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   "t'e investigate the relation  betwecll mobility  and  difl'usivity, for Brewnian  particles undcr
steady  shear  near  t･he gla,ss transition, using  mode  coupling  approximations.  For the two

diTectiolls perpendicular  to thc  shear  direct･ion, the part･icle motion  is dill'usive at  Iong times
and  the mobiiity  reaches  a  finit,c const･allt,  Nevertheless, the  Einstein  relation  holds  only  for
t,he short-timc  in-cagc motion  and  is violat･ed  fur long times.  In order  to  get･ the  relation

between  diffusivity and  mobility,  
,
 we  pcrform  the limit of  small  wavevector  for the relations

clerived  previously  [Phys, Rev. Let,L 102  (2009), 1357el], without  further approximation.

"Je find good  agreement  to simulation  results.  Furthermore, we  split  the extra  t･erm in t･he
mobility  ill aii exact  way  into three  terms,  Two  of  them  are  cxprassed  i]] terms  of  mean

squared  disp, lacements. The  t,hird is given  in terms  of  t･he (less handy) f6rce-force eorrelat,ion

fUllCt,iOll.

gl. Introduction

   In t･hermal equilibrium,  the Einstein relationi)  for a  Brownian  part･icle (a col-
loid) is the  best knowll  application  of  the fluctuation dissipation theorem  (FDT). It
connects  the equilibriuin  mobility  ps(e)(t) of the particle to its equilibrium  diffusivity
D(e)(t),
                          o

                          zJJt Z]) 
(e)

 (t) t=  kBTp(e) (t), (1.1)
with  thermal  energy  kf3T. The  diffiisivity on  the left-hand side  of  this equation  is

defined via the mean  squai'ed  displacement (MSD) of  the  particle,

                    2D(e)(t)t =.  <(s(t)-s(o))2>i6s2(t). (1-2)
s  dellotes an  arbitrary  coordinate  of  the positioll of  the  tagged  part,icle. 6s2(t) dc-

notes  thc  1-dimensional MSD  of  the 3-dirnensional system  in equilibrium,  which  is

independent  of  direction because  of  isetropy. <...> denotes an  ensernble  average,

which  is defined in detail be!ow. The  mobility,  on  the right-hand  side  of  Eq. (1-1) is

probed  by  a  constant  test fbrce F  which,  starts  to act  on  the  particle at  t =:  O, and

defined as  the  ratio  of  the mean  velocity  and  the force [see also  Eq. (2･9) below].
For a  single  colloid  ir) a  solvent,  the  MSD  grows  linearly in tirne and  the mobility  is

time  independent, on  the  Brownian  timescale considered  here.2) Fbr higher densities

of  the  col!oids,  the  MSD  shows  the  characteristic  two-tiinescales  scenaTio  xrtrith short

and  long time diffusivities2),3) and  both di£fusivity and  mobility  are  timc dependcnt.
At even  higher densities, col}oidal  dispersions exhibit  slow  cooperative  dynamics and
form  glasses. In these, long timc  diffusivity and  mobility  vanish  since  the particles
are  trapped  by the  surrounding  particles.4) These  metastable  soft  solids  can  easily

be driven into st,ationary  states  far from  equilibrium  by  already  modest  fiow rates.

Undei' shear,  the  system  recovers  ergodicity5)i6)  and  the  particles recoveT  finitc diffii-
sivities7)  ii) and,  as  will  be shown,  finite mobilities  for the directions perpendicular
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to shear.  The  MSD  in shear  direction in contrast  grows cubically  in tirne.7)ii2)ii3)

In this paper, we  will  fbcus on  the two  directions perpendicular to the shear  direc-
tion. Although these show  diffusive behavior, the  relation  (1･1) does iiot  hold any

more  in general and  rnuch  work  is devoted  to understanding  the relation  between
diffusivity and  mobility  in non-equilibrium.  The  violation  of  the  FDT  is generally
described by the  fluctuation dissipation ratio  (FDR) Xf(t). It depends on  the con-

sidered  observable  f and  fbr the case  of  the  Einst-ein relation,  we  define the  FDR  Xpa

via
                             0

                        Xpt (t) bTtD(t)t 
:kB

 TIL(t). (1.3)

The  equilibrium-FD[Ii  in Eq. (1･1) is recovered  with  XEe)(t) ii 1, In non-equilibrium,
X",(t) deviates from unity.  This is related  to the existence  of  non-vanishing  proba-
bility currents.  FDRs  are  hence considered  a  possibility to quantify the  currents  and

the  deviation from equilibrium.i4)

   The  FDT-violation  of  colloidal  glasses in a  non-equilibrium  steady  state  un-

der shear  for auto-correlation  functions was  discussed in previous  papers.i3);i5) The

general finding is that at  short  times,  the equilibrium-FDT  holds with  Xf  =  1,

whereas  at  Iong times,  the  equilib:ium-FDT  is viola,ted  in a  special  wa;sr:  the FDR
],imt-7.. Xf(t) =  lf(T) =  lf is time-independent  for the whole  final relation  precess
of  the driven glass. 7  is time  rescaled  with  t･he timescale of  the shearing.  This finding
is in agreement  with  spin-glass  predictionsi6) as  well  as  detailed simulations.9)  While

in Ref. 9), the  value  of  rtf was  fbund to be independent of  observable  f, which  lend
to the notion  of  an  effective  temperature  [Ihff, we  indeed found a  slight  dependence
of  gf on  observable.i3)7i5)

    In the case  of  the Einstein relation,  the MSD  grows  linearly in time  at  long
times  alld  the  mobility  is constant,  as  we  will  see.  Due to this, the  FDR  naturally

approaches  a  constant  value  (difft}rent from unity)  at  long times. It is still interesting
to see  whether  there  is a  sharp  transition  in the  parametric  plot of  the  two  quan-
tities from short  to long time behavior as was  fbund for the correlators9),i5)  and  in
simulations  also  for the Einstein relation,9)  The  Einstein relation  for sheared  glassy
systems  has also  been studied  in Ref. 17).

    Tlie Einstein relation  is prebably  the FDT-example  which  is most  easily  mea-

surable  in experiments.  Its non-equilibrium  version  has indeed been invest･igated for
a  single  driven Brownian  particle.i8) As far as  known  to us,  the  FDT-violation  ±br
the sheared  system  has not  been studied  in experiments  before.

    In this paper,  we  present  the  Einstein relation  fbr colloidal  suspcnsions  under

sheaT.  We  will  therefbre perfbrm  the Iimit of  small  wavevector  for the  relations

presented previously,i3),i5) without  further approximation.  In E2, we  give the in-
troduction  to the  system  under  consideration  and  derive exact  expressions  for the

quantities of  interest, In S3, these exact  expressions  will  be made  calculable  accord-

ing to previous approximations.  In S4, we  show  and  discuss our  final results  and  we

close  with  a  sumrnary  in g5.
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S2. Microscopic  starting  point

   We  (:onsider  the same  system  as  in Ref. 15) and  give its descriptien here for
completeness,  It centains  N  spherical  Brownian particles of  diameter  d, dispersed
iTi a  solvent･  in volume  V. [["he pa!'ticles have bare diffusion constants  Do  =  R;BTIio,
with  mobility  pao. The  interparticle force acting  on  particle i (i =::  1 . . . N)  at  position
ri is given by E  =  

-O/OriU({ri･}),
 where  U  is the total potential encrgy.  We  neglect

hydrodynamic  interactiens to keep the descriptien as  simple  as  possible. These  are

also  absent  in the computer  simulatioiis9)  to which  wc  will compare  our  results,

   The  external  driving, viz.  the shear,  acts  on  the  particles via  thc solvellt  flow
velocity  v(r)  =  frydi, i,e., the  flow points in x-direction  and  varies  in y-direction.
fr is the shear  rate.  The particle distribution funct･ion lli(T E  {ri},t) obeys  thc
Smoluchowski equation,2),5)

O,di(Il t) =  S2 !Ir(F, t),

     9=  9. +69  =E  Oi ･ [O,i -q-K"  ri] ,

                    i
(2-1)

with  K  =  fralg fbr the  case  of  simple  shear.  S? is called  the Smoluchowski opera･tor
and  it is built up  by its equilibrium  part, n, =::  Zi Oi ･ [Oi -  Fi] of  the  system

vLTithout  shear  and  the  shear  term  iS2 ==  
-

 2,i Oi ･K･ri.  XN]ki introduced dimensionless
units  d ==  kBT  =  Do =  1. There are  two  time-independcnt  distributions, the
equilibrium  distribution IPe o(  e-U,  i,e., 9.di, =  O and  the stationary  distyibution

ll]g with  S21Pg =  O. Ensemble averages  in equilibrium  and  in the  stationary  state  are

denoted

  <...>-fdF9le(T)...,
<. .>(nr) ..  f dl"fl (T) , . . ,

(2･2a)

(2･2b)

respectively.  In t･he stationary  state,  the  distribution function is constant  but the

system  is not  in thermal  equilibrium  due to the non-vanishing  probability current,

which  gives rise  to the  vio!ation  of  the  equilibriurn-FDT',5),i5)

2.1. Mean  squared  displacement

   While the coherent,  i.e., collectivc  dynamics of  shea:  melted  glasses has been
discussed in detail,6),i9) we  focus here on  the  MSD  of  a tagged  particle. Its gcneral

properties  under  shear  for the  different directions will  be presented  elsewhere.7),8)

Thc  MSD  fo11ows from  the  q 
->

 O limit･ of  the inceherent density correlation  func-
tion.4)'20) In the following, we  consider  the  (1-dimensional) MSD  parallel to the

unit-vector  eZi., one  of  the two unit-vcctors  el  and  e2.,. spanning  the plane perpen-
dicular to the  shear  direction. The  long time  diffusivity (and also  the  mobility)  is
slightly  anisotropic  in this plane,iO)iii) but the  relation  between diffusivity and  mo-

bility derived below will  be independent of  direction, It couples  the diffusivity of  a

certain  direction to the  mobility  of  the  sama  direction.

NII-Electronic  
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   From  the different time  dependent  correlation  functions6'),2i) after  switch-on  of

steady  shear,  we  distinguish difit)rent MSDs.  They  will  enter  the final fbrmula lbr
the stationary  mobility  and  we  introduce them  briefiy. In the stat-ionary  state,  one

measures  the stationary  MSD  6r,2- (t) as  the q -  O limit of  the stationary  tagged

particle density correlator  ([)lq(t) :=:  <e-iq""e9tLeiq(t)'r3>G') for the  direction q =  qeZl ,

2D(t)t =- O-r,2, (t) =:  lim
               g->O2

 
-
 2q.aft)

g2
(2-3)

r,  is the position Df  the partic}e and  q(t) =  q  -  q  ･ rct is the advected  wavevector

which  enters  through  translational  invariance of  the  considered  infinite system.5)T6)

For the directions perpendicular to shear  considered  here, the wa;vevector  is time-
independent. Stationary diffusivity D(t) as  well  as  stationary  mobility  pa(t) shou]d

carry  an  index i which  is suppressed.

   If the MSD  measurement  is started  a (not too large) period t. after  switch-

on  of  steady  shear,  one  rneasiires  the two-time MSD  6r,2(t, t.), where  t is still the
correlation  time,  i.e., 6r,2- (O, t.)  ==  O. For the  special  case  of  t,. =  O, all  quantities are

denoted transient, The transient MSD  fo11ows fi]om the transient density correlator
Cq(t,t. =  O) =  <e-ig'rsentteiqCt)'rs> as

6re2' (trO) =  lim
         q-O2

 
-
 2Cgel  (t; O)

q2
(2･4)

For finit/e t., we  use  the integration through  transients (IT[I]) approach5)  in order  to

express  the solution  of  Eq. (2･1) a  time  t. after  switch-on  as

!Z"(tw) =  !l'e +  
.7[l

`"

 dse9SS?ll'b (2･5)

Wheri performing  averages  with  !Ii(t.), one  uses  partial integrations to Iet the  op-

erators  in (2+5) act  on  what  is averaged  with  !l7(t.). The IT[[] approach  has proven
usefu1  fbr deriving t･he stress  under  time-dcpendent  flow.22),23) The  two-'time MSD

6r,2(t,t.) follows.

6r,2 (t, t.) =:  lim
          q-O

=  lim
  q-O

2 
-
 2Cqe'. (t? tvJ)

             q2

2 
-
 2 (<e-2qel 

rseS?ttezqeZi.

 
rs>

 +  
.si

 JguJ ds <amyeOtse-igel･r.e9tteiqeeL･rs>)
q2

(2･6)

a.y  
=

 
-E,

 PEi)yi is a  stress  tensor element  which  tbllowed from 9!l)h ::  fra.y!Z)E.
Operators  act  on  evcrything  to  the  right,  except  for when  marked  differently by
bracketing. Fbr very  long waiting  times, one  has e(t. -> oo)  -  !l)b in Eq. (2･5),
and  5ri (t, Do)  ==  6r,2- (t) holds. In the  quiescent system,  i.e., without  shear,  one  mea-

sures  the equilibrium  MSD,  which  fo11crws from the  equilibriurn  correlator  CSe)(t) =
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<e-iq･rse9gteiq-rs>,

                         ds2(t) ,.. I!r,n,2- 
2qC,:e)(t)

 (2 7)

The  un-sheared  system  is isotropic and  orily  the magnitude  of  the  wavevector  enters

in cSe)(t),

2.2. Mobility

   Let us  derive t･he formally exact  expressien  fbr the stationary  mobilit･y  pa(t) ofthe
tagged  particle in direction e2i.  Therefore we  consider  the susceptibility  for tagged

particle density fiuctuations in this direction, xq.,/, (t) =  <Oe-'oi.e,tt''S .oie9ttezqetl 
'rs>(5'),

as  found  by Agarwal  in 197224) [see Ref. 5) for a  derivation]. The  mobility  paCt)
for direction et[ , which  we  are  seeking  here, follows from the q -> O-limit of  the
susceptibility  ab()ve,

                            iz(t) -eg-6  
Xqei,(t)

 (2 8)

Physically, the mobility  pa(t) is the ratio  of  the  average  velocity  vp  =  ?Jpet  of the
tagged  particle under  the  external  force F(t) =  FeZieCt) with  step  fimction e,

                            pa(t) .,, sL.,>//
FCt))

 (2 g)

<...>(fr,J?(t)> denotes an  average  in the steady  state  which  has been perturbed  by
t-he foree F. For the  sheared  system,  the  mobility  is always  finite in contrast  to

un-sheared  glasses.

   In Refs. 13) and  l5), we  prcscnted the exact  splitting  of  the susceptibility  into
four terms. The  first represents  the equilibrium-FDT  and  t･he extra  term  is split  up

into three  terms.  The  limit of  q -  O can  be  done  ill a  straight  fbrward manner  to

yield the rnobility, (compare Eq. C20) in Ref. 13)),

        lt(t) 
=S8t

 6r?' (t) 
H
 i s9. 6r7' (t7 tw) ,,. .,,  -  i iilt/ [ir･2i (t) 

-
 6r?' (ti O)]

              
-
 lil mo  27g

'

2 
.Ll

sc

 ds<cr..yen'S(s?'te-zgeZi'r･s)e9tteiqel･rh>. (2.le)

Again, the first term  on  the  right-liand  side  of  Eq. (2･10) is t-he equilibrium  Einstein

relation  fbr 1-dimensional  difl?tision, the  other  three  terms  hence  correspond  te the

violation  of  the equilibrium  Einstein relation.  We  have  idcntified all  but, one  terms

of  the  susceptibility  under  shear  with  measurable  ineaii  squared  displacements. The
cont･ributions  of  the diff(ireiit terms  in xq(t) were  additionally  estimated  with  fu11
microscepic  mode  coupling  approxirnations  in Ref. 13).

    The  last term, which  has  yet no  c}ear  physical  meaning  fbr finit/e q, can  be

connected  to thc force-force correlation  function for q ->  O: Performing  the  1iniit of

small  q, many  terms vanish  dne to J6'
¢

 ds<a,,ye9tSl> =  O alld  we  aTe  left with

           u･4(t) i  -  ei-' 
,ri6
 2Z2 Y[

OO

 ds<a.yeOts(s2te-tqe'i'rs)eOttetqer,･r.>
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                  g ,lg
OO

 d,<..,eOtS [(I7:eOt'r3) 
-
 F,ZrZ] >

               i  p(t) -f(o),

with  ll; =  F, 
･eZ

± , rZ  =  r,  
-eZl

 a' nd

                  lllti"(t) ;  
-l

 
.Z[l

OO

 ds<cr.,en'sp:,g't.pl;>

Equation  (2･12) follows with  S2trg =i  E3, Thus, va(t) can  be
the force-force correlation  function

            Clils (t, tw) =  <Fl;eS2t`IJ:> + 7 li
t"

 ds<o.yeS2fSplse

(2･11)

(2･12)

expressed  ill t-errns of

ott1
 ll>

in the fbl].owing way,

         pa4(t) =:: f(t) -  Jp(o) =  L
`

 dt' [-g yg
OO

 ds<a.,e9's.Fl3efi't'.pg>]

              =  3 .1:
`

 dt' [Cfii.･ (t', O) -  CIFg (t', oo)]

The  last term  in Eq. (2･10) is hence connected  to the difference
tionary  force-fbrce correlation  t'unction.

and  pa4(t) reaches  a  constant.  AII t-erms of  the  mobility

defined correlation  functions in an  exact  way.  The  first three terms  in Eq.
have a  different quality compared  to pa4(t), which  we  want

discussion about  different fbrms of non-equilibrium  FDTs:25)-27)
displaceinents are  much  easier  to be deteTmined experimentally  or  in

than  the  fbrce correlation  function, whic

sitiolls can  be resolved  accurately.  We  note  that the stationary  force
function in Eq. (2･14) is equal  to the one  in Eq. (13) of  Ref. 28),
limit of  q 

-->
 O starting  from Eq. (18) of  Ref. 13), we  get directly

                 ii(t) -  X, 6r?(t) -  S y[
`

 dt'c,, (t', oo)  + S
With  this, Eq. (13) of  Ref. 28) is reproducecl,  We  want

judge Eq. (2･10) more  usefu1  compared  to Eq, (2･15),

(2･13)

(2･14)

                   of  transient and  sta-

For long times,  the  force correlation  deca"rs

              are  now  connected  to well

                            (2･10) yet

                to stress  concerning  the

                    The  mean  squared

                          simulations

h can  only  be found when  the particle po-
                           correlation

                       Performing the

(2･15)

to emphasize  again  that we

g3. Approximations

   In this section,  we  will  derive approximat･ions  in order  to find closed  expressions

for the exact  relations  above.  First, we  treat the  mean  squared  displacements, and

then the mobility.

3.1. Mean  squarted  displacements

3.1.1. Equation  of  motion  for the transient MSD

   Within MCT-ITT,  the mode  coupling  approach  for sheared  suspensions,  the

general strategy  is to clerive equations  of  motion  fbr the  translent  quantities. These
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have  the  advantage  that they  are  the input･ fbr the generalized Green-Kubo rela-

tions,5)i29) e.g,  for the shear  stress.6)  The  transient  quantities are  also  more  handy

to be analyzed  since  they  show  e.g. the same  plateau values  as  the corresponding
fimctions in equilibrium.6),i9)  Iii a  second  step,  two-time  and  stationary  quantities
are  derived via  the  I[I]T formula, Eq. (2･5). 

'[Irhe
 separatioll  parameter  E describes thc

distance from the  glass transition density. It is positive  for glassy and  negative  tbr

fiuid states.  The  derivatien of  the equation  of  motion  for the coherent  Ci.e. collec-

tive) transient  correlator  CaOh(t,O) =  <paeOttpq(t)>/<papq>, with  pq :=  £ i eiq'ri  has

beeri preseiited  in Ref. 6). Reference 7) presents  the  incoher'ent, i.e., single  particle
dynamics, which  will also  be published in a  forthcoming paper.8) The  equatioii  of

motion  tbr the  transient  rnean  squared  displacement for direction el  is similar  to

                                and  reads7)the one  for the quiescent MSD4):30)

6r,2- (t, O) +  ft rrno(dr,t  -  t')6r,2 (t, O) =  2t.
         to

(3･1)

While  Eq, (3il) is still  exact,  one  has to make  approximations  in order  tQ find the
meinory  function rrbo(fr,  t). The  MCT-I[I]rl] route  leading to its numerical  evaluation  is

presented in Appendix A. Then,  6r,2- (t,O) and  6s2(t) (with Tn,o(0,t))  are  derived with

Eq. (3-1). mo(fr,t)  and  6  below  are  the  two  quantities needed  from  the  Appendix,  all

other  quant･ities fo}low from the  equations  presented  in the  main  text. See Rcf. 31)
fbr a  review  on  MCT-ITT.

3.1,2. [Fwo-time MSD

    Having found the  transient  MSD,  we  now  derive approximations  in order  to go
i'rom the transient to the two-time  MSD.  In Refs. 7), 15), and  21), this approximation

was  presented fbr thc  two-timc  correlator.  The  corresponding  approximation  for the
MSD  fbllows by the limit of  q ->  O, The result,  whose  derivation is presented iii
Ref. 21), reads

6r,2･ (t, t.) fs  6r? (t, O) +Ei(t.)
 O

       O-T･,2 (t, t,.)
fr at. t71,--O

(3･2)

The factoTization of  t.- and  t-dependent  terms  y, ielded the  pre-factor

tt (t.,) =  rv, ftW d,g<a.,yeS2tSa.y>/<a.ya.,,v>.
         to

(3･3)

                                                               tt
It contains  in the numerator  the shear  stTcss  ff(t.)  =  rVJ6tWd,s<a.yeS2"S(r.y>  mea-

sured  after  switch-on.  It grows with  t.32) and,  fbr t. -  oo,  reaches  the familiar
steady  shear  stress  measured  in `fiow

 curves'  as  function of  shear  rate,  According to
Eq. (3･2), the  two-time  MSD  equals  the  stationary  one  once  the stress  has reached

its steady  value,

    Equation  (3-2) is exact  for small  waiting  times,  where  b(t.,) =  it.+O(tZ) holds
and  Eq, (3･2) represents  the first two  terms  ef  the Tayior expansion  in t., For longer
waiting  times,  it holds also  quite well.2i)  The  irnpo!tant  connection  of  the  wait,ing
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time derivative in Eq. (3-2) to easier  accessible  time dcrivatives is givcn byi3),i5)

                 o9., drz2 (t, tw) ,,. ..,  '` 8t (6rY (t,O)n6s2(t)) <3 4)

Equatien  (3･4) has been successfu11y  tested quantitatively.2i) Putting Eqs. (3･2) and

(3･4) together,  we  finally have

             6r,2･ (t, t.) Rs 6r,2 (t, e) +  
O'
 
(1
 
"')

 iiltT (6r7 (t, o) -  6s2(t)). (3･s)

In this relation,  we  still  need  to know  the  normalized  shear  stress  Cf(t.), vvhich

in MCT-ITT  is expressed  in terms  of  the cohereTit  density correlator.  Only 5 i

a(t.  --> oo)  is needed  for the  graphs below [see Appendix B  fbr its derivat･ion], From
Eqs. (3･1) and  (3･5), the diffusive long time liinit of  the MSD  fo11ows,

            ,i!m.. 6r,2 (t,tu,) =  2Dt =  i+  
.,

 (
2;,.=

 o) 
(e>O(l2NO)

 ifyLt. (3 6)

mo(fr,  z  =::  O) is the Laplace-transform £ {mo(fr,t)} (z) =  J6oo dte-Xtrrzo(dr,t) at  z  =:  O.

It scales  in the liquid with  the dv-relaxation  time 7z, and  with  IMNi in glassy states.
In the  glass (E >  O) the  scaling  with  shear  rate  in Eq. (3･6) follows, [I]he Iollg time
limit of  6r,2･ (t, t.) is t.-independent, since  the sccond  term  in Eq. (3･5) approaches

a  constant.  This must  of  course  hold t)ecause at  long times, the two-time  MSD  has
to follow the steady  difftisivity D fbr all t..

3.2, MbbtZity

   We  want  to derive approximations  fbr the  exact  Eq. (2-10) following Refs. 13)
and  15) for general observables  f, The final non-equilibrium  fluct-uation dissipation
rela-tion  derived there cornpares  well  to the simulation  results  from Ref. 9). In mode
ceupling  estimates,  it was  found that the last two  terms  in Eq. (2･10) have a  different
sign  and  almost  cancel  each  other.i3)  1]Ve hence ignore them  here as  was  done in
Refs. 13) arid  15). A  key approximation  is again  t-he connection  of  the waiting  time

derivative to time derivatives, Eq. (3･4). X7Ve finally have the approximate  expression

for the mobility  in terms  of  mean  squared  displacements,

                LL(t) uSiilti6r,2  (t) 
-
 II oill,,, tir,2(t, tu) 

,.=,4
 (3 7a)

                    fu S8t 6r? (t) -i8,  (d-r? (t, o) - 6s2(t)) . (3-7b)

This is t･he main  result  of  this paper,

g4. Results

4.1. Mobility at  short  and  tong times

   X]Ve are  now  ready  to discuss our  results.  First, we  want  to illustrate the outcome
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Fig. 1. Statioiiary MSD  and  twice  the  integrated  mobility  p'Ct) =  J6t dt'lt(t') in dire(:tion eti' fer a

   glassy state  (e =  10-3). Shear rat,es  are  i,II- =  10-8'-6'-4'-2  from right  to left.

of  our  Einstein relation  Eq. (3･7b) using  the equations  of  S3.1 as input, The  transient

MSD  is given as  a  solution  of  Eq, (3･1), the  stationary  MSD  E'ollows then  with

Eq. (3･5) and  t. 
->

 ･oc･. The  inobility  is calculated  with  Eq, (3･7b). "Je present･ the
time  integrated version  of  Eq. C3･7b) for convenience,  Figure 1 shows  the  stationary

MSD  together with  the  tiine integra'ted mobility  for a  glassy state  at  different shear

rates.  For short  times, drt <  1, we  sec  that the equilibrium  EinstehL relation  holds.

VVle have tir,2(t,O) =  6s2(t) +  (Z:}(frt)7)'i9) and  with  Eq. (3･7b),
                     10

               pa(t) 
=i

 EI5Ji"?' (t) e  Xp(t)=1,  frt<1. (4･1)

For t ,k IM-i, the mobility  is smaller  than  expected  from  the Einstein relation.  The

parametric  plot in Fig. 2 shovvs  a  rather  sharp  transition from short  time to iong

tiine behavior with  a  straight  line at･ long times corresponding  to a  constant  FDR

Xp.  In the  inset ef  Fig. 2, we  see  that  the  transiticm  fi]om the  short  to the  long

time  value  of  Xii, nevertheless  takes  two  decades in time and  the strain,  at  which

this transition happens depends strongly  on  shear  rate,  This is not  appareiit  in the

parametric plot. In Fig. 2 we  also  show  the  mobility  from Eq. (3･7b) with  transient

replaccd  by stationary  MSD,  from which  a  sharp  kink in the parametric  plot  a,nd  a

sharper  transition in the inset fbllows. This approximation  was  referred  to as  
'ideal

X  =  S-1ani' in Ref. 13), All our  findings are  reminiscent  of  the  FDT-discussion  for

finite q. For t k 1fr1-i with  fr -  0, we  have  6s2(t) =  const･  in Eq, (3･7b) aiid  the

rnobility  is givcn by

            Y."}, "(t) -  S' lgltl (6r,2 (t) - ±6T,2(t, 0)), tll] F71-i (4 2)

NII-Electronic  
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Fig, 2. Parametric plot of  integrated mobility  p'(t) ::: J'ut dt'pa(t') versus  stationary  MSD  for a  g'lassy.

   state  (E =  10-3).  The  dashed dotted line shows  the  
tideal'

 situation,  where  6r,2- (t,O) is tirl･ (t) is
   used  in Eq.  (3･7b). I"set shows  the FDR  as  function of  strain  frt for the same  susceptibilities.

For very  long tirnes, t >  15JI-i, the rnebility  in Eq. (4･2) reaches  the  constant  ft oc  1'Yl
(glass), The  proportionality to shear  rate  fo11ows with  Eq. (3･6). [I]he long time
Einstein relation  under  shear  connecting  b and  fi is then  given by (we restore  physical
units  only  fbr this equation),

                            X:.D :-  kBTpt, C4･3)
with

                  islJ, =,ii...  
Li

 
iil,
 
(6r/-,,(ltl)

 ,

J

.?

-

?,)rz2(t･O))

 =3  (, ,)

The  }ast equality  followed from the equality  of  transient and  stationary  MSDs  for

frt >  1.

   A  commcnt  conccrning  the nontrivial  appearance  of  .£ " 
=  g for all  glassy states

in Eq. (4-4) is in place. Let us  briefly recall  the  approximations  which  lead to
Eq. (4･4). First, the second  term  in the mobility,  Eq. (2･10), the waiting  tinie deriva-

tive, is expressed  in terms  of  time  derivatives [see Eq. (3-7b)]. This relation  has been
tested  in switch-on  simulations2i)  and  holds guantitatively for two different super-

cooled  liquids, at  least for small  shear  rates.  Second, the third term  in Eq. (2･10) is
neglected.  It is the difft]rence between the  time  derivatives of  transient  and  station-

ary  MSDs.  As stated  above,  at  long times,  the MSDs  must  fo11ow D independent  of

waiting  time, and  the  third  term  vanishes  making  this approximation  exact.  Third,
the  last term  in Eq. (2･10), pt4(t), is neglected.  [[b our  current  knowledge, it is the
only  term  which  can  give a  deviation from the value  of  5 at  iong times, its limiting
value  is given with  t -  [)c in Eq. (2･14). This has to be  addressed  in the  future. For
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Fig. 3. Stationary MSD  and  inLegrated  mobility  IL'(t) =  Jh` dt'liCt') fo! a fluid state  CE =  -10-3).

   Shear rates  are  fr/J- =::  10-8'-6'=4''2 from right  te left. Inset shows  the  parametric  plot･ for

   the different shear  rates,  For the  smallcst  shear,  rate,  it is almost  indist,inguishable from the

   equilibrium-FDT  linc.

finite q, we  found a  correction  to the small  shear  rate  glass-value X/ =  
-5.i3),i5)

 The
cerrectioii  fo11owcd from the  difference between transient and  stationary  correlators.

This diff'erence is absent  fbr the MSDs  at  long times, As  noted  before, many  spin

inQdels  yield X/ =  l at the critical  temperature.33)

   Next. we  consider  the  FDT-violation  fbr the MSDs  on  the fiuid side. We  find
the expected  behavlor, i.e., fbr sinall  shear  rates,  the equilibrium-FDT  is restorcd  fbr
all  times  [see Fig. 3]. All our  findings are  in agreement  with  the  s,imulation  results

iii Ref. 9).

4.2. Corrbparison to simulations

    Following the  discussion of  the approximations  for the dithrent t･erms, St is in-
teresting  to compare  Eq. C3･7b) directly to the  siinulation  results  in Ref, 9). This is

done  in Fig. 4. We  need  transieiit a,s well  as  quiescent  MSDs  from  the  simulatlons

as  input which  are  not  availab!e,  Therefore, we  construct  a  quiescent  MSD  which

is constant  for long times starting  on  the plateau of  the statienary  MSD.  Apprexi-
mating  transient and  stationary  MSD  to be equal,  we  then  get the dashed  curve  for
the mobility  in Fig. 4, without  adjustable  parameter. In a  second  step,  we  call  take

the difference between stationary  and  transient MSDs  into account  with  Eq. (3･5).
"le use  the same  value  0  =  O.01 as  in Fi'g. 4 in Ref. 15). There, we  compared  tlie

suseeptibility  for density fluctuations at  wavcvector  q =  7.47 to the  simulation  data
of  Ref. 9). Since the  simulation  data  in Fig. 4 and  Fig. 4 in Ref. 15) are  for the same

system  at  equal  shear  rate  and  temperature,  the  value  of  the  fit-parameter i  should
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4, Comparison  to  simulation  dat･a for stationary  MSD  and  integrated mobility  li'(t) =

Jli dt'p,(t') iii thc  neut･ral  directien at/ temperature  T  =  O,3 C[ll, =  O.435) and  
Ai'
 =  10-3,  Circles

and  squares  are  the sirrmlation  data (including units)  from Fig. 16  in Ref, 9). The  full line is

the  integrated  mobilit･y  calculated  via  Eq, (3-7b), 1]he dashed line shows  the integrated mobility

from  Eq.  (3-7b) with  approximat,ion  6x2 (t, O) ki  6z2(t). Inset shows  the different MSDs  [see main

text].

b,e the same  in both figures. The  constructed  quiescent and  the calculated  transient

MSDs  a,re shown  in the inset. The resulting  mobility  fits very  well  to the simulation

results.  It is interesting to note  that  the  long time  mobi}ity  (frt >  1) as  calculated

frorn (3･7b) is independent  ofour  choice  ofthe  height of  the non-ergodicity  parameter
in the  quiescent MSD  and  of  the value  fbr a. The  agreement  for long times is hence

true without  any  fit parameter. As noted  above,  this agreemcnt  of  the simuiation

data with  Eq. (3-7b) means  that  the long time  value  of  the FDR  takes the  value  of

fe  i and  that  the last term  in Eq. (2-10) is indeed very  small  at  long times. Ftiture
work  has to show  whether  this is true in general.

g5. Summary

   The  relation  between  mobility  and  diffiisivity for shcar  melted  glasses was  pre-
sented.  The derived relation  fo11owed without  further approximation  from previous
results  for correlation  functions by taking  the small  wavevector  limit. At short  times,

the  Einstein relation  holds. At Iong times, both  difftLsivity and  mobility  are  fiiiite

and  scale  with  shear  rate,  but the  mobility  is smaller  than  expected  from  the Einstein
relation.  In glasses, this scaling  and  the violation  of  the Einstein relation  persist to

arbitrary,  small  shear  rates,  i.e., the limiting value  of  the FDR  at  fr -  O jumps at  the

glass transition  frorn its nontrivial  value  il'p, :i 5 to its equilibrium  valuc  Xs, =  1.

Within  MCT-ITT,  this jurnp has the sarne  origin  as  the jump ot' the shear  stress  at
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the  glass transition: The  decay ef  the  correlators  on  tirnescale IM-i in glasses,
   "le find very  good  quantitative  agreement  to simu]ations,  lih.iture work  has to
address  the only  unknowii  term  in the  mobility,  which  is connected  to thc  force-force
corrclation  function.
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                             Appendix  A

                MC7-LITT  Equations  for Densitg  CorrelatoT's

   In this appendix,  the MCT-ITT  equations  necessary  to solve  Eq. (3･1) are  pre-
sented.  In this paper, we  will  work  on  a schematic  level, where  the q-dependence
in our  equations  for the correlators  is dropped, The  q-dependent  treatment  will  be

presented elsewhere.8)  [Fhe schematic  equation  of  motion  for the  normalized  coher-

cnt  transient  correlatoi'  CCOh(t, O) i  diCOh(t) readsi9)  (this schematic  model  is called

FL(3)-inodel)

              e =  dicoh (t) + F {diCOh(t) +  
.Li

t

 dt'rreCOh("f,t -  t')diCOh(t')} , (A･la)

       mCOh('}',t)  =:  1 + (s,tl/a,s.h)2 [(viC + 2,41s)diCOh(t) +  vS(di"oh(t))2]  , (A.lb)

with  initial decay rate  r, VLre use  the rnuch  studied  values  vS =  2, vf  ='  v2C(pt2C'  -1)

and  take  m`Oh'(O,t)  in order  to calculate  quiesceiit (fy =:  0) correlators,34)  Iii glassy
states  (E >  0), the long time decay ot' diCOh'(t) from the  plateau  dowll to zero  happens
oii  tirnescale 5'-i,i9) i.e., without  shear  it stays  on  the plateau. For fluid states  (E <
0), the correlator  is analytic  iii shear  rate  and  one  observes  a competition  be.tween
structural  relaxation  on  timescale  7.  and  shear  induced relaxation  on  timescale [M-i.
The  parameter  fif,C..Oh  sets  the strain  frt, at vLrhich effects  of  shearirig  start  to becoine
ilnportant. XVe wi!1  use  xc..oFi =  1,

   In MC[I], the  incoherent dynamics  is coup!ed  to the  coherent  onc,30>  in the  sense

that the coherent  correlator  enters  the memory  function of  the equation  for the

incoherent corre}ator.  The  equation  of  motion  for thc incoherent density correlator

under  shear  is known,7) the  schematic  version  fbT C(t,O) Ei  di(t) reads7)

o ==  di(t)

mG',t)  =

        1

+

l

F  {di(t) +  yl
t

+  (Nt/7c)2

       dt'm(fr, t -  t')di(tf)

v,,di(t)diCoh(t).

} (A･2a)

(A･2b)
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rn(dr,t) contains  the product of incoherent and  coherent  correlators,  manifesting

the coupling  described above.  IVhis is why  we  introduce the coherent  correlator

here despke  aiming  only  at  tagged  particle quantities. The  effect  of  shearing  is

incorporated in a simila,r  fashion to that in (A･lb) and  we  again  use  Tn(O,  t) in order  to

calculate  quiescent  quantities.35) The  additional  parameter  v,  describes the  coupling

between  the tagged  particle and  the  bath particles, i.e., diffl]rent size  ratios  can  in

principle be mimicked,  The standard  MCT-analysis for Eqs. (A･2a) and  (A･2b) [sce
e.g.  Ref. 30)] yields the  relatien  between  the plateau  values  fCOh and  f of  diCOh and
di respectively,35)  f =  1 -  

..fi..h
 , The  incoherent dy. namics  is decoupled for values

v,  <  v.C 
--

 1/fCOh. For vi  and  v2  as  chosen  above,  we  have  v.C N-J  3 and  use  v,  ==  5
which  is well  above  v,(,:. For v.  >  v,C, di(t) has similar  properties to those of  diCOh(t)
for glassy and  liquid states  as  described above.7)  Also 7. =  1,

    The  memory  functioii Tno(fr,t)  in Eq. (3･1) finally is the q ->  O limit of  the q-
dependent analog  ofm(fr,  t), which  can  be taken  smoothly.  We  use  rrbo(fr,  t) i  m(fy,  t)

since  we  cannot  perform  the q -  O limit in the  schematic  representation,

     Appendix  B
Normalized  Shear  Stress a

   In the spirit of  the IliS)-modcl, we

shear  modulus  by the transient correlator

<axyentSaxy>

approximate  the s-dependeni  normalized

15),19)
7

<axyaxy>
        Goc
Fs  diCOh(s)
        fcoh) (B･1)

where  we  account  for the differeiit plateau heights of  the  respective  normalized  func-
tions by setting  G../fCOh Fs  S, a fbllows then with  Eq. (3･3) and  t. -  oo.
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