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Non-Equilibrium Relation between Mobility and Diffusivity
of Interacting Brownian Particles under Shear
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We investigate the relation between mobility and diffusivity for Brownian particles under
steady shear near the glass transition, using mode coupling approximations. For the two
directions perpendicular to the shear direction, the particle motion is diffusive at long times
and the mobility reaches a finite constant. Nevertheless, the Einstein relation holds only for
the short-time in-cage motion and is violated for long times. In order to get the relation
between diffusivity and mobility, we perform the limit of small wavevector for the relations
derived previously [Phys. Rev. Lett. 102 (2009), 135701}, without further approximation.
We find good agreement to simulation results. Furthermore, we split the extra term in the
mobility in an exact way into three terms. Two of them are expressed in terms of mean
squared displacements. The third is given in terms of the (less handy) force-force correlation
function.

§1. Introduction

In thermal equilibrium, the Einstein relation? for a Brownian particle (a col-
loid) is the best known application of the fluctuation dissipation theorem (FDT). It
connects the equilibrium mobility (¢ (t) of the particle to its equilibrium diffusivity
D(e) (t) )

0

E%D“Kﬂt:kBTM@@% (1-1)

with thermal energy kg7T'. The diffusivity on the left-hand side of this equation is
defined via the mean squared displacement (MSD) of the particle,

2D (1)t = ((s(t) — 5(0))?) = 65%(¢). (1-2)

s denotes an arbitrary coordinate of the position of the tagged particle. §s(t) de-
notes the 1-dimensional MSD of the 3-dimensional system in equilibrium, which is
independent of direction because of isotropy. (...) denotes an ensemble average,
which is defined in detail below. The mobility on the right-hand side of Eq. (1-1) is
probed by a constant test force F' which starts to act on the particle at t = 0, and
defined as the ratio of the mean velocity and the force [see also Eq. (2-9) below].
For a single colloid in a solvent, the MSD grows linearly in time and the mobility is
time independent, on the Brownian timescale considered here.?) For higher densities
of the colloids, the MSD shows the characteristic two-timescales scenario with short
and long time diffusivities?:3) and both diffusivity and mobility are time dependent.
At even higher densities, colloidal dispersions exhibit slow cooperative dynamics and
form glasses. In these, long time diffusivity and mobility vanish since the particles
are trapped by the surrounding particles.4> These metastable soft solids can easily
be driven into stationary states far from equilibrium by already modest flow rates.
Under shear, the system recovers ergodicity®>% and the particles recover finite diffu-
sivities?) 1) and, as will be shown, finite mobilities for the directions perpendicular
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to shear. The MSD in shear direction in contrast grows cubically in time.”)12):13)
In this paper, we will focus on the two directions perpendicular to the shear direc-
tion. Although these show diffusive behavior, the relation (1-1) does not hold any
more in general and much work is devoted to understanding the relation between
diffusivity and mobility in non-equilibrium. The violation of the FDT is generally
described by the fluctuation dissipation ratio (FDR) X¢(¢). It depends on the con-
sidered observable f and for the case of the Einstein relation, we define the FDR X,
via 5
—D
ot
The equilibrium-FDT in Eq. (1-1) is recovered with X ,(f) (t) = 1. In non-equilibrium,
X, (t) deviates from unity. This is related to the existence of non-vanishing proba-
bility currents. FDRs are hence considered a possibility to quantify the currents and
the deviation from equilibrium.!¥

The FDT-violation of colloidal glasses in a non-equilibrium steady state un-
der shear for auto-correlation functions was discussed in previous papers.lg)’ls) The
general finding is that at short times, the equilibrium-FDT holds with Xf = 1,
whereas at long times, the equilibrium-FDT is violated in a special way: the FDR
limy o0 X¢(t) = Xi(7) = Xy is time-independent for the whole final relation process
of the driven glass. 7 is time rescaled with the timescale of the shearing. This finding
is in agreement with spin-glass predictions!® as well as detailed simulations.?) While
in Ref. 9), the value of X was found to be independent of observable f, which lead
to the notion of an effective temperature T, we indeed found a slight dependence
of Xf on observable.!3),15)

In the case of the Einstein relation, the MSD grows linearly in time at long
times and the mobility is constant, as we will see. Due to this, the FDR naturally
approaches a constant value (different from unity) at long times. It is still interesting
to see whether there is a sharp transition in the parametric plot of the two quan-
tities from short to long time behavior as was found for the correlators® %) and in
simulations also for the Einstein relation.”” The Einstein relation for sheared glassy
systems has also been studied in Ref. 17).

The Einstein relation is probably the FDT-example which is most easily mea-
surable in experiments. Its non-equilibrium version has indeed been investigated for
a single driven Brownian particle.'® As far as known to us, the FDT-violation for
the sheared system has not been studied in experiments before.

In this paper, we present the Einstein relation for colloidal suspensions under
shear. We will therefore perform the limit of small wavevector for the relations
presented previously,'®)1%) without further approximation. In §2, we give the in-
troduction to the system under consideration and derive exact expressions for the
quantities of interest. In §3, these exact expressions will be made calculable accord-

ing to previous approximations. In §4, we show and discuss our final results and we
close with a summary in §5.

X, () =D(t)t = kpTu(t). (1-3)
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§2. Microscopic starting point

We consider the same system as in Ref. 15) and give its description here for
completeness. It contains N spherical Brownian particles of diameter d, dispersed
in a solvent in volume V. The particles have bare diffusion constants Dy = kT o,
with mobility 1p. The interparticle force acting on particle ¢ (i = 1... N) at position
7T; is given by F; = —0/0r;U({r;}), where U is the total potential energy. We neglect
hydrodynamic interactions to keep the description as simple as possible. These are
also absent in the computer simulations® to which we will compare our results.

The external driving, viz. the shear, acts on the particles via the solvent flow
velocity v(r) = Ay&, i.e., the flow points in z-direction and varies in y-direction.
7 is the shear rate. The particle distribution function ¥(I" = {r;},t) obeys the
Smoluchowski equation,?)5)

QW(I,t) = N W(I't),
N=0.462=> 8,10, — F,— k-1, (2-1)

with kK = Y2y for the case of simple shear. (2 is called the Smoluchowski operator
and it is built up by its equilibrium part, 2. = > . 8; - [0; — F;] of the system
without shear and the shear term 62 = — ). 9;- k- r;. We introduced dimensionless
units d = kT = Dy = 1. There are two time-independent distributions, the
equilibrium distribution ¥, « e~V ie., 2%, = 0 and the stationary distribution
¥, with 20, = 0. Ensemble averages in equilibrium and in the stationary state are
denoted

(o) :/dFsZ?e(F)..., (2:2a)
(.. :/drws(r)..., (2-2b)

respectively. In the stationary state, the distribution function is constant but the
system is not in thermal equilibrium due to the non-vanishing probability current,
which gives rise to the violation of the equilibrium-FDT.5):15)

2.1. Mean squared displacement

While the coherent, i.e., collective dynamics of shear melted glasses has been
discussed in detail,®19) we focus here on the MSD of a tagged particle. Its general
properties under shear for the different directions will be presented elsewhere.”)®)
The MSD follows from the ¢ — 0 limit of the incoherent density correlation func-
tion.*»29 In the following, we consider the (1-dimensional) MSD parallel to the
unit-vector eﬂ_, one of the two unit-vectors ei and ei spanning the plane perpen-
dicular to the shear direction. The long time diffusivity (and also the mobility) is
slightly anisotropic in this plane,m)’ 11) but the relation between diffusivity and mo-
bility derived below will be independent of direction. It couples the diffusivity of a
certain direction to the mobility of the same direction.
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From the different time dependent correlation functions®?!) after switch-on of
steady shear, we distinguish different MSDs. They will enter the final formula for
the stationary mobility and we introduce them briefly. In the stationary state, one
measures the stationary MSD r2(¢) as the ¢ — 0 limit of the stationary tagged

particle density correlator Cq(t) = (e71ams Mt eia(®) T\ (%) for the direction g = e’

2-2C i (t
2D(t)t = dr2(t) = lim ——qcl—(v—).
qg—0

7z (2-3)

rs is the position of the particle and q(t) = q — q - Kt is the advected wavevector
which enters through translational invariance of the considered infinite system.5):6)
For the directions perpendicular to shear considered here, the wavevector is time-
independent. Stationary diffusivity D(t) as well as stationary mobility p(¢) should
carry an index ¢ which is suppressed.

If the MSD measurement is started a (not too large) period t,, after switch-
on of steady shear, one measures the two-time MSD 8r2(¢,t,,), where ¢ is still the
correlation time, i.e., 872(0, t,,) = 0. For the special case of t,, = 0, all quantities are

denoted transient. The transient MSD follows from the transient density correlator
CQ(ta tw = 0) = <e_ZQ'7’s eQTte’Lq(t)-'ps> as

2 —2C,. (t,0)
T (2-4)

2 T
or;(t,0) = ;I_I)I(l) .

For finite ¢,,, we use the integration through transients (ITT) approach® in order to
express the solution of Eq. (2-1) a time ¢,, after switch-on as

2%
U(ty) =V, + /0 dse’* Q,. (2-5)

When performing averages with ¥(t,,), one uses partial integrations to let the op-
erators in (2:5) act on what is averaged with ¥(¢,,). The ITT approach has proven
useful for deriving the stress under time-dependent flow.22)23) The two-time MSD
5r2(t,t,) follows,

2—-2C _i(t,t
17 (t, tw) = lim oet (> )

g—0 q2
2—2 (<e—z‘qe1.rs€mt6iqe1.rs> +5 [y ds <O-myeQTse—iqei.rseQTteiqei,rs>>
= lim
q—0 q2
(2:6)
Ogy = "Zi F¥y; is a stress tensor element which followed from ¥, = 403y We.

Operators act on everything to the right, except for when marked differently by
bracketing. For very long waiting times, one has ¥(t,, — o) — ¥, in Eq. (2-5),
and 6r2(t,00) = dr2(¢) holds. In the quiescent system, i.e., without shear, one mea-
sures the equilibrium MSD, which follows from the equilibrium correlator C’ée) (t) =
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(e—iq-rseﬂgteiq-rs >7

— 20t
§s%(t) = lim __&_(_)_
qg—0 q2
The un-sheared system is isotropic and only the magnitude of the wavevector enters
. (e)
in Cq ' (¢).

2.2. Mobility

Let us derive the formally exact expression for the stationary mobility u(t) of the
tagged particle in direction e'fL. Therefore we consider the susceptibility for tagged
—ige’, -rs

or;
as found by Agarwal in 197224 [see Ref. 5) for a derivation]. The mobility u(f)
for direction ei, which we are seeking here, follows from the ¢ — 0-limit of the
susceptibility above,

(2-7)

particle density fluctuations in this direction, Xqei, (t) = (2 9Nt T ()

Xgei (1)

t) = lim —=—, 2.
p(t) Sim =5 (2-8)
Physically, the mobility u(t) is the ratio of the average velocity v, = vpeY of the

tagged particle under the external force F(t) = Fe! O(t) with step function 6,
(vp)(“'/’F(t))
—

(.. YHF®) denotes an average in the steady state which has been perturbed by
the force F'. For the sheared system, the mobility is always finite in contrast to
un-sheared glasses.

In Refs. 13) and 15), we presented the exact splitting of the susceptibility into
four terms. The first represents the equilibrium-FDT and the extra term is split up
into three terms. The limit of ¢ — 0 can be done in a straight forward manner to
yield the mobility (compare Eq. (20) in Ref. 13)),

u(t) = (2:9)

10 4 1 0 10 9
=2 Zhr2() — = - —5r2(t,0
1) =5 570 = § gttt =G5 0 512, 0)]
IR T ¥ > 2fsr ot —igel -rsy 21t _igel -rg i
;1_15(1) 2% /0 ds{ogye " *(2Te 181 T )e " FeldeL ), (2-10)

Again, the first term on the right-hand side of Eq. (2-10) is the equilibrium Einstein
relation for 1-dimensional diffusion, the other three terms hence correspond to the
violation of the equilibrium Einstein relation. We have identified all but one terms
of the susceptibility under shear with measurable mean squared displacements. The
contributions of the different terms in xq(¢) were additionally estimated with full
microscopic mode coupling approximations in Ref. 13).

The last term, which has yet no clear physical meaning for finite ¢, can be
connected to the force-force correlation function for ¢ — 0: Performing the limit of
small ¢, many terms vanish due to fooo ds(amyem‘ﬂ) = 0 and we are left with

;Y = nf —ige® -rsy 2Vt _dget g
#4({;):—%1—?(1)5(]—/ dS(O'a;yC S(QTG 1ge’ -r )6 ezqeLr>

NI | -El ectronic Library Service



Publication O fice, Progress of Theoretical Physics

Non-FEquilibrium FEinstein Relation under Shear 177
A w . . . .
-3 /0 ds(o2ye” [ (Fie™rt) — Fir])
= F(t) — F(0), (2-11)
with F! =F;-€’, r’ =r,-€’ and
0 fy > QT.SFi .QTtFi 2.12
—a—tf(t) = ”5 o d8<0$y8 s€ s>' ( ) )

Equation (2-12) follows with 2fri = Ff. Thus, u(t) can be expressed in terms of
the force-force correlation function

b _ .
Cri(ttw) = (FszethQ + ’7/ ds(axyemsFS’ethQ (2-13)
0
in the following way,

t : loe} )
at) = F(t) — F(0) = / i’ [—% / ds(oye? " Fie? iy
0 0

1

- /0 dt' [Cre(t',0) = Cps (¢, 00)] (2:14)

The last term in Eq. (2-10) is hence connected to the difference of transient and sta-
tionary force-force correlation function. For long times, the force correlation decays
and p4(t) reaches a constant. All terms of the mobility are now connected to well
defined correlation functions in an exact way. The first three terms in Eq. (2-10) yet
have a different quality compared to p4(t), which we want to stress concerning the
discussion about different forms of non-equilibrium FDTs:25)-27) The mean squared
displacements are much easier to be determined experimentally or in simulations
than the force correlation function, which can only be found when the particle po-
sitions can be resolved accurately. We note that the stationary force correlation
function in Eq. (2-14) is equal to the one in Eq. (13) of Ref. 28). Performing the
limit of ¢ — 0 starting from Eq. (18) of Ref. 13), we get directly
1 I

ult) = Z%&r?(t) - /O A iyt 00) + 3. (2-15)
With this, Eq. (13) of Ref. 28) is reproduced. We want to emphasize again that we
judge Eq. (2:10) more useful compared to Eq. (2-15).

§3. Approximations

In this section, we will derive approximations in order to find closed expressions
for the exact relations above. First, we treat the mean squared displacements, and
then the mobility.

3.1. Mean squared displacements

3.1.1. Equation of motion for the transient MSD

Within MCT-ITT, the mode coupling approach for sheared suspensions, the
general strategy is to derive equations of motion for the transient quantities. These
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have the advantage that they are the input for the generalized Green-Kubo rela-
tions,?)29) e.g. for the shear stress.%) The transient quantities are also more handy
to be analyzed since they show e.g. the same plateau values as the corresponding
functions in equilibrium.®19 In a second step, two-time and stationary quantities
are derived via the ITT formula, Eq. (2-5). The separation parameter ¢ describes the
distance from the glass transition density. It is positive for glassy and negative for
fluid states. The derivation of the equation of motion for the coherent (i.e. collec-
tive) transient correlator C&(¢,0) = (pgemtpq(t)>/<papq>, with pq = >, €™ has
been presented in Ref. 6). Reference 7) presents the incoherent, i.e., single particle
dynamics, which will also be published in a forthcoming paper.?) The equation of
motion for the transient mean squared displacement for direction eﬂ_ is similar to
the one for the quiescent MSD#:3%) and reads”

t
5r2(t,0) + /0 mo(y,t —t)orZ(t,0) = 2t. (3-1)

While Eq. (3-1) is still exact, one has to make approximations in order to find the
memory function mq(¥,t). The MCT-ITT route leading to its numerical evaluation is
presented in Appendix A. Then, §r?(¢,0) and §s2(t) (with mg(0,t)) are derived with
Eq. (3-1). mg(7,t) and & below are the two quantities needed from the Appendix, all
other quantities follow from the equations presented in the main text. See Ref. 31)
for a review on MCT-ITT.

3.1.2. Two-time MSD

Having found the transient MSD, we now derive approximations in order to go
from the transient to the two-time MSD. In Refs. 7), 15), and 21), this approximation
was presented for the two-time correlator. The corresponding approximation for the
MSD follows by the limit of ¢ — 0. The result, whose derivation is presented in
Ref. 21), reads

i (t, tw) ~ 077 (¢, 0) + (fyw) 8%67*3(1&,%) : (3-2)
w typ=0

The factorization of ¢,,- and t-dependent terms yielded the pre-factor
tow of
o (tw) = 7/ ds(oaye™” *Oay) [(OayOay)- (3-3)
0

It contains in the numerator the shear stress o(t,) = ¥ fgw ds(amyemsawy) mea-

sured after switch-on. It grows with t,3% and, for t, — oo, reaches the familiar
steady shear stress measured in ‘flow curves’ as function of shear rate. According to
Eq. (3-2), the two-time MSD equals the stationary one once the stress has reached
its steady value.

Equation (3-2) is exact for small waiting times, where & (t,) = ¥tw+ O(t2) holds
and Eq. (3-2) represents the first two terms of the Taylor expansion in ¢,,. For longer
waiting times, it holds also quite well.2)) The important connection of the waiting
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time derivative in Eq. (3-2) to easier accessible time derivatives is given by13),15)
0 3]
%57"2-2(@%) . N o (672(t,0) — 6s°(2)) . (3-4)

Equation (3-4) has been successfully tested quantitatively.?") Putting Eqgs. (3-2) and
(3-4) together, we finally have

5 5(tw) O _
Or2(t, ty) = 612(t,0) + o (6r2(¢,0) — 65°(2)) - (3-5)

In this relation, we still need to know the normalized shear stress &(t,), which
in MCT-ITT is expressed in terms of the coherent density correlator. Only ¢ =
7 (tw — 00) is needed for the graphs below [see Appendix B for its derivation]. From
Egs. (3:1) and (3-5), the diffusive long time limit of the MSD follows,

2t (e>0,4—0)

= 2Dt = y|t. 36
mo(¥, z = 0) is the Laplace-transform £ {mg(¥,t)} (z) = [, dte” thmo('y, t)at z =0.

It scales in the liquid with the a-relaxation time 7, and with |¥|~! in glassy states.
In the glass (¢ > 0) the scaling with shear rate in Eq. (3-6) follows. The long time
limit of 6r2(t,t,) is t,-independent, since the second term in Eq. (3-5) approaches
a constant. This must of course hold because at long times, the two-time MSD has
to follow the steady diffusivity D for all t,.

3.2. Mobility

We want to derive approximations for the exact Eq. (2-10) following Refs. 13)
and 15) for general observables f. The final non-equilibrium fluctuation dissipation
relation derived there compares well to the simulation results from Ref. 9). In mode
coupling estimates, it was found that the last two terms in Eq. (2-10) have a different
sign and almost cancel each other.'3) We hence ignore them here as was done in
Refs. 13) and 15). A key approximation is again the connection of the waiting time
derivative to time derivatives, Eq. (3-4). We finally have the approximate expression
for the mobility in terms of mean squared displacements,

ult) ~ 5 252 (t) - 5%& ) (3:72)
10
~ 50T ()— == (5r2(t 0) — 6s%(t)) . (3-7b)

This is the main result of this paper.

§4. Results

4.1. Mobility at short and long times

We are now ready to discuss our results. First, we want to illustrate the outcome
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Fig. 1. Stationary MSD and twice the integrated mobility p'(t) = f; dt' u(t') in direction e’ for a
glassy state (e = 107%). Shear rates are v/ = 107%7%~%~2 from right to left.

of our Einstein relation Eq. (3-7b) using the equations of §3.1 as input. The transient
MSD is given as a solution of Eq. (3-1), the stationary MSD follows then with
Eq. (3-5) and t,, — oco. The mobility is calculated with Eq. (3-7b). We present the
time integrated version of Eq. (3-7b) for convenience. Figure 1 shows the stationary
MSD together with the time integrated mobility for a glassy state at different shear
rates. For short times, ¥t < 1, we see that the equilibrium Einstein relation holds.
We have §72(t,0) = §s%(t) + O(3)719) and with Eq. (3-7b),
10, .

p(t) = 5%57‘7: (1) = X,(t) =1, vt < 1. (4-1)
For t 2 ||, the mobility is smaller than expected from the Einstein relation. The
parametric plot in Fig. 2 shows a rather sharp transition from short time to long
time behavior with a straight line at long times corresponding to a constant FDR
X,. In the inset of Fig. 2, we see that the transition from the short to the long
time value of X, nevertheless takes two decades in time and the strain, at which
this transition happens depends strongly on shear rate. This is not apparent in the
parametric plot. In Fig. 2 we also show the mobility from Eq. (3-7b) with transient
replaced by stationary MSD, from which a sharp kink in the parametric plot and a
sharper transition in the inset follows. This approximation was referred to as ’ideal
X = %—law’ in Ref. 13). All our findings are reminiscent of the FDT-discussion for
finite g. For ¢t 2> |y|~! with ¥ — 0, we have §s?(#) = const in Eq. (3-7b) and the
mobility is given by

O N U e |
i) = 3 2 (670 - Jo2e0)) . ez I (42)
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ideal y/T=10% ——-
v/T=108
v/T=102 ———— |

312 (1)

Fig. 2. Parametric plot of integrated mobility y' () = fot dt’ u(t') versus stationary MSD for a glassy
state (¢ = 10™%). The dashed dotted line shows the ‘ideal’ situation, where 677 (t,0) ~ o7 (t) is
used in Eq. (3-7b). Inset shows the FDR as function of strain 4¢ for the same susceptibilities.

For very long times, t > |¥|~!, the mobility in Eq. (4-2) reaches the constant fi o< ||
(glass). The proportionality to shear rate follows with Eq. (3-6). The long time
Einstein relation under shear connecting D and {i is then given by (we restore physical
units only for this equation), |

X,D = kgTh, (4-3)

with 10 2 1 2
%, = qi 2000710 — 30r7(50) 1 (4-4)
n —_— .
t=00 35077 (1) 2

The last equality followed from the equality of transient and stationary MSDs for
vt > 1.

A comment concerning the nontrivial appearance of X, = —%— for all glassy states
in Eq. (44) is in place. Let us briefly recall the approximations which lead to
Eq. (4-4). First, the second term in the mobility, Eq. (2-10), the waiting time deriva-
tive, is expressed in terms of time derivatives [see Eq. (3-7b)]. This relation has been
tested in switch-on simulations®?) and holds quantitatively for two different super-
cooled liquids, at least for small shear rates. Second, the third term in Eq. (2:10) is
neglected. It is the difference between the time derivatives of transient and station-
ary MSDs. As stated above, at long times, the MSDs must follow D independent of
waiting time, and the third term vanishes making this approximation exact. Third,
the last term in Eq. (2-10), p4(t), is neglected. To our current knowledge, it is the
only term which can give a deviation from the value of % at long times, its limiting
value is given with ¢ — oo in Eq. (2:14). This has to be addressed in the future. For
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Fig. 3. Stationary MSD and integrated mobility u'(t) = fot dt'u(t") for a fluid state (e = —1073).
Shear rates are /I = 107%7%7%~2 from right to left. Inset shows the parametric plot for
the different shear rates. For the smallest shear rate, it is almost indistinguishable from the
equilibrium-FDT line.

finite ¢, we found a correction to the small shear rate glass-value X = %.13)’15) The
correction followed from the difference between transient and stationary correlators.
This difference is absent for the MSDs at long times. As noted before, many spin
models yield X = % at the critical temperature.?®

Next, we consider the FDT-violation for the MSDs on the fluid side. We find
the expected behavior, i.e., for small shear rates, the equilibrium-FDT is restored for
all times [see Fig. 3]. All our findings are in agreement with the simulation results

in Ref. 9).

4.2. Comparison to simulations

Following the discussion of the approximations for the different terms, it is in-
teresting to compare Eq. (3-7b) directly to the simulation results in Ref. 9). This is
done in Fig. 4. We need transient as well as quiescent MSDs from the simulations
as input which are not available. Therefore, we construct a quiescent MSD which
is constant for long times starting on the plateau of the stationary MSD. Approxi-
mating transient and stationary MSD to be equal, we then get the dashed curve for
the mobility in Fig. 4, without adjustable parameter. In a second step, we can take
the difference between stationary and transient MSDs into account with Eq. (3-5).
We use the same value & = 0.01 as in Fig. 4 in Ref. 15). There, we compared the
susceptibility for density fluctuations at wavevector ¢ = 7.47 to the simulation data
of Ref. 9). Since the simulation data in Fig. 4 and Fig. 4 in Ref. 15) are for the same
system at equal shear rate and temperature, the value of the fit-parameter & should
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Fig. 4. Comparison to simulation data for stationary MSD and integrated mobility u'(t) =
fot dt’ u(t') in the neutral direction at temperature T = 0.3 (T. = 0.435) and v = 107, Circles
and squares are the simulation data (including units) from Fig. 16 in Ref. 9). The full line is
the integrated mobility calculated via Eq. (3-7b). The dashed line shows the integrated mobility
from Eq. (3-7b) with approximation §22(¢,0) ~ §z*(¢). Inset shows the different MSDs [see main
text].

be the same in both figures. The constructed quiescent and the calculated transient
MSDs are shown in the inset. The resulting mobility fits very well to the simulation
results. It is interesting to note that the long time mobility (4¢ > 1) as calculated
from (3:7b) is independent of our choice of the height of the non-ergodicity parameter
in the quiescent MSD and of the value for . The agreement for long times is hence
true without any fit parameter. As noted above, this agreement of the simulation
data with Eq. (3-7b) means that the long time value of the FDR takes the value of
~ 1 and that the last term in Eq. (2-10) is indeed very small at long times. Future
work has to show whether this is true in general.

§5. Summary

The relation between mobility and diffusivity for shear melted glasses was pre-
sented. The derived relation followed without further approximation from previous
results for correlation functions by taking the small wavevector limit. At short times,
the Einstein relation holds. At long times, both diffusivity and mobility are finite
and scale with shear rate, but the mobility is smaller than expected from the Einstein
relation. In glasses, this scaling and the violation of the Einstein relation persist to
arbitrary small shear rates, i.e., the limiting value of the FDR at ¥ — 0 jumps at the
glass transition from its nontrivial value X N % to its equilibrium value X,, = 1.
Within MCT-ITT, this jump has the same origin as the jump of the shear stress at
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the glass transition: The decay of the correlators on timescale |¥|~! in glasses.

We find very good quantitative agreement to simulations. Future work has to
address the only unknown term in the mobility, which is connected to the force-force
correlation function.
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Appendix A
—— MCT-ITT Equations for Density Correlators

In this appendix, the MCT-ITT equations necessary to solve Eq. (3-1) are pre-
sented. In this paper, we will work on a schematic level, where the g-dependence
in our equations for the correlators is dropped. The g-dependent treatment will be
presented elsewhere.®) The schematic equation of motion for the normalized coher-
ent transient correlator C°*(¢,0) = d°°"(t) reads'? (this schematic model is called

Fl(;)—model)

_ &eoh coh ! lmcoh b N Feoh 4! 1a
0=d (t)—t—F{@ (t)+/0dt (3.t — ) (t)}, (A-la)

. ]' (] co & (&9)
) = (0 +2410)2°70 (1) + 5@ (1)?] ,  (A-1b)

with initial decay rate I'. We use the much studied values v§ = 2, v{ = v§(y/4/v§—1)
and take mc"(0,¢) in order to calculate quiescent (¥ = 0) correlators.?®) In glassy
states (¢ > 0), the long time decay of $°°*(t) from the plateau down to zero happens
on timescale #—1719) i.e., without shear it stays on the plateau. For fluid states (& <
0), the correlator is analytic in shear rate and one observes a competition between
structural relaxation on timescale 7, and shear induced relaxation on timescale |¥|~1.
The parameter y5°* sets the strain ¢, at which effects of shearing start to become
important. We will use 'ySOh = 1.

In MCT, the incoherent dynamics is coupled to the coherent one,’? in the sense
that the coherent correlator enters the memory function of the equation for the
incoherent correlator. The equation of motion for the incoherent density correlator
under shear is known,” the schematic version for C(t,0) = &(t) reads”

0=adt)+ 1T {@(t) + /Ot dt'm(y,t — t’)dﬁ(t’)} : (A-2a)

m(¥y,t) = mv@(ﬂ@wh(t). (A-2b)
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m(¥,t) contains the product of incoherent and coherent correlators, manifesting
the coupling described above. This is why we introduce the coherent correlator
here despite aiming only at tagged particle quantities. The effect of shearing is
incorporated in a similar fashion to that in (A-1b) and we again use m(0, t) in order to
calculate quiescent quantities.3®) The additional parameter vy describes the coupling
between the tagged particle and the bath particles, i.e., different size ratios can in
principle be mimicked. The standard MCT-analysis for Eqs. (A-2a) and (A-2b) [see
e.g. Ref. 30)] yields the relation between the plateau values f°°* and f of $ and

& respectively,?® f =1 — Tflm The incoherent dynamics is decoupled for values

vy < V5 = 1/fC°h. For vy and vz as chosen above, we have v ~ 3 and use vs = 5
which is well above v¢. For vs > v¢, ®(t) has similar properties to those of " (¢)
for glassy and liquid states as described above.” Also v, = 1. ;

The memory function mg(%,t) in Eq. (3-1) finally is the ¢ — 0 limit of the g-
dependent analog of m(¥, t), which can be taken smoothly. We use mg(%,t) = m(¥,t)
since we cannot perform the ¢ — 0 limit in the schematic representation.

Appendix B
—— Normalized Shear Stress o

In the spirit of the Fl(;)-model, we approximate the s-dependent normalized
shear modulus by the transient correlator,!5)19)

1
2 Goo

fcoh ’

(nye so.my> ~ (PCOh(s)
(OwyOay)

(B-1)

where we account for the different plateau heights of the respective normalized func-
tions by setting Goo/f" ~ 1. & follows then with Eq. (3-3) and t,, — occ.
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