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     The  Frenkel-Kontorova (FK) model  is known  to exhibit  so-called  Aubry's t/ransition

  which  is a  jamming or  fi:ictional transition at  zero  temperature.  Re(;eiitl.v we  found similar

  transition at  zero  and  finite temperatures  in a  superconducting  Josephson junc'tion array

   (JJA) oii  a  square  lattice under  external  magnetic  field, In the  present paper we  discuss how

   these  problerns  are  related.

gl. Introduction

    Understanding of  non-crystalline  solids  such  as  glasses and  granular systems  is

an  irnportant problem  in condensed  matter  physics.i)i2) A  usefu1  concept  is that

.fa=ustTation of  geometrical, energetic  or  kinetic origins  is indispensable to avoid  crys-

tallization and  allow  realization  of  amorphous  solids.iS),4)  In the present  papcr  we

discuss a  jamrning in a  strongly  frustrated Josephson junction array  (JJA) under

external  magnetic  ficld.5>' 
7)
 It is a very  interesting system  which  provides an  excep-

tional opportunity  to study  both  athermal  (jamming) and  thermal  (glass) transitions

in exactly  the same  sett･ings. The question raised  by the Chicago group  whether

athermal  and  thermal  jamming or  glass transitions  can  be  understood  in a  unified

wayi);8)･9)  can  be asked  explicitly  in this systern,

    In the  present  paper  we  discuss the possibility that athermal  and  thermal  jarn-
ming  transitlon in the  present system  can  be understood  as  a  generalization of

Aubry's transitioniO)iii) found in a  family of  one-dimensional  models  of  fo'ictions,
most  importantly the Frenkel-Kontorova (FK) model  which  exhibits  very  rich  phe-
noinenology  in spite  of  its simplicity,i2)

    The  organizatlon  of  the paper  is as  fbllows. Iu the next  section,  we  discuss

the sequence  of  connections  between  the FK  model,i2)  Matsukawa-Fukuyama  (MF)
modeli3)  and  the frustrated Josephson junction array  under  magnetic  fieldi4) i6)

step  by step.  In S3 we  review  Aubryis transitioniO)Jii) in the  FK  rnodel.  There

we  focus on  the  properties  ef  the so-called  hull functioii which  is a  powerful  theo-
retical  tool  to  analyze  Aubry;s  transition. Thell we  skctch  our  recent  attempt  to

generalize it for the case  of  frustrated JJA.7) In E4 we  point out  that 
'sheari

 can

be exerted  on  JJA  via  external  electric  current.i7)  We  discuss hovLJ tribology (slid-
ing friction),i8) non-linear  rheology  (soft-matters, granular matters,  etc.)i9)-24)  and

non-linear  transport (.JJA, superconductors,  etc.)i4)T25)  are  related  to each  other
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emphasizing  remarka,ble  similarity  of  their scaling  features around  critical  points in-
cluding  the J (Jamming)-point. Finally we  discuss the  

[`Jamming
 phase  diagram"

of  the  JJA, which  is analogous  to the one  proposed  fbr soft-matters,8)'9)  suggested

by our  analysis  of non-iinear  transport properties  at  zero  temperature5) and  Monte
Carlo simulations  at  finite temperatures,6) In g5 we  summarize  this paper and  dis-
cuss  some  future outlooks.

g2. Link between  the  friction models  and  the  Josephson  junction arrays

2.1. ]Fbeenkel-Kontorova  model  
---

 starting  point

2.1.1. Frustration due to mismatching

   [I]he origiiial  Frenkel-Kontorova  modeli2)  is a  one-dimensional  elastic  chain  o ±
'

particles put  on  a  periodic  substrate  (see Fig. Ia)). The Hamiltonian is given by,

                H=  
.Z

L

=t{ll

 (u..i-tt,, -t)2-Acos  (nll")} (2 i)

Here  
'tt.

 denotes the  positioll ()f the  n-th  particle, The  particles are  connected  to

each  otlLer  by Hookian springs  of  strength  k as  described by  the  lst term  in the

Hamiltonian  wheretis  the  natural  spacing  between  the  paTticlcs. We  impose a

boundary condition  such  that the length of  the whole  system  is fixed (uL+i -  ui)/l  =

L,") The  2nd  terrn describes the  periodic potential due to t･he substrate  whose  period
is a.

    There  are  two  important  parameters: 1) the strength  of  the potential A and  2)

winding  number  f,

                                 f=: 21.- (2 2)

Both are  crucial  fbr the jamming-unjamming transition (Aubry7s transition) in the
FK  model.iO),ii)  Later we  will  find equivalent  t･wo parameters  in the  frustrated
Je$ephson junctiori array  under  external  magnetic  field.

    The  sinusoidal  potential allows  the  elastic  chaiii  to make  phase  slips  with  respect

to the substrate,  Thus this simple  system  allows  both elastic  and  plastic deforma-
tions, Zrhe elastic  term  prefers to keep  thc natural  spacing  g xKrhile  thc substyate

potential prefers 2o,. In the  context  of  thc  friction between two  different materials

brought  in contact  with  each  other,i8)  it is natura,I  to suppose  that the two  surfaces

are  incommensuTate  with  respect  to each  other,  namely  f is an  irrational number  
-

a  numbcr  which  cannot  be represented  as  a ratie  of  some  two  integers. As  the  result

the  system  becomes frustrated as  soon  as  A becomes finite. Finding the ground  state

of  t;he systeiiL, which  is some  periodi ¢  (possibly of  very  long periodicity) crystalline

   
")

 [I]'be FK  model  wit/･h  fixed volume  (length) and  that  under  fixed pressure  (external ferce)

behave cernpletely  diffcrent･ly.ii)''L2) The  forrner is relevant,  in the context  of  friction (jamining) and

E'rustration is in some  scnsc  stronger  than  t･he latter, In the  latter case  the response  of  the system

with  respec;t  to tha increments  of  the  external  fbrce exhibits  devil's stair  case  singularaties.  Note

also  t.hat the Hookian  spring  force, which  arises  due to t]ie harmonic  poteutial, does not･  endure  t･he

na,tural  spacing  l by itself.
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1. (Color online)  Schematic pictures  of  the  friction models  and  the  Jesephson junction ar-

ray.  a)  The  Erenkel-Kontorova (FK) model,  b) Matsukawa-Plikuyama's  2-chain model  on  the

ladder lattice, and  c) the Josephson junction a]rray  (JJA) on  a  square  lattice under  external

magnetic  field. The  squares  in the  plaquette  represeiit  positions of  the  vortexes  induced either

by mismatching  between the two incommensurate  surfaces  b) or  external  magnetic  field c),

structure  for ratioiial  f, becomes a  highly non-trivial  problem.26) In the present
paper  we  always  assume  f is irrational.")
   The  system  exhibits  a jamming or  frictional transition -  called  Aubry:s transi-

tioniO),ii) which  we  review  in E3. IJbr weak  enough  coupling  A <  A, the  elastic  chain

is enly  mildly  deformed and  it can  slide  over  the substrate  smoothly  without  energy

dissipation 
-

 fi]iction-less. For stronger  coupliiig  A >  A., the  elastic  chain  becomes

pinned  by the substrate  and  friction emerges.  We  will  find Iater that the parameter
A, which  plays a  key role  in the  FK  model,  

'is
 equivalent  to strength  of  anisotropy  of

the Josephson coupling  in the Josephson junction array.

2.1.2. Phaserepresentation

    It is convenient  to introduce a- dimension-less 
[[phase"

 variable  e. defined. by
u.  =  #[e. +2x(f  

-
 1)n] by which  the (dirnension-less) Hamiltonian can  be rewritten

as?

              H  :=  III
L

II=i{±(enti L  en -2T-)2  -Acos(en  +27rfn)}, (2･3)

where  A is also  made

condition  is such  thatdirnension-less

 by an  appropriate  rescaling.  The boundary

(eL+i 
-

 ei)/27r =  L is fixed,

   
')

 For technical  rcasons  we  wish  to use  periodic  boundary  conditions  which  carinot  be compatible
with  irv'ationanl f. [I]hus in practice  we  use  rational  numbers  which  approximate  a  target  irrational
number.  For instance  we  can  take a  series  of  iniegers p.  with  n  =  1, 2, . . , firom the  Fibonacci seTies
and  censtruct  a  series  of  ratiollal  llumbers  p.-ilp.  which  converges  to  f r  (3 -  VEi)/20.38196601..,
in the  limit n  -  oo.  We  consider  systems  with  linear size  L  ==  p. so  that  we  arri-re  at  the ta[i'get

irrational number  in the  thermodynamic  limit L  -  oo.  Note  that  it is easy  to  coiistruct  similar

Fibonacci-like serias  for any  irrational numbers  which  are  solutions  of  some  quadratic equations.5)
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2.2. Matsukawa-nLkuyama  rrbodel 
-

 a cTuciaZ  inter7nediate step

2.2.1, Phase model  on  ladder-lattice

   ]N{atsukawa cand  I?ukuyaiiia considercd  a  two-chain model  iii the  colltext  of  fric-
tion.i3) Their idea is te allow  the 

"substrate"
 in the FK  model  te deform  elastically

as  well,  which  is ¢ ertainly  more  realistic  thafl the FK  model  in the context  of  tribol-
ogy.]8)  IfoIIowing their idea, Iet us  modify  the FK  model  Eq. (2･3) and  develop a

phase  model  defined on  a  t･wo-leg ladder latt/ice shown  in Fig, lb), The  hamiltonian

is given by,

          H=  2  3(ei-e, -2T)2-A  2  cos(o,-ei-2Tfn,).  (2･4)
               e-i ,d =e=  e'･'ij=gy

To  simplify  notations  we  relabeled  the sites as  i =  1, 2, . . . ,
 N  whose  position in the

real  space  is given by  (n." m,/).  In the  two-chain  model  the  index for the  colurrm  takes

values  n  =  1, 2, . . , , L whilc  that  for the row  (or layer) takes just two  values  m  ==  1, 2.

The  sums  are  took  over  nearest  neighbour  pairs connected  by  displacement vector

e-'ij =  (ni -  nj,  rni -  mj)  which  is either  equal  to (1, O) or  (O, 1),

2.2.2. Gaugeinvariance

   An  irriportant property of  the  system  is gaTtge invariance which  we  explain  below.

Let us  rewrite  the hamiltonian Eq, (2-4) as,

                   u-  X  g?k,2･,･-A 2  cos(vi,-)  (2･s)
                       el,,-:=(1,O)  e",,,==(O,1)

with  the  phase  difference

                           vi,i 
-=

 ei-ej-A,j,  (2･6)
Here  Aij is an  anti-symmetric  matrix  Aij' =  

-AJ'i
 which  satisfy,

                             2  A,.- =.  2Tf. (2･7)
                                                                   '
                           piaquctte

The  sum  Z)pL.q..Lt, is a directed sum  over  
"bonds"

 along  each  
t`plaquette"

 in the

anti-clockwise  rnanner.

    It is easy  to sce  that the original  representation  Eq, (2･4) respects  the  condition

Eq. (2･7). The  crucial  point is that  the phasc  differences "iJ･ are  invariant under

gauge  trallsformations:

                          oi, -"  ei+b-ei ,. (2･s)
                          Aij-Aij+6ei.-6e,i.  (2-9)

[E]hus thc  hamiltoniall Eq. (2-4) is gauge-inva.riant. The  ¢ ondition  Eq, (2･7) itse]f is

also  gauge-invariant.

    In addition  to the  gauge invariance, the hamiltonian Eq. (2･5) is invariant under

A  -+  -A  with  e. -  -e..  Furthermore  also  f 
->

 1+f  does not  change  the problem.
So we  only  need  to consider  O <  f sg. 1/2 in the fo11owlng.

NII-Electronic  
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2.3. Fleustrated Josephson-o'unction array  (JJA? undeT  magnetic  fleld
2.3.1, Frustration due to external  magnetic  field

   The final step  is just to 1) increase the number  of  legs of  the ladder to build
a  2-dimensional square  lattice and  2) replace  the  intra-layer elastic  couplings  by

sinusoidal  couplings  (see Fig. Ic)). Then  we  obtain  the Josephsonjunction array  on

a  square  lattice urider  external  magnetic  field applied  perpendicularly to the  array,i4)

H=-  2  cos(ipiD-A  2  cos(ipij).

      e",j--(1,e)  e"ij=(O,1)

(2･10)

   Here  Bi is identified as  the  phase  of  the superconducting  order  parameter  of

the i-th site  (superconducting island). The  sinusoidal  couplings  represent  Joscphson

coupling  between  the superconducting  islands. Now  the potential A  is identified as

the vector  potential due to ext･ernal  magnetic  field B.  applied  along  the +z  direction.
The  parameter  f which  appears  in Eq. (2･7) is the number  density ef  quantized flux
lines f =  a2B./ipo  where  a2,  B.  and  dio are  the  area  of  the  plaquette, strength  of  the

magnetic  and  fiux quantum.

   Let us  emphasize  that the two  important  parameters  ill the  FK  model,  llamely

1) the pararneter A and  2) the winding  number  f are  inherited down  to the the

JJA.  [[b eonclude  we  finally arrived  at  a  Josephson junction array  on  a  square  lattice

with  anisotr'opic  coupling  
-

 with  anisotropy  A 
-

 undeT  external  magnetic  field
B. =  (ipo!a2)f with  irrational number  density f of  fiuxes per plaquette. In short,

let us  call  such  a  system  irnztionally frustrated anisotropic  JJA.

   Quite interestingly it is actually  possible to construct  anisotropic  JUL  in labora-
tory. The  strength  of  the  Josephson coupling  depends, for iristance, on  the  thickness

of  the junctions. Saito and  Osada27) created  anisotropic  JJA  with  va.rious  A by
controlling  the  thickness  of  the  junctions in the  lithography process.
   It may  sound  rather  strange  to consider  the anisotropy  seriously  since  it usual

plays only  minor  roles.  Not  surprisingly,  previous studies  of  irrationally frustrated
JJA  considered  only  isotropic systerns  A =  1.') As  we  discuss later, it turned  out  in
our  recent  studies  that A is actually  relevant  

.for

 irrational f.5) 7) Quite remarkably
the isotropic point A ==  1 turned  out  to be a  critical  point at  zero  temperature  cor-

respondtng  to A,, of  the FK  medel  where  a  jamming transition analogous  to Aubry's
transition takes place. By  symmetry  it is obvious  that we  only  need  to consider  the

case  A >  1.

2.3.2, Vbrtex  
-
 
-
 analogue  of  dislodation

   We  mentioned  above  that  the parameter  f can  be regarded  as  number  density

of  quantized  flux lines per  plaquette,  As we  explain  below, this is because the vector

potential A  due  to the  magnetic  field induces vortexes  of  the phases ei. The  point
is that  vortexes  are  quantized objects  like dislocations in crystals.

   
*)

 We  nete  however  that  Denniston and  [[leing28) studied  the frustrated JJA  on  the ladder-lattice
(with m,  =  1,2) (see Fig. Ib)) and  consider  variat･!on  of  the  inteT-leg eoupling  A. Their  sy. stem  is

almost  the same  as  the  2-chain model  by Matsukawa  and  Fiikuyama  but the  elastic  intra-chain

coupling  in Eq, <2･5) is replaced  by a  sinusoidal  coupling.  T]]ey  f'ound Aubry's transition  also  exist

in the  frustrated JJA  on  the  ladder.
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Here it is convenient  to  define "charges"
 of  the  vortexes  as,

qz =  
2iT
 E  s( th zJ)  =p2  -  f,

       plaquette

pi =,,,,-2,  
-1,

 O, 1, 2,..,, (2･11)

where  s(x)  is a  saw-tooth  Iike periodic function with  period 27r and  s(m)  =  x  in
the  range  -T  <  m  s{ T,  By  definition, the charge  q takes only, discrete values  of

the form pi -  f with  some  integer pi and  offset  
-f

 as  shown  above.  Physical!y the

integer p,t represents  the number  of  quantized fluxes (each carrying  a  fiux quantum
ipo) threading  the  i-th plaquette, Note  also  that  thc charge  q is gauge  invariant.

   The  usefulness  of  the charge  becoines manifested  in the so-called  coulemb-gas

mapping  (see Chap, 9 of29))  in which  colltinuous,  elastic  deformat･iens ("spin-wave'; )
are  integrated out  to find effective  hamiltonian GPt ef  the vortexes,  The  resultant

system  is essentially  equivalent  to a  lattice-gas of  electrostatic  charges  interacting

with  each  other  by the repulsive  coulomb  int･eractions,

7t -  2  giG(r-'ij)g,i t  G(O-) 2  q?-

    
'ilo'

 i

(2･12)

vLrith  r',tJ- =  (ni -  7'ij, 7'n.i -  TrLD.

    The interaction potential G(i;) is the (static) Green's function of  elastic  defor-
inations  (spin-wave), In 2-dimension, it scales  as  G(i;) pt log(1fi) for r >  1. Note
that  the  anisotropy  A in Eq. (2-10) is simply  refiected  in anisotropy  in G(i) such

that with  it is stronger  into y-direction  ny CO, 1) compared  to m-direction  ili(1,0) by
faetor A(}l 1).
                -

    
rl]he

 value  G(O)(> O) can  be interpreted as  the coT'e  eneryy  of  thc vortexes.

Beeause of  the core  energy,  states  with  higher values  of  the vortex  charges  generally
have larger eiiergies  and  caii  be neglected  at  Iow temperatures. Since we  only  need

to consider  O <  f E{ 112 as  noted  in g2.2.2, it is sufiicient  to consider  t"To values  of

the charges  q =  -f,  1 -  f. In addition  wc  assume  the charge  neutrality  :i qi =  O

holds, which  can  be enfbrced  by applying  the periodic boundary  conditions.  As the

result  we  find tltat a  fraction f of  the  plaquettes carries  a  vertex  p =:  1 (or q ==  1 -f)

and  the other  fira¢ tion 1 -- f carrics  no  vortex  p  =  O ( or  q ==  
-f),

 In Fig. 1, the

boxes in the  plaquette represent  the  vortexes  (p =  1).

2.3.3. Vbrtex patte.rns in ecluilibrium  
-

 vortex  liquid, crystal  and  glass

    Let us  sketch  briefiy possiblc patterlls of  vortexes  in equilibrium  states  at  low

temperatures.  For clarity  we  discuss three  cases:  1) f =  O, 2) f is rational,  and  3) f
is irrational.

    If f =  O, the  ground  state  of  the system  is trivial: the phasc becomes  uniformly

ordered  ei =  constant  fbr all  sites  i. In such  a  ground  state  the  vort･ex  is absent

everywhere  pi =  O (gi =  O). It can  be regarded  as  a  crystalline  state  (or forromagnetic
state).  At finite temperatures,  pairs of  vortex  (p =  1) and  anti-vortex  (p ==  

-1)
 will

be crea-ted  leading to me!ting  of  the crystallinc  state  by  proliferation of  the vortexes

(and anti-vortexcs)  at  some  critical  temperature  [Il,. In 2-diinension, it takes  place

in a  special  way  named  as  Kosterlitz-Thouless transition.30)
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   If f is rationat,  i,e, f =  p/q with  some  integers p and  q, the system  will  have

a  period vortex  lattice,26) which  is analogous  to periodically ordered  structure  of

dislocations in the so-called  Frank-Kasper  phase.3i) For example  with  f =  1/2, the
charges  exhibit  a  checkerboard  like order-  in which  the sign  of  the charges  alternates

aloiig  x  and  y-axes as  q =  1/2,-1/2,112,-112,...  (or p ==  1,O,1,O,...). We  also

note  that  the `halfvortexes'
 which  appears  in the  case  of  f =:  112 is identical to the

so-called  chiratitgy  in frustrated magnets,32)i33)

   In bulk superconductors  formation  of  the vortex  lattice is well  known. The
Iatter is a  triangular Iattice ealled  Abrikosov  lattice.i4) On  the  other  hand, the

vortex  lattices in JJA  are  fbrmed  on  top of  the underlying  square  lattice so  that it is
a  supeFlattice.  Thus the vortex  lattices in JJA  are  usually  pinned  by  the underlying

lattice of  t,he JJA  while  those  in the  bulk  pnre superconductors  are  free to inove
around  unless  some  pinning centers  are  present.25),35)

    Starting from the FK  model  we  are  naturally  lead to consider  ir7utional f. Ap-
parently the system  cannot-  develep simple  periodic vortex  lattices with  irrational f
so  that finding the ground  state  becomes  a  highlY non-trivial  prDblem, Indeed JJA

with  irrational f -  irrationally fr?.Lstrated J.JA --
 has been regarded  as  a  system

which  possibly exhibits  a  glassy phase  since  a  seminal  work  by Halsey.36) This is a

quite  intriguing possibility since  it means  emergence  of  a  glassy phase with  frustra-

tion  but without  quenched  disorder at  variance  with  the cenventional  spin-glasses

and  vortex-glasses  (superconductors with  random  pinning centers)  which  involve

quenched  disorder.25)735) Disorder may  be somehow  selfgenerated  in this system.

Indeed equilibrium  relaxations  of  the irrationally frustrated JJA  were  similar  to the

primary  rela[xation  observed  in typical fragile supercooled  liquids.37)

g3. Low  lying  states  and  Aubry's  transition

3,1. Iil'ull function of the FK  rnodel

   Now  let us  turn to review  Aubry's transition found in the  FK  modeliO)7i2),38)

and  related  friction models  including the MF  rnodel.i3),39)  A  remarkable  feature
of  the FK  model  is that mathematically  rigorous  ana!ysis  of  the low lying states  is

possible based on  the fact that configuration  of  the energy  rninima  (and maxima)  of

the system  satisfies  a  recursion  relation  which  is identical to the  so-called  standard

map  well  known  in dynamical  systems.

    It is known  rigorously  that the ground  stat･e  of  t･he FK  model  can  be expressed

as,10),11)

                          e. ==  2Tn+G(fn+dv),  (3+1)
where  G  is a  periodic  ±

'unction
 with  periodicity  1, i.e, G(nt+1)  =  G(x) fbr any  x. The

function G(x)  is called  
`hull

 function' and  describes distortion of  the configuration
of  the  elastic  chain  due  to the substrate  potential. It is important  to note  that  the

eniire  region  O <  x  S  1 becomes equally  populated  in the thermodynamic  limit
L  -  oc  for irrationaZ f.
    Quite rernarkab}y  the  phase  a  is arbitrary,  meaning  

'that
 there is a  manifoId  of

ground  states  which  harve exactly  the same  energy,  Moreover it is knewn  rigorously
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Table  I.Changes  of  the  low lying states  by Aubry's trallsition.

G(m) (meta)stablestates
A<A>Ac(f)Ac(f)non-analyt,ic, analytic

withinfinitelymany,discontinuities

on!ythegroundstate

inflnitelyinanyrrietastablcstat,as38}

that there is a  
C`phase

 transition" for irrational f, called  
`transition

 by breaking of
analyeity'  (or Aubry's transit-ion), at  a  crStical  st･rengt･h  of  coupling  A.(f). The  basic

feature of  the transition is summarized  in Table I. In Fig. 2 we  show  the hull function
of  the  FK  model  constructed  i'rom numerica]ly  generated ground  states  at  various  A

(see Ref, 11) for the method).

   From  a  physical point of  view,  a  signi,ficant  consequence  of  Aubry's transition  is

the 
[`frictional

 transition7' between the sliding  phase andjainming  (pinned) phase.[i)
Let us  sketch  the essence  of  the reasoning  in the following.

    Fbr A <  A,, starting  fi]oin a  ground  state,  one  can  find a contiimuin  of  states

with  exactly  t-he saine  energy  by varying  a.  [I]he point  is that they  are  all  related

to each  other  by  s()me  continuous  displacements of  the  particles in the  real  space.

This comes  flrom the fact that G(x) is analytic  for A <  A.. Thus  no  external  force is
needed  to stide  the  whole  system  ,friction-less or  sliding.

    Existence of  the  sliding  becomes  trivial if the elastic  chain  itself is replaced

by a  rigid  body. In such  an  extreme  casc  of  friction betwcen t"To incommensurate

rigid  bodies, the forces between them  oscillate  in the space  with  an  illcomrriensurate

period so  that  the  net･ fbrce becomes cancelled  out,  The non-trivial  point is that

simila,r  cancellation  of  the  forces still  happens  even  if the  chain  is allowed  to deform
e]astically  as  long as  t/he coupling  A is sufiicient!y  sma]1.

    Pbr A >  A., discontinuous points  appear  in t･he huil ftmction G(=). It means  that

Fig.
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arei  plot,ted against

Aa =  O.9716...1i)
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o O.2 O,4 O.6

x=fn-int(fr1)

t'unction G(x) ol' the FK
"folded
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O.8 1

model.  Here  0-,, 
-

 2Trn of  the ground  states

fn -  int(J'n) to elucidate  the hull function.
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variation  of  a  requires  discontinuous movements  of  the particles in the real  space.

Thus  the ground  states  a:e  no-more  connected  to each  other  by sliding:  the system

prepared  in the  ground state  has to go over  some  higher energy  states  (thus energy

barriers) to reach  another  ground  state.  [I]hus the  system  is jammed. Now  some

finite strength  of  external  force greater than  a  certain  frictional force (yield stress)

.4rield(A) o(  (A -  Ac)fi must  be applied  to the system  tQ let it move  (de-pinning),il)
    Firov et al.i2),38) have been able  to find a  hierarchy of  exponentially.  Iarge llumber

of  low  lying states  on  top of  the  ground  state  in the  jammed phase  A >  A.. This is a
very  interesting observation  from the viewpoint  of  the physics of  glasses. However,
unfbrtunately  the  FK  model  is a  one-dimensional  system  so  that  Aubry's transition
disappears at  finite temperatures.

    The  frictional transition  and  emergence  of  discontinuity in the  hull funct･ion have

also  been fbund in Matsukawa-Iilikuyama's 2-chain inodel.39)  Now  it is very  natural

to expect  that  these  features will  be inherited down  to  our  JJA  on  the  square  lattice

under  magnetic  field. The main  message  that we  find here is that we  should  vary

the  anisotropy  A and  see  what  happens  in the  low lying states,

3,2. Low  lying states  of the anisotropic  JJA

   Let us  now  turn to the anisotrz)pic  irratienally frustrated JJA  with  A >  1.

Examples of  the real  space  configurations  ef  the vortexes  in equilibrium  at  a  low
temperatuTe  are  shown  in Fig. 3, The  most  prominent  feature is the  stripe  pattern
of  the vortexes  which  are  rEuularly  stacked  into y-direction (stronger coupling)  and

undulated  along  the x-direction  (weaker coupling).5)-7)  The  formation of the stripes
is reasona,ble  because the repulsive  interactions between vortexes  are  anisotropic  if
A g(! 1 as we  not-ed  in g2,3.2.
    [I]here are  two  important observations.  First, the  undulated  stripe  pattern  is

frozen in time, i.e, the  ergordicity  is broken. The  pattern of  the undulation  cannot

evolve  dynamically  by usual  relaxational  dynamics once  such  a  structure  is estab-

lished. This is simply  because  the  stripes  are  pe7:fectly stacked  into the y-direction in
a  belt. At a  first sight,  the stripe  pat･terns may  look similar  to those found, for ex-

ample,  in liquid crystals.  But  they  are  very  difrerent because  usual  stripes  fiuctuat-e
dynamically,29)

    Second, there  is a  farnily of  low lying states  with  different patters  of  the trans-

verse  undulation  as  shown  in Fig. 3. Apparently the  ground  state  should  have no
transverse undulation.  Very interestingly the  energies  of  the different patterns  of  the

undulation  shown  in Fig. 3 are  very  close  to each  other  suggesting  a gap-less band
of  undulated  states.  Thus  these undulated  states  aye  all relevant  in the  equilibrium

ensemble.  This  is manifested  iii the structure  factor of  the  vortexes  which  exhibit

Bragg peaks  into qy direction but a  power  law tail into q. direction.6);7)

   This is a  very  peculiar  state  of  matter.  Is this a  glass? 
"Nol

 in the  sense  that

it has Bragg  peaks  which  one  would  not  expect  for a  glass. 
"Yes"

 , in the  sense  that
there  are  many  states  with  different･ patterns  of  undulation,  which  is a  selfinduced

disorder, and  they  are  separated  by energy  barriers.

   In a  sense,  the  prediction  by Halsey36) that superconducting  glass (without
quenched  diserder) in the JJA  with  irrational f -  is realized,  However  we  must
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Fig.3. (Color online)  Undula,ted vortexes  in the  anisetropie･  irrationally frustrated JJA, a)  Exam-

plcs of  real  space  patterns  of  vortexes  in thermal  equilibrium  at  a  lew temperature  arLd  b) in
nearby  enorgy  energy  minima.  The  thcrmalized  configurations  shown  in a)  are  obtained  b.v

performin.ff Monte  Carlo (MC) simu]ations  at  T  =  O.2 on  a, system  with  f ==  21f55 and  A =  1,5.
The  equilibration  is ext･remely  hard  gn this systcm  so  that  we  used  a  MC  methed  which  com-

bines the  NIetropolis m{':thod,  ovcr-ye],axation  met,hod  and  exchange  MC  method  to endure

equilibratien.40)  The  fi11ed squaros  represeirt  plaquettes  with  vortexes  wit･h  charge  p =  1. Thc
configurations  in b) are  obtajned  by minimizing  the  energy  by simple  cnergy,  desccnt･ aigorithm
starLing  frorn the  thermalizecl configurations  shown  in a).  The  energies  of  thc  energy  minima  of

the  configurations  1)-3) are  E  =  
-5072.]431].,

 -5072.38582  and  -  5072,34445  respectively.

keep iii mind  that heTe we  are  cc)nsidering  anisotropic  JJA  with  JX >  1 instead of  t･he

isotropic JJA  A =  1 studied  in most  of  the previous works.

   Now  let us  exainine  the  low lying state  more  closer.  In the  analysis  of  the  ground
state  of  the FK  model,  the  hull function Eq. (3-1) played a  central  role  as  we  noted

before. Since the  JJA  caii  be  regarded  as  a  2-dimensional versioii  of  the  FK  model,

we  are  llaturally  }ed to look for siuLilar  one  which  may  describe the  low lying sates

of  the  JJA  in a  compact  way.

    Because of  the gauge  invariance, let･ us  focus on  the gauge-invariant phase  difi'er-
ences  across  the Josephsen couplings  k･)ij･ 

--
 ei -  ej -  Aio･ defined in Eq, (2･6) where

i and  o' are  nearest  neighbours  across  a  Josephson  coupling  which  mabr  be  either

along  x  or  y-axis, As we  discuss later ･t"ij- is directly related  to the  Jesephson  eurrent

sin(V{,7'),  which  is the  ana}ogue  of  str'ess  fieZd in rheology.

    In Fig, 4 we  display the  phase  differences ebd,f at  various  sites i =  Cn,m) plotted
against  

"ibldcd
 coordinates"  [n] =  f･n -  int(fn) and  [?n] =  fm  

-
 int(fm)  which  t･ake

values  limited ii) the range  0 <  [n] f{ 1 and  O <  [m] -< 1. The  purpose  ef  this plot

is to elucidate  the  hull function analogeusly  to the case  of  the FK  model  shown  in

Fig, 2. Quite remarkably  the plots in the panels c) and  d) strongly  suggest  there

is indeed  an  analytic  hull function of  the  folded coordinate  along  the  direction of
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Fig. 4, (Color onlirie)  Spatial configuration  of  gauge  invariant･ phases  in an  energy  miniinurn.  Phase

   differences Vd,i+e,. and  ytit,i,+e. across  Josephson junctions parallel to x  and  y-a[)ces at  various

   sites  i -- <n, m)  are  plotted against,  
"folded

 coordinates"  . Different syxxibols  in the panels  a)  and

   b) represent  the  phase differences at  n  ==  1 , 2, . . . , L  a]ong  arbitrary  chosen  three different 
`Crows';

   of  the  JJA, In the  paiiels c) and  d), the phase dlfferences at TTt ==  1,2,...,L along  arbitrary

   chosen  three  
"columns"

 are  shown.  The  system  size  is L  =  55.

stronger  coupling.  Oii the othcr  hand, the panels a) and  b) suggest  t･here are  no  such

analytic  hull functions along  the direction of  weaker  coupling.

   Recently we  found that･ it is possible to obtain  the  hull funct･ions analytically

by performing  a  1/A expansion  starting  from A =  c)c limit,7) It turned out  that

the transvcrse undulation  is enceded  in the  
`(phase

 differences" betweell different
columns  which  one  can  see  in the panels  c)  and  d),

   The existence  (absence) of  analytic  hull functions along  stronger  (weaker) cou-

plings immediately  implies sliding  (jamming) of  the  vortexes,  Starting from an

energy  minimum,  a  fainily of  different states  with  exactly  the  same  energy  can  be
obtaiiied  through  the operation  [nL] -  [m+cM] along  the dii'ection of  stronger  coupling

with  varying  phase  shift  paramet･er a.  This  amoullts  to a  unidirectional  motion  of

the undulated  vortex  stripes  inte the direction ef  sti'onger  coupling  without  changing

its pattern, i.e. sliding.  In contrast,  no  such  operation  is possible along  the direction
of  weaker  coupling,  Le. J'amrning, In the  next  section  we  discuss how  these  properties
are  refiected  in physical observablcs  associated  with  shear,

    The above  ebservation  implies the  symmetric  system  with  A  ==  1, on  which  most

of  the  previous works  have been dedicat･ed, is actually  very  speciaL  As we  discuss
later, the critical  point eorrespoiiding  to the Aubry's transition point is actua]ly

Ac =  1 in the JJA  at  zcro  temperature  T  =  O.

g4. Responsetoshear shear  byexternalelectriccurrent

   Jamrning  is nothing  but onsct  of  rigidity  which  can  be detected by response

against  shear.  In general shear  is iriduced into the  system  through  the boundaries.
In rheology  one  can  consider  to apply  seme  constant  exteTnal  shear-stress  aext  on

boundaries of  systems  undcr  study.  Very intercstingly this is equivalent  to putting
external  electric  current  4.t into a  Josephson junction array  as  we  explain  in g4,2.
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We  will  find that  stress  ff and  shear  rate  fr in rheology  correspond  precisely to current･
I (or current  density 1) and  voltage  V  (or electric  field E) in the  transport  problem
of  the'driven  JJA.

   To  study  rheology  (or transport) one  can  cont･rol  either  the external  stress  a  or

shear  rate  fr. Here  we  choose  t･o control  t,he strain  or so  t･hat we  can  discuss st･atic
and  dyiiamic response  

'to
 shear  in the same  set  up,

   Wc  put shear  across  the  Josephson  jnnction array  along,  say  y-axis, in the fo11ow-
ing manner.  First we  fix the  configurations  of  t･he phase  variables  Oi on  the bottom

(m =  1) and  top  (m =  L) layers, Second we  slightly  chaiige  the beundary such  that･

a  uniform  displacement is imposed  on  the  top layer (m =  L)  e･i. 
->

 ei +  (L -  1)li

while  the  bottom  la}rer (m =  1) is left in the same  fixed configuration,  This amount
to induce a gradient of  phase  deldgy :-  7 along  the  y-axis. CIearly 1' corresponds
to shear-strain  of  the  usual  sense,  As  the i'esult  soine  internal stress  a.  which  is                                                             '

super-current  running  across  the .Iosephscm  junctions (see below), will  be induced  in

the  system.  [[b study  rheoiogy,  we  drive the top  wall  with  a constant  speed  so  that

the strain  ty' increases with  a  constant  shear-rate  fr. Let us  also  remark  that shear

de/dy ==  :x on  the phases  along  the y-axis amounts  to motion  of  vortexes  (disloca-
tions) into the  orthogonal  direction, i.e. :v-a[xis.  This is equivalent  to saying  that  the

vortexes  are  driven by the Loreritz force,i4)

4.1. Static response  to shear  static  rigidity

   From  a  static  point of  vievLr, emergence  of  rigidity  can  be best quantified by
shear-modulus.  The free-energy of  the system  F(or) can  be ibrmally. expanded  in

power  serics  of  injinitesimal shear  strain  7  as

F(7) =  F(O) +  lv<a>ty +  211z:x2 +  , , , , (4-!)

where  a  and  iL are  the shear-stress  and  shear-modulus  respectively.  <...> stands  for
a  thermal  average,.

   Here 7  must  be infinitesimal, The  free-energy density F(or)/IV, in the  thermo-

dynamic sense,  must  not  depend on  the boundary condition  (in, cluding  the shape

ef  the container)  so  that  shear-inodulus  must  be zero  in the  therinodyiiamic  sense

even  in solids.  Thus  when  the shear-modulus  pa dcfined by the fiuctuation formula

Eq, (4･4) emerges,  it means  tha,t thc  ordering  of  the  or ->  0 limit and  the thermo-

dynamic limit N  ->  oc･ no  more  comnmte  in sharp  contrast  to liquids. Ill turn this

meaiis  that  linear elasticity, rnust  fail in solids.  Physically this means  that  eLasticity

and  plastzcity must  emerge  simultaneously  in so]ids.42)

   It is usefu1  to note  that/ the  change  on  the  boundary  condition  can  be forinally
"absorbed"

 into the bulk part ef  the  system  by  replacing  the  original  Hamlitonian
Eq, (2･10) by,

uCty)=-  E  cos(whj)-A  Z  c.,(v,,-+li).

        fiij =(1,o)  ei.,- 
--

 (o,1)
(4･2)

NII-Electronic  
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Based on  this observation  we  fuid that the stress  a  can  be expressed  as,

                    
Nff=Og?)

 
=A.-,,2=(,,,)

 
sin(thij)t

 (4･3)

Similarly the shear-modulus  pa can  be expressed  as,

                        pa =b-6  [<a2>- <o)21, (4･4)

where  b is instantaneous or  adiabatic  shear-modulus  ("Born term")  defined as,

                    Nb=  
02

oH7(27) 
=A...,,Z<2,

 
,)
 cosCthzj)  C4 5)

   Fluctuation formulae fbr the  elastic  moduius  like Eq. (4･4) are  well  known  in
literature.4i) In the  contcxt  of  XY  models  and  superconductors  it is usually  called

helicity modulus.29)  The  crucial  term  is the 2nd  t･erm which  represent-s  reduction  of

the  shear-medulus  due  to thermal  fluctuations of  the  stress  a.

   In liquids, the two  limits 7 -  O and  N  -  oc  should  commute.  
'Then

 an  identity

tL =  O must  hold meaning  exact  cancellation  must  take place between the Born  term

and  the fiuctuation term  in Eq. (4-4).
   In the previous section  we  found the anisotropic  irrationally frustrated JJA
exhibits  sliding/jamming  in the low lying states  such  that  the  vortexes  can  slide

freely along  the stronger  coupliiig  but jamrned along  the weaker  coupling.  Ill turn
this means  that  shear  of  the  phases along  stronger/weaker  coupling  causes  finite/zero
changes  of  the energy  respectively,  Consequently the shear-modulus  pt must  be
finite/zero along  stronger/weaker  coupling  at  zero  temperature  T  =  O. Indeed we

observed  this numerically.5)

   This is a  quite intriguing situation  the anisotropic  system  A 71 1 at  zero

temperature  T  =  O behaves either  as  solid  or  liquid depending on  the axes  along

"Thich  one  imposes the shear.  Plrrom numerical  observations  it seems  that･ the picture
holds up  to the symmetric  point A =  15) suggesting  that the symmetric  point is

actually  the critical  point  A. ==  1 where  shear-modulus  along  a  given axis  becomes
zero/finite.

4.2, Dynamic  r'esponse  to shear  
--

 tr'ansport or  rheology

   The shear-stress  a  defined in Eq. (4･3) is nothing  but super-current  fiowing along

y-direction in the  Josephsonjunction array.  More  precisely according  to the DC/AC
Josephson relationsi4)  the current  IiJ･ and  voltage  drop iiZ -  I/3 across  the junction
are  givcn by,

                    4,' -- sin(ipiD,  iil-v,･=  
dkbtij'.

 (4･6)

Here  we  are  assuming  some  appropriate  rescalings  te define thc dimension-less quan-
tities 4,i and  ve.
   At eaeh  site  i (supercenducting island) the  current  must  be conserved.  By  taking
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into account  charging  of  the  island and  Ohrnic energy  dissipation we  find,

               Cdd\ +E"}ve  S E4i =  %xt C6mi,L -6rn,,i), (4'7)
                       j' j'

where  the sums  are  taken over  nearest-neighbours.  C  and  R  are  the  capacitance  of

the  islands and  resist･ance  ofthe  junctions respectively.  I,.t is the strength  of  extcrnal

current  which  is injected from the tep layer m  =  L  and  extracted  from  the bottom
layer TrL =  1. Combining  with  the Josephson relation  Eq. (4･6) and  the  definition
of  the  gauge-invariant phase difllbrencc cbio･ given in Eq. (2･6), one  easily  finds an

effective  equation  of  motion  of  the phases ei, which  is called  RCSJ  (Resistively and

Capacitively Shuntcd Junct!on) model.i4)  Apparently it can  be cast  into the forrn
of  Newton's  equation  of  motion,

         dei, dvi aH

         dt 
=

 
Vi'

 
M
 dt 

+ eei 
+ny2('"t 

-Vj)=
 "Fl]xt(6m,,,L  

-
 6m,,i), (4'8)

                                    .7

which  can  be considered  as  a  toy model  for rheology  of  layer-ed systems  under  extcrnal

shear  applied  on  the  top and  bottom walls.i7)

    Erom  the aboxre  observations,  it is clear  that  transport  properties  in JJA  and

rheology  are  quite analogous.  Because ef  the shear,  the velocity  field dOi/dt will

acquire  a  slope  along  the y-axis which  can  be identified with  the  shear  rate  fr. From

the AC  Josephson relation  (the 2nd equation  of  Eq, (4･6)), we  find that it mounts

to a constant  electric  field E  along  the  y-axis,

    [I]b summarize  shear-stress  a  and  shear-rate  fr in rheology  correspond  to electric

current･  I {or current  density ,J)  and  voltagc  drop Y  across  the systeru  (or electric  field
E) in thc  transport problem  of  JJA. Thus  the so-called  

`tfiow

 curves;'  in rheology
corresponds  to current-veltage  fV  (or JE)  characteristics  in JJA.  In tribology we

just need  t,o consider  only,  twe  layers m  =  1,2 as  in Matsukawa-Fukuyama's  2-chain

model.i3>  The  yield stress  a.  is cailed  static  frict･ional force. These  problems  have
been studied  extensively  in the corresponding  research  communities  but somehow

thc  intimatc analogy  has not  been appreciatcd.i7)

4.3. AIon-linear rheology  ared  transport

    Let us  discuss here some  basic phenomenological  aspects  of  the non-linear  rhe-

o]ogy  and  the non-lillear  transport associated  with  2nd  order  phase  transition, in-

cludiiig  the  jamining transition, [[b be specific  we  will  denote A -  A. as  the  distance

to the  cTitical  point  which  is natural  in the colltext  of  the anisotropic  JJA  at  zero

temperat･ure, However  the  readers  can  easily  translate the discussion to different
situations  by  r'eplacing  A 

-
 A. b}r distaiice to critical  temperature  T  

-
 [l-1, or  jamining

density di -  ipJ, etc,  dependiiig on  the problems  at  hand.

    Let us  assume  the  f611owing generic scaling  fdrm,

                       o'=eA-  Aclff ii'± (lA -7A.IA)  , (4 9)

where  6 and  A  are  critical  exponent/s  and  t･he subscript  ±  stands  for A  >  A. and

A <  A. respectively.  Physically we  expect  the fo11owing behaviours: 1) Newtonian
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behaviour  in the 
:`s]iding

 phasc" (A <  A.), 2) Finite yield stress  in the 
`[jammed

phase" (A >  A.), and  3) [l]he explicit  A clependence  must  disappear at  the critical

point (J-point) A =  A.. Based on  thcse intuitions let us  conjecture  the following

asymptotic  behaviours of  the  scaling  fullction a(y),

a± (y) = { o-Yeb), AX:;
cyfiIA,

y <{<  1,

y>  1,

(4-10)

where  6(O) and  c  are  some  coristants.  Consequently the  scaling  ansatz  predicts  the
ibllowing asymptotic  behaviours (fr --> 0),

           gi.",a=( Z:iK'1

,
Z･
 Z[il,

OC

ii.1
-

,,i,

'

,

-

-

(A

l:i, l;lli (4ii)

Most  importantly the power  law fiuid behavior a  ･[)c 6,･BIA at  the  critical  point is
predicted. Usually P3/A <  1 which  is cal}ed  shear-thinning  behaviour.

   Ifor the  transport problems  in superconductors  including JJA, one  just need  to
replace  shear-strcss  a  by the  electric  current  density ,J,  shear-rate  fr by  the  electro-

magnetic  field E, The  Newtonian law corresponds  to the  Ohmic  law J ==  oE  with

the linear conductivity  a')  and  the  yield stress  a.  corresponds  to critical  curreiit  
.Jb.

   Recently the non-liner  rheology  of  granulaT systems  is found to obey  this type
of scaling  around  the J-point.20)-24) In granular systems  Bagiiold?s scaling  must

replace  the  Newtonian  laMT in the unJ'ammed  phase.  At  Ieast formally, the above

argument  can  be casily  modified  to account  for it.

   The  above  scaling  ansatz  is quitc reminiscent  of  thc scaling  property of  magne-

tization of  ferromagnetic models  around  the  critical  temperature  [l'}, On  purpose  we

actually  used  the  sarne  standard  notations  fbr the  critical  exponents,  i.e. rs and  A,
in the latter problem. Namely  by replacing  the stress  a  by magnetization  m  and

strain  rate  
"Y

 by magnetic  field h, one  recovers  rTi o( IT -  [l':,L6r"n' ±(h/1[l] -  7-1,IA). One
can  easily  find precise correspondences  between 1) the Newtonian  (Ohmic) Iaw vs

paramagnetic  behaviour m  =  xh  with  the linear-susceptibility x  diverging at  [Il,, 2)

power  law rheology  a  oc fr6fA vs  m  er hi with  6 =:  51A at the  critical  points, and

3) yield stress  (critical current)  a.  o(  (A -  .)t.)fi  vs  the  spontaiieous  magnetizatien

Ms  or (71r -  T)6.

   This type  of  scaling  has been advocated  first in the  context  of  non-linear  current-

voltage  characteristics  of  superconductors  by Wt]lf, Gubser and  Imry,43) They stud-

ied non-linear  current-voltage  characteristics  of  superconducting  filxn at  the  super-

conducting  phase  transition, which  is a  Kosterlitz-Thouless type  2nd  ordei'  phase
transition.30) They  pointed out  the  analogy  with  the scaling  of  the rnagnetization
of  ferromagnets. Such dynamical  scaling  ansatz  has been  extensively  used  in the
studies  of  transport properties in high-[Il, supcrconductors,  especially  in the context
of  the  vortex-glasses  with  quenched  pinning  centers.25)

   
")
 It should  not  be  confursed  with  st･ress a.
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Fig.5. (Color enl.ine)  Flow  curves  of  the FK  model  aud  JJA.  Both  models  are  simulat,ed  bv the

RCSJ  method  at  zero  temperat･ure  T  =  O, The  panel  a) disp],ays the master  flow curva  ofthe  FK
rnodel  ustrig  A. ==  O,9716.. and  S =  A  =  3. The  panel b) displays the master  fiow curve  of  the

irrationaLly firustrat･ed anisot･ropic  JJA  using  A. =  1, i3 ==  ].]9 and  [1 =  3.5 so  that  ,SIA =  O.34.

   More  recently  Otsuki  and  Sasa20) have realized  the same  type  of  critical  behaviox
in the  context  of  the  non-lineaT  rheology  of  molecular  glasses. Quite remarkably  they
weTe  able  to find a  mean-field  theory  which  predicts that the fiow curves  of  the non-
linea.r rheology.  are  formally identical to the  equation  ofstate  ofthe  Landau-Ginzburg

theory  of  ferromagnets under  external  magnetic  field suggestiiLg  in particular fi/A =

1/3.

   Let us  now  discuss tlie dynauiica,1 scaling  propert･ies of  the FK  model  and  the

JJA  under  shear.  Vgle performed  the RCSJ  simulation  on  both  moders,  The  master

fiow curve  of  the FK  model  is displayed in the panel a) of  Fig. 5 which  follows well
the expected  dyllamical scaling  behaviour  around  the A.ubry's transition  point A..
A  previous workii)  found a,  /oc (A- A.)V with  A. =  O.9716., and  2.85 <  iJ <  3.06. Iii
addition  we  found  the  system  x'emains  Newtonian for the entire  sliding  phase  A { A.
including the critical  point so  we  assumed  fi =  A  in the  scaling  plot,

   For  the  irrationally frustrated anisotropic  JJA, we  pQinted out  in g4.1 that the
shear-modulus  pa along  strong'er/weaker  coupling  is finite/zero at  zero  temperature

1" =  O and  that  the  symmetric  point A. :=:  1 is the critical  point where  the shear-

rnodiilus  IL along  a  given axis  changes  frorn finite/zero to zero/finite.  
'[rhen

 it is

quite natural  t･o expect  that the current-voltage  cuTve  of  the system  with  rcspect

to injcction of  the electric  current  along  a given direction exhibit  dynamical scaling
feature at  around  A. =  1. This is indeed  observed  by a  numerical  simulation  of

the  RCSJ  dynamics.5) The  current-voltage  curves  collapse  onto  a  master  curves  as

showll  in the panel b) of  Fig. 5.

4.4, ,JarrL7niny  phase  diagrarrL

    In Fig. 6 we  show  a, schematic  
"jamming

 phase  diagram" of  the irrationally frus-

trated anisotropic  Josephson junction array.  So far we  diseussed only  the  properties

of  the  system  at･ zei'o  temperature  77 :==  O and  A 2 1. Under  the electric  current･  .ib

in,]'ected along  the  y-axis, thc  system  remains  jammed as  long as  .Jb  is smaller  t･han
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Fig. 6. (Color online)  
"Jamming':

 phase diagram  of' the JJA.

thc critical  currenk  ,Jt  -J  (X -  1)S. rl]he
 configuration  of the jammed solid  phase is

characterized  by  the  fr'ozen pa-ttern of  the undulated  vortex  stripes.  Under  strong

enough  current  Jy >  4, the system  starts  to move  exhibiting  the shear-thinning

behaviour, On  the  other  hand the  same  solid  can  slide  freely with  respect  to electric

current  .Jle  in,]-ected aleng  the cv-axis  for the entire  A >  1 region,  For the region  A <,

we  just need  to interchange the  x  and  y-aJces in the  above  discussion.

    Previous studies  on  the irrationally fr'ustrated JJA  are  almost  exclusively  coii-

cerned  with  the syrnrnetric  point A =  1. Recent  intensive numerical  studies  at  finite
temperatures  suggest  Tl,(A ==  1) =  044),45) without  finite temperature  glass transi-

tion anticipated  in the  early  works.36),37)  On  the  other  hand  our  recent  studies  oii

the  static  properties at low temperatures6)77) strongly  suggest  [Zl,(A) >  1 at least
suflicientiy  away  from the  symmetric  point A ==  1 and  that  Tl,(A) rapidly  decreases

approaching  the symmetric  point A =  1. These  point toward  the possibility ot- the

jamming phase diagram depicted in Fig, 6,") Quite interestingly it is very  similar

to the jamming phase  diagram proposed  by the  Chicago group.8):9) Most notably

the  point (A =  1,T  ==  O) looks quite similaT  to the Jamming  point which  deserves
further studies.

g5. Conclusions

   To conclucie  we  discussed static  and  trallsport or  rheological  properties of  the
irrationally frustrated anisotropic  Josephson  juiiction array  (JJA) which  exhibits

vortex  stripes  with  selfgenerated  randomness  at  low temperatures. We  emphasized

in partic:ular the  intimate connection  between the fi'iction models  and  t･he irrationally
frustrated JJA  which  provides valuable  insights into the  problems.

   
')

 Wt}  only  shovLr  the  >L >  1 part. Note  that  [1'L(11X) =  1".()t)!)L holds due to the  obvious

symrrictry  between  x  and  y-a[xes.
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