  +

O,140(6)Aif -  O,0330(2)A{7. The  perturbative behavior based on  the MS  scheme,

is qualitatively  unchanged  by the rnodification  of  the three-loop coefficient.  For

ALf =:  12, the  three-loop  SF coupling  has a  fixed point  at g? Fs 5.18, compared  with

ga fs  5.47 at  three loops in the MS  scheme.

    The  fbur-loop coefllcient  in the SF  scherne  has not  yet been computed.  But
the fact that in the MS  scheme  the four-loop correction  shifts  the fixed poSnt by
less than  10%  from its three-loop value  suggests  that the same  may  be true in the
SF  scheme.  This  indicates that  perturbation theory  could  be  reliable  to describe

infrared behavior for ACf =  12, and  that the  inf'rared fixed point  might  truly exist,

R]r  ALf =  8, sillce  the  universal  one-  and  two-Ioop  coeficients  are  both positive, there

is no  reliable,  perturbative evidcnce  for the  existence  of  an  infrared fixed point. As

already  noted,  a  nonperturbative  study  is essential.

g4. Latticesimulations

   [[b measure  the rurming  coupling  on  the lattice, we  geiierated an  ensemble  of

gauge  configurations  distributed with  the appropriate  wcighting  by the Euclidean
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action.  The  running  coupling  was  t･hen computed  as  an  a-verage  over  this ensem-

ble. Simulations were  performed  using  the MILC  eode,i4)  with  some  customization.

Evolution of  the gauge  configurations  was  accomplished  iising  the  hybrid molecular
dynamics  (HMD) approach,  with  the  fermionic contribution  included using  the  R

algorithm.i5)

    Sets of  gauge  coiifigurations  were  generated at  each  box  size  L/a  and  bare cou-

pling ,i3,
 Two  independent ensembles  were  creatcd  at  T/a =:  L/a  ± 1, and  thcn

averaged  togcther as  in Eq. (3･4). [I]he data  were  collccted  over  a  wide  range  of  ,B

values  and  fbr 6 s{ L/a  E{ 20, in order  to capture  the evolution  of  !72(L) over  a large
range  of  scales,  In the  range  of  6 values  employed,  for beth Nf  =  8 and  iYf =  12,

there is iio  evidence  for a bulk phase  transition, We  explored  
'this

 issue by examin-

ing the  plaquette tirne series  within  this range  and  at  lewer values  of  6, At lower
values,  we  indeed found evidence  for a bulk phase  transition. These  lower values  are,

however,  well  separated  from the  minimum  5 used  in our  analysis,

    The  goal is to map  out  the behavlor of  the  ruiming  coupling  over  a  la.rge range  of

scales  L. However, the range  over  which  one  can  measure  the coupling  strength  with

fixcd lattice spacing  a  before the  computational  expense  becornes prohibitive is still

rather  limited. To  achieve  our  goal, we  used  a  procedure  known  as  step  scaling.i6),i7)

    Step scaling  provides a systematic  way  to combine  multiple  lattice measurements

of  the running  coupling  b2(L) into a  single  measurement  of  the  continuum  evolution

of  the  coupling  as  the  scale  changes  from  L  -  sL,  where  s is a  scaling  factor called

the step  size, In a continuum  sett･ing,  the evolution  is described by the `[step-scaling

function"
        ,

                            a(s,  g2 (L))ig2 (sL), (4･1)
which  can  be  thought  of  as  a discrete version  of  the iisual  continuum  evolution

described by  the  beta  fiinction. In a  lattice calculatioii,  the  extracted  step-scalillg

fimction will  be a  ftLnction also  of  a/L,  which  vLTe must  extrapolate  to the continuum:

                      a(s,  g2 (L)) -
 gi.n, 2E] (s, g2 (L), a/L).  (4-2)

    Step scaling  is generically implemented by first･ choosing  an  initial va,lue  ?i =

g2(L). Several ensembles  with  different values  of a/L  are  then  generated,, with  6
tuned  so  that  thc coupling  measured  on  each  is equal  to the  chosen  value,  ]2(L) :=  u.

A  second  ensemble  is genera,ted at  each  B, but with  L  -  sL.  The  value  of  the

coupling  measured  on  this larger lattice is exactly  2E](s,u,a/L). An  cxtrapolation

alL  -  O caii  t･hen recover  the  continuuin  value  g(s,  aL). 
'[E]aking

 a(s,  u)  to be the  ncw

starting  value,  one  caii  then  iterate this procedure until  we  have sampled  g2(L) over

a  large range  of  L  values.  In practicc  we  took s =  2,

    There  is a  natural  caveat  oii  t･he step-scaling  procedure.  In the limit a/L  
-->

 O

with  a2(L) fixed, go2(a/L) depends on  thc short-dist･ance  behavior of  the  theory,

and  it is important･ that it remains  bounded so  that it does riot  trigger a  bulk

phase  transition. If asymptotic  freedorn governs the short･  distance behavior, this
is automatic  since  go2(a/L) --> 1/log(L/a). "Jhile this is our  principal  focus, the
exist･ence  of  an  infrarcd fixed point for the  Nf  =  12 thcory  will  lead us  to  consider

also  vaiues  of  tr2(L) lying above  the  fixed point. [I]hen go2(a/L) increases  as  a  -  0,
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with  no  evidence  from our  simulations  that it remains  bounded and  therefore that the

continuum  limit exists.  Nevertheless, one  caii  considcr  sinall  values  of  a/L  providing
that go2(a!L)  remains  small  enough  not  to trigger a  bulk phase transition,

   CarTying out  tlie above  pTocedure  directly can  be expensive  in computational

poweT  since  ea,ch  tuning of  fi may  require  several  attempts.  VLle instead measured

i2(L) for a  limited set  of  values  fbr fi and  L/a, and  then  generated an  interpolating

function. This function was  used  to tune 6 as described above,  In Ref. 2), we

employcd  a set  of  interpolating functions, one  for each  Lfa, focused on  the lattiee

observable  1/g2(,3,L/a), We  used  a  fit at  each  L/a with  n-th  order  polynomial
dependence on  gg =  6/fi:

                   g2 (6,iL/.) =  t3 [i - ll.ll, cz7Lfa  (2)1 (4 3)

The  order  n  of  the  polynomial  was  varied  with  L/a  in order  to achieve  t･he optimal

x2 per degree of  freedom when  fitting to the data, [I]he values  of  the parameter"s
with  associated  errors,  (letermined  by fits to the  simulation  data for both IV) =  8
and  ALf =  12, are  discussed in Ref. 2).

   This function is used  fbr inteTpolation within  the  measured  range,  as  a  basis for
the  step-scaling  procedure. More elaborate  interpolating functions could  be used,  in

particular, modeling  explicitly  the  L/a  dependence  or  iiicluding nonanalytic  terms
in gg, but such  functiona} forms do not  signifieantly  alter  the fit quality  or  the results

of  step  scaling  based  on  the collected  data  set.

   "le accourited  for mJmerous  sourccs  of  statistical  and  systernatic  error.2)  "le
concluded  that potential  systematic  errors  in our  procedure are  small  compared  to
current  statistical  errors.

g5. Results

5.1. ALf =:8

   The  simulation  data for Y-2(L) as a  function of fi and  Lla  are  displayed in Ref. 2).
The ranges  are  

,B
 =  4.55 192 and  Lfa  =  6,8,10,12,16. The  lower limit on  fi was

chosen  t･o insure that  the  lattice coupling  is weak  enough  so  as  not  to induce a  bulk

phase  transition. The  upper  Iimit was  taken  to be large so  that we  could  check  the
agreement  of  our  simulations  with  perturbation theory when  the  coupling  is very

weak.  The  final results  depend sensitively  only  on  simulations  below 5 =  10, [l]'he
data becomes more  sparse  with  increasing L/a, refiecting  the  growing computational

time  involved, In particular, only  a  very. Iimited amount  of  Lla  ::=  20 data, at  very

weak  collpling,  is available  at  Nlf =  8, so  we  excluded  these  points from  our  analysis,

The  L/a ==  10 data is thus  also  excluded,  since  it canno't  be used  in step  scaling  at

s ==  2 without  the  L/a  ==  20 points. [I]hc resultant  values  of  92(L) are  perturbative

(g2(L)/4T <  1) throughout  much  of  the rangc,  except  for small  6,
   Iii order  to carry  out  the step-scaling  pTocedure,  we  empleyed  the interpolating
function ol' Eq. (4･3). The  resulting  best-fit rriean  values  and  errors  fbr the parameters
at  each  L/a are  discussed in Rcf. 2), In Fig. 1, data  points are  shown  together  with
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1. (color online)  Measured  values  g2(L) versus  ,B for Nf  =  8.

represent  the  best fit to the  data, iising  the  funct･iona] form  Eq.

5.6 5.8

',l'-
 --.".-..l

     6.0

The  int･erpolating curves  shown

(4-3). 
rP]ie

 errors  are  stat･istical.

the  interpolating fiinctions for !72(L) as  a  function of  rs, for each  of L/a ==  6, 8, 12, 16.

   Figure 2 shows  a  t･ypica] continuum  extrapolation  from our  8-flavor data. The

points shown  represent  steps  fr'om L/a =  6 -> 12 and  8 -  16. Constant extrapola-
tion  (a weighted  average  of  the  two  points)  is used  since  the  Iattice-artifact contri-

butions to g(2,u,a/L)  are  small  compared  to the statistical  errors.  We  estimated

the systematic  error  in this procedure  and  fbund that  it is small  compared  to the

statistical  error.

    Our Tesults  for the continuuiii  running  of  P2(L) are  shown  in Fig. 3. Lo is
the  scale  at  which  92(Lo) =  1.6, a  relatively  weak  value,  [I]he points are  shown

for values  of  L/Lo  increasing by  factors of  2. The  (statistical) errors  are  derived

as  described in Ref. 2), For cemparison,  the  perturbative ruiming  of  b2(L) at twe

loops and  threc loops !s shown  up  through  g2(L) Fti 10 whcre  perturbation theory

is no  longer expected  to be  accurate.  The  results  show  that the coupling  evolves

according  to perturbation theory  up  through  92(L) Rs 4, and  then  increases more

rapidly,  reaching  values  that clearly  exceed  ty. pical estimates  of  thc  strength  required

to trigger spontaneous  chiral  symmetry  breaking.i8) The dynamical fermion rnass  is

of  order  of  the  corresponding  1/L, and  since  the coupling  is strong  here, the  theory

will  confine  at  roughly  this distance scale.  There  is no  evidence  fbr an  infrared fixed

point or  even  an  infiection point in the  behavior of  j2(L).
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Fig.2.L/acase,

O,OO O.Ol O.02

                             (alL)2

(color online)  Step-scaling function X(2,u･,a/L) at

=  6 -  12 and  8 -  16 used  in thc Nf  =  8 analysis.

wit･h  the  differenc¢  incrcasin.ff as  u  increases.

O.03 O.04

various  u,  for each  of  the two  steps

 Note  that  X(2,u,alL)  >  u  in cach

5.2. IVIf :=:  12

   The  $imulation  data for P2(L) as a  function of 6 and  L/a are  also  displayed in
RetL 2). TThe table ranges  firom 

,3
 =  4.2--192 and  L/a  =  6-20, The  lower limit on

,B
 insures that the lattice coupling  is weak  enough  so  as  not  to induce a, bulk phase

transition. As in the Nf  =  8 case,  the  upper  limi't was  takcn  to be large in order

to explore  agreement  with  pcrturbation theory, but data above  6 =  10 do  not  have

significant  infiuence on  our  analysis.  L!a, =  20 data  were  included here and  not

in the IYf =  8 case  because of  concerns  about  the magnitude  of  the  }attice artit'act

corrections,  compared  to the  continuum  i'unning.  Iii the  end,  artifact  corrections

were  found  to be small  compared  to our  statistical  error.  The  interpolating functional
forin Eq. (4-3) was  agairi  employed,  and  the resulting  best-fit mean  values  and  errors

of  the  parameters  at･ each  Lfa  are  discussed in Ref, 2), In Fig. 4, data points are
shown  for g2(L) as  a func'tion of  fl, together with  the interpolating functions for each

of  Lla  =  6, 8, 10, 12, 16, 20.

   The  data and  the  interpo]ating curves  already  suggest  the  existence  of  an  infrared

fixed point for A(f =  12. For small  6, the general  trend is that a2(L) decreases
with  increasing L, This behavier and  the fact that for larger 6, ]2(L) increases
with  increasing L, are  reflect/ed  in a  crossover  behavier in the interpolating curves.

Vglk] first implerr].ented the  $tep-scaling  procedure  choosing  aii initial u  ==  g2(L) well

bclow  a  possible fixed-point value  so  that  a  continuum  limit is guara,ntecd to exist,

A  constant  continuum  extrapolat･ion  (a wcightcd  averagc  of  the availabLe  values  of
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Fig, 3. (color online)  Continuum  ruiming  for Nf  =  8. Purple points  are  derived by step-scaling  us-

   ing the  constant,  continuum-cxtrapolation  of  Fig, 2. The  error  bars shown  are  purely st,atistical.

   Two-loop  aud  three-loop  pert･urbatiou t･heory curves  are  shown  for comparisun.

.Y(2,u,a/L))  was  again  employed  for each  u. Now, since  we  ha,ve data at L  =  20,
the extrapolation  is a  weighted  average  of  three points corresponding  to the  steps

6 ->  12, 8 --> 16, and  10 -  20, Examples of  such  a  continuum  extrapolation  are

shown  in Fig. 5. The  systematic  error  is again  estimated  to be  small  compared  to

the  statistical  error,

    OuT results  for the continuum  running  of  g2(L) from small  values  are  shown  in

purple in Fig. 6. Lo  is again  taken  to bc the  scale  at  which  ]2(Lo) =  I.6. The

points are  shown  for for values  of L/Lo illcreasing by fact･ors of  2, The (statistical)
errors  are  derived as  described in Ref. 2). For reference,  the  two-loop  and  three-Ioop

perturbative curves  for 92(L) are  also  shown  in Fig, 6. From  the figure, we  conclude

that the infrared behavior is indeed governed  by a  fixed point  whose  value  lies within
the  statistical  error  band. Because ofthe  underlyiiig  usc  of  an  interpolating function,
the error  bars of  adjacent  points in Fig. 6 are  highly correlated.  As  thc  running

coupling  approaches  the  infrared fixed point, this correlation  approaches  1009J6, so

that the error  bars asymptoticall>r  approach  a  stable  value  as  the nuriiber  of  steps  is

takcn to  infinity, The  range  of  possible  values  of  the fixed point  from our  simulations

is consistent  with  the  three-loop  perturbative value  in the  SF scheme,  well  below

estimatesi8)  of  the strength  required  to trigger spolltaneous  chira!  symmetry  breaking

and  confincment,

    The  infrared  fixed point also  governs the L  -  oc  behavior starting  from  values
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Fig. 4. (color online)  Measui'ed values  g2(L) versus  fi, Nf  =  12. The  interpolating  eurves  shown

   repi'e$ent  the  best fit to  the dat,a, using  thc functional form of  Eq. (4･3).

of  g2(L) above  the  fixed point. As  discussed already,  the continuum  limit is then no

longer guaranteed  to exist  and  the step-scaling  procedure  cannot  be  naively  applied.

Instead, one  can  restrict  the  discussion to finite but small  values  of  a/L,  small  enough

to millimize  lattice artifacts  but large enough  so  that  fbr l2(L) near  but above  the
fixed point, go2(a/L) is small  enough  not  to trigger a  bulk phase transition. The
step-scaling  procedure  then  leads to the continuum  running  from  above  to the fixed
point, also  shown  in Fig. 6. The  statistical-error'  band is dcrived as  in the  approach

from  below,

g6. Summary

   IJbr an  SU(3) gauge theory  with  IYf Dirac fermions in the fundamental represen-
t･ation, the value  IYf =:  8 lies outside  the conformal  window,  icading to confinement
and  chiral  symmetry  breaking, while  ATIf =  12 lies within  the  conformal  window,

governed by  an  infrared fixed point. The  fixed point value  is bounded  as  showii  in
Fig. 6, [[rhis is, as  far as  I know, the first nonperturbative  evidence  for the existence
of  infrared conformal  behavior in a  itonsupersymmetric  gauge  theory,

   The  Nf  ==  8 and  Arlf =  12 results  imply  that the lower end  of  the  conformal

window,  IVI7, lies in the  range  8 <  Al7 <  12. This conclusion  is reached  employing  the

Schr6dinger functioi}al (SF) running  coupling,  b2(L), defined at  the box boundary  L
with  a  set  of  special  boundary  eonditions.  This coupling  is a  gauge  invariant quantity,
valid  for any  coupling  strength  and  running  in accordance  with  perturbation theory
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the  starting  coupling  
･u,

 approaches  the  fixcd poii'it va]ue.

u,  for each  of  the  three  steps

Note  t･hat 2E](2, 'u,aln) -  u  as

at  short  distances.

   Ifor A[lf =  8, we  simulated  g2(L) up  through  values  that cxceed  typical  cstimates

of  the coupling  strength  required  to trigger dynainical chiral  syriimetry  breaking,i8)

with  no  evidence  for an  infrared fixed point  or  even  an  infiection point, For Nf  =  12,

the observed  infrared fixed point is rather  weak,  agrecing  withjn  the estimated  errors

with  the  three-loop fixed point  in the SF scheme,,  and  vLTell bclovLr typical estimates

of  the  coupling  strength  required  to  trigger dynamical  chiral  symmetry,  breaking,i8)

   XVhether  perturbation theory can  be used  reliably  to reproduce  the behavior in

the  vicinity  of  the  IVf =  12 fixed point remains  to be seen,  The  three-loop  value  of

the fixed point is substairtially  different from thc two-loop value,  On  the other  hand,
in the  MS  scheme  where  the  four-!oop beta  function has been  comput･ed,  the  four-

loop fixed point･ is shifted  by only  a  small  amount  from the three-loop value.  The
relative  weakness  of  this fixed point, together with  the  fact that IY7 caimot  be much

smaller,  raises  the  question of  whether  the theory  remaills  perturbative throughout

the confbrmal  windew.i9)

    It is important  to confirrn  these  results  by employing  other  definitions of  the

runnillg  coupling,  for exarnple,  based on  the Wilson loop and  static  potential,20) and

by examining  scheme-independent  quantities. Most  notabiy,  spontaneously  chiral

symmetry  breaking as  a  timction of  AJIf should  be  studied  through  a  zero-temperature

lattice simulation  of  the  chiral  condensate.  Simulations of  b2(L) fbr other  values  of

Nf, in particular  AIf ==  10, are  crucial  to determine more  accurately  t･he lower end

of  thc conformal  window  and  to study  the  phase  transition  as  a function of  ALf. All
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   functiuns, Two-loop  aiid  three-leop  pcrturbation t,heory curves  are  shown  for cornparison.

of  these  analyses  should  be extended  to other  gauge groups and  other  representation

assignments  for the fermions.2i) 
27)

   The  phenomenological  relevance  of  these studies  remains  to be seen.  A  theory,

with  Nf  outside  but near  the  confbi"mal  window  (£  A7:) could  describe electroweak

breaking and  provide the  basis for walking  technicolor.28)  In this class  of  theories,

as IVf -> IY)i firom bclow, a  hierarchy emerges  bctween  the electroweak  scale  and  the

l,arger mass  scale  where  the  gauge  coupling  becomes  strong,  This could  be  signaled

by the appearance  of  a  plateau of finite extent･  in b2(L), and  t}y the development of  a

hierarchy between  the chiral  condcnsate  and  thc  electroweak  scale.  It･ is also  impor-

tant to explore  the particle spectrum  in this limit and  to compute  the  electroweak

precision  paramet･ers,  in particular  the  S  pararrieter.
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