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The relation between the Hilbert space structure and the generalized spaces structure
represented by dual states for dissipative kinetic equation is discussed for quantum systems.
As working examples, we consider the systems of a harmonic oscillator or a particle inter-
acting with a thermal reservoir and construct analytic solutions to the eigenvalue problem
of the quantum collision operators of these systems. The generalized spaces structure of
the eigenfunctions indicates that dissipation destroys the Hilbert space structure of the un-
damped system. In the Wigner representation where the quantum collision operators closely
resemble the classical kinetic operators in phase space, the Hilbert space structure can be
restored to certain extent by introducing a weighted norm or a similarity transformation on
the operators. However, in the position space where the collision operators have no classical
counterpart, generalized spaces description cannot be avoided.

§1. Introduction

The conventional quantum mechanics occurs in the Hilbert space and evolves in
a time unitary way.!) To incorporate dissipative phenomena such as resonances and
damping into the picture, we have to give up unitary time evolution. The spectrum
of the Hamiltonian then turns complex and the Hilbert space structure cannot be
maintained. Hence, generalized spaces structure of quantum mechanics represented
by the dual states emerges.?

In a parallel line of thought that occurred much earlier in classical kinetic theory,
Boltzmann’s pioneering work on dilute gas® was intended to obtain an irreversible
picture of classical system out of reversible Hamiltonian dynamics. As a result,
the kinetic operators that govern the time evolution of damped or diffusive systems
possess complex eigenvalues. The dynamics should also then occur in the generalized
spaces. It may occur either on the level of the full Liouville dynamics,4) or on the
level of the reduced dynamics, which is our focus here.

The reduced dynamics of the subsystem can be obtained through the Markovian
approximation,® in which the memory effect in the dynamics is effectively neglected.
As a result, the reduced dynamics dictated by the collision (kinetic) operator lies in
the generalized spaces. It obeys exact exponential decay law and possesses complex
eigenvalues. This will be shown through examples involving a harmonic oscillator or
a particle in a thermal reservoir by solving the eigenvalue problem of the collision
operators analytically.
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An issue arises with regard to the necessity of such these generalized spaces
description, in view of some procedures in classical kinetic theory that may bring
back both the left and right eigenfunctions to the Hilbert space (square integrable).
By applying the same procedures on the quantum collision operators in the Wigner
representation that bears a much similar structure to the classical kinetic operators
in phase space, we find that the Hilbert space structure can be restored to some
extent, a statement that will be clarified later. However, if we want to describe the
quantum dynamics in the more natural position space that does not have classical
counterpart, the generalized spaces description cannot be avoided.

§2. Free harmonic oscillator

We begin with a simple harmonic oscillator. The time evolution of its density
function i0¢/0t = Cy¢ is governed by the Liouville operator, Cy- = [Hg, -]/h,
where Hy = Fwoa'a is the free oscillator Hamiltonian with natural frequency wg and
annihilation operator a. In the position coordinate, we denote the density function
by ¢(z,%) = (z|¢|Z). Using the coordinate representation of af|z) = L (x+09/0z)|x)

V2
and a|z) = %(:c — 0/0z)|z), the Liouville operator becomes
- wo 82 82 2 ~92
where x = \/muwo/h q is the dimensionless position, m being the mass of the oscillator

and ¢ the usual position coordinate with the dimension of length.

The Liouville operator is the difference between two simple oscillators’ Hamilto-
nian acting on different position coordinates. The solution to the eigenvalue problem
Cop, = wy ¢, is therefore the product of the wave functions of two oscillators,

1 N
G (7, E) = e E 2 (2 Hu(8), m,n=0,1,2,3,..., (2:2)
V2mtrmlnla
with eigenvalue wy,, = wo(m — n)/2, where H,, is the Hermite polynomial. The
quantum mechanical vacuum fqg is infinitely degenerate in the diagonal states m = n.

The eigenfunctions are square integrable under the norm

Umn|bmm ) = /_ dx /_ dz ¢, (2, Z) it (£, 2) = Syt Ot - (2-3)

Since the collision operator is Hermitian Ccl = Cy, its left eigenfunctions are sepa-
rately identical with its right eigenfunctions, and are also square integrable.

§3. Damped oscillator — effect of dissipation

We now consider the effect of dissipation on the square integrability of the eigen-
functions. We consider an oscillator coupled linearly to a field®)
A

H = hwoa'a + ﬁwaTan—i—

Zk'uk(afak + aa};) , (3-1)
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where )\ is a dimensionless coupling constant and L is the space dimension of the
box the system resides, before we take the thermodynamic limit.” On the level of
Liouville dynamics, we assume the Van Hove limit®) (weak coupling), average out the
contribution of the field and eventually take the thermodynamic limit. As a result,
we obtain the reduced dynamics of the oscillator governed by the collision operator,
C = Cy+Cy, which is a completely positive Kassakowski-Lindblad’s operator.?) The
contribution to the unitary component of the time evolution Cj is the same as in §2,
whereas the dissipative component is given by

Caf = iv(b+ 1)(2afa’ —alaf — fala) +iy(b— 1)(2a' fa — aal f — faal), (3-2)
where v = A?/(2L) 3, |vk|?6 (wi — wo) is the damping constant and

w kgT
b = 1 coth (huwo/2kpT) T2 ’% (3-3)

is a thermal parameter related to the temperature of the field in thermal equilibrium.
Using the center Q@ = (z + %)/2 and relative r = x — & coordinates, the collision
operator takes a compact form,

02 , 0 0 _ 0?
C(Q,r) = —wp (8@87" — Qr) + iy (5@@ — r(—a;) /+wb (5@5 — 7‘2) , (34

where we have ignored the renormalization of the frequency that is not essential to
our discussion.

The eigenvalue problem Cf, = z,f, can be solved analytically in the Wigner
representation,w) obtained through a Fourier transform on the r coordinate

Flfl= \/_12? /_OO dre” 7 f(Q,r) = f(Q,P). (3-5)

The collision operator in the Wigner representation is

y y 9 9N . [0 D A
C™(Q, P) = —iwg (PB—Q—_QEI_D>+VY (EC—QQ‘FﬁP)‘FVYb(@-Fa—ﬁ)-

(3-6)

We can learn about the classical behaviour of the oscillator by taking the en-
semble average of the kinetic equation i0f/0t = Cf over Q and P. We obtain the
following set of coupled equations,

(Q) = wo(P) — Q) (P) = —wo(Q) — (P}, (37)

where dot represents time derivative. The motion of a damped oscillator is then
(@) = e " [{(Q)o cos wot + (P)gsinwpt], (3-8)
(PYy; = e "' [{P)g cos wot — (QYo sinwot] . (3-9)
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Introducing the quantum analog of the classical action-angle variables,') P =
v2J cosa and () = v2J sin a, the collision operator becomes separable,

W .0 . o _0 0 b 0?2

The eigenvalue problem of CV can now be solved”) by separating the angle variable
through the Fourier series exp(+ina). We are then left with a second order differen-
tial equation in J, with the collision invariant (i.e., the eigenfunction with 2z, = 0 that
corresponds to the equilibrium solution of the kinetic equation idfV /9t = CV fV)

1
W= exp(—J/b), 3-11
4= o (=) (311)
normalized according to Eq. (3-17) below.
To obtain the complete solutions to the kinetic equation, we go on to extract
the factor (J/b)"/? oy from f3'. We are then left with the differential equation

(92

le 77

+b(1+n— J/b) an + (m— n)] L™ (J/b) =0, (3-12)

satisfied by the associated Laguerre polynomials,”) L? (J/b). The eigenvalues and
eigenfunctions are

zf,in::tnwo_i(m—%)fy, m>n, (3-13)
—n) L
Frt () = T ctino o2 (/) . (319
Thanks to the factor exp(—J/b) in fg (3:11), the right eigenfunctions are square

integrable with respect to the norm (3-17) defined below.
Since C is a non-Hermitian operator, we need to also consider the left eigenvalue
problem of its adjoint, Ctg, = z%g,, defined through (f,|C|g.)) = (gv|C|fu)*,

2
(b—a—Ji . ia—) . (3-15)

CYI(J, @) = —iwog- — 97 07 "] " 47 da?

Oa

Its solution can be obtained readily from its right counterpart by extracting the

equilibrium solution from f}Y. We first write f} = f& f, and then take the complex

conjugate over the resulting equation on fr. If we now relabel the angle variable

as —a, we obtain CVT(J, Q) fVE*(J, —a) = 2% f¥E*(J,—a). Using the fact that
T",VL%*(J —a) = f¥(J, a), we can set

gvE(J,a) =Pt a). (3-16)

Since the exponential decaying factor of f& ~ exp(—J/b) in ¥+ is canceled by the
prefactor on the right-hand side of Eq. (3-16), the left eigenfunctions are no longer
square integrable. As a result of dissipation, the biorthogonal pair of eigenfunctions
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become objects in the generalized spaces. The normalized eigenfunctions satisfy the
orthogonality and completeness relations (o = =+)

27
Lovlfurh) = O,/ < / dj./ da (Gmn)” = Om,m/ nn'0a,00s (3-17)
DMal=1  « Y aa)f(),d)=0a-ad)s(J-T).  (318)
They can be proved by using the orthogonality of the Fourier series and the associated

Laguerre polynomials.”
When we go back to the original position coordinates, the eigenfunctions become

@) = fa@n 3 33 e (L) (Vi)

pu=0 vr=00=0
(3-19)
m-n Hon 2(p—v)+n—o
I (@5 7) \[ S3Y ‘—“M( ) §(2v+o) (\/6/27") . (3-20)
u=0 v=00=0

where the equilibrium state and the coefficient are respectively given by

fea(@,7) = foo(Q, 1) = \/% e~ @ /H-brt/2 (3-21)

e = @re I S (Y (I (D). e

The generalized spaces structure stands out clearly with the existence of the n-th
derivative of the delta function with respect to z, 6(")(z), in the left eigenfunctions.

The fE, represent different correlation components of a density function 1 that
belongs to the space of square integrable functions, whereas the g serve as projec-
tions onto these components. This can be seen by expanding 1 as

Y(2,3) = e fi(z,F), ¢ = (9] - (3:23)

14

For instance, gog = d(r) projects out the probability components = z of the density
functions.

§4. Can generalized spaces structure be avoided?

The structure of the quantum kinetic equations in the Wigner representation is
very much similar to the classical kinetic equations in phase space, such as the Fokker-
Planck equation.'?) In classical kinetic theory, one can introduce a weighted norm or
perform a similarity transformation on the kinetic equation to obtain a symmetrical
left and right eigenfunctions. The left and right eigenfunctions then become square
integrable. This seems to suggest a way to avoid the generalized spaces structure in
the quantum case. One can then ask to what extent the generalized spaces structure
can be avoided, to which we now turn our attention.
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4.1. Weighted norm

A weight may be incorporated into the definition of a norm. It is customary to
choose the weight to be the inverse of the equilibrium solution 1 / W of the kinetic
equation.!?:13) In order to preserve the expectation value of observables the new

left eigenfunctions acquire a factor of f¥ [cf. square bracket in Eq. (4-1)], making it
square integrable,

€q

(adt)e = [ dQaPUZ) @ P)is@ P @ P)| @ Py @)

The weighted norm has the disadvantage that the integration measure dQdP/ oq
is divergent if we want to go back to the original position space, while maintaining
the weighted structure. Another subtlety arises in view of the fact that the weight

eq 18 @ function of the thermal parameter b. The eigenfunction expansion of 1) is
absolutely convergent only for some range of b. In a simple example using the weight

1/ f3(b') = exp[(P*+Q?)/2V], the norm of the equilibrium function {{f; (D) foe (0))w
dlverges whenever 1/2b > 1/b. However, the eigenfunction expansion of Y stﬂl holds
in the weak sense under the ensemble average of an observable F', which is assumed

to be a polynomial in P and @,

N
(F) = [ 4QaPF(@.PYy(@.P) = lim_[dQiPFQP)Y eufu(@.P).  (42)

Hence, even though the eigenfunctions become square integrable through a weighted
norm, but the generalized spaces description reemerges in the eigenfunction expan-
sion of the density functions.

4.2.  Simalarity transformation

The similarity transformation is defined on C as

C(n) = S[C1m) = 2 )C) fX2 (), (4-3)

where 7 may be either (Q,r) or (Q, P), and feq is the equilibrium solution of the
collision operator, i.e., Cfeq(n) = 0. In order to preserve the scalar product in
Eq. (3-17) in the Wigner representation, the left and right eigenfunctions transform
accordingly as fW = fv/ \/f“é and g% = /f¥%g". Consequently, the transformed
eigenfunctions are brought back to the Hilbert space.

An interesting issue arises when we want to transform to the position space, in
that the Fourier transform treats the () and P coordinates dissymmetrically. Hence,
the similarly transform collision operator in the position space

94 = F ISF[C) = C b o Q 1 & 4-4
C'(Q,r)=F "SF[C] = Co(Q,r) + iy + iy <3Q2—@_ -I-@m); (4-4)

is no longer similarly related to the original one (C' # C)

C(Q,r) = S[C] = Co(Q,7) — wp . 230~ 20
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(1 0 02 Q> r?
+”<§_T6_>+”b(acg?_16_2_7>' (4-5)

They have different equilibrium functions,
flq = exp(—Q%/4b — br?), foq = exp(—Q?/4b — br?/4). (4-6)

In other words, the Fourier transform and the similarity transform operations do not
commute [S, F] # 0. Consequently, C’(Q,r) effectively describes a different system
not similarly related to the original one. We conclude that the generalized spaces
structure in the position space cannot be transformed away through a similarity
transformation.

§5. The Caldeira-Leggett equation

For the collision operator discussed in §3, the damping effect acts symmetrically
on the @) and P space. We now consider damping effect that affects only the P
space, with the collision operator

. . o  _a I

It goes into the collision operator of the Caldeira-Leggett equation'® in the high
temperature limit (3:3). The Caldeira-Leggett equation was derived from the Hamil-
tonian

. A
Hey, = hwoala + 3 hwgalax + ﬁZkvk(aT + a)(aL + ay), (5-2)

in the high temperature limit through the path integral method.!® Here we gener-
alize this equation to arbitrary temperature and obtain Eq. (5-1). Compared to the
Hamiltonian in previous example (3-1), Hcy, includes the virtual transition interac-
tions between the oscillator and field.

The time evolution of the position and momentum of the oscillator is

(Q) = wo(P), (P) = ~w(Q) = (P), (53)

respectively. It oscillates with the frequency w’ = \/wg —v2/4 as
(Q)y = e /2 [(Q)ocosw't + (<9 (P)g + 75 (Q)o) sinw't] , (5-4)
(P)y = e /2 [(P)ocosw't — (42(QYo + 55 (P)o) sinw't] . (5-5)

The equilibrium solution of C¥; is

1 2, 2
EY = Fyl = —— ¢ (F74@7)/20 56
q 00 \/é;FE ( )

which is identical to Eq. (3-21). The nonequilibrium modes can be worked out by
assuming series solution in powers of F P“Qb, up to order N = a + b. Due to
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the bilinear structure of the collision operator, the N odd and the N even order
polynomials are disconnected. In this way, we find that the eigenvalues of O F}' =

A EY are
Anom = —iny — 2mw’ =0,41.3
o T /Y mw: n = 72? ?2)27"'7
m = +n,+(n—1),..,+L or 0, (5:7)

where integer and half integer n correspond to the solutions in even and odd N,
respectively. We list a few eigenfunctions in Appendix A. Due to the factor Foy in
F n» the right eigenfunctions are square integrable.

The left eigenvalue problem can be similarly solved as in §3. We extract the

equilibrium solution through F, = Nn,mFngF,‘{fm, and then take the complex con-

jugate. After relabeling Q as —Q, we obtain C’g{ﬁ’fx;"n(—@, P)=X: FV: (—Q, P),
where the adjoint operator is

0 0 0 o?
wf __ v A Y . _p Y v ]
Ceop, = zw()(Pa 3 )—l—z’y( P(9 +b3 2). (5-8)

From the left eigenvalue problem C’g{Gﬁ,m = A, mGnm and the relation F;{V; ==
Fy_,, (cf. Appendix A), we have

nm (gyIEY L (CQP).  (59)

G:]'Lv,m(Q’P) = Nn,mF’X—m(_QJP) = N

The left eigenfunctions are not square integrable, since the regulating factor Fg in
FY_ o (—Q, P) is canceled by the corresponding prefactor (Fggl)*l, as is seen from the
right-hand side of (5-9). The F},, and Gy, form a complete set of biorthonormal
basis as in Egs. (3-17) and (3-18).

Once again we find that the right eigenfunctions belong to the space of square
integrable functions, whereas the left eigenfunctions are not square integrable and
they are represented as distributions in the position space. Due to the similar struc-
ture of the collision operators, the discussion in §4 can be applied to the present case
directly. We conclude that a dissymmetrical damping that acts only on the P space
also destroys the Hilbert space structure of the simple harmonic oscillator.

§6. Damped particle in thermal reservoir
It is interesting to compare the results obtained in the previous collision oper-

ators to ones in the following phenomenological collision operator for the Wigner
representation,

KY(Q,P) = —i P2 i iP+b~?2— (6-1)
)T TR0 50 T\ ap ap? ) -

In the high temperature limit this reduces to the well known classical Kramers equa-
tion for a free particle that is subject to the thermal fluctuation (3-3). The quantum
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effect is in b defined at (3-3). We phenomenologically obtained this form of the colli-
sion operator by comparing this to the quantum collision operators (3-6) and (5-1),
and did not microscopically obtain this form by starting with a given Hamiltonian
as done in the previous sections. Comparing (6-1) especially with (5-1), this collision
operator (6-1) seems us to be a reasonable quantum collision operator that describes
the situation for a particle moving in a thermal bath without any external potential.
The first term on the right-hand side of (6-1) is a flow term that initiates the free
motion of the particle, the second term induces friction and the third term causes
diffusion.

The physical meaning of the equation can be obtained by considering the average
motion of the particle

Q) =wo(P),  (P)=-AP), (6:2)
Q%) =(QP), (P =—(P)+2yb, (QP)=—v(QP)+wo(P?, (63)

which has the solution

(@)= (Qo+ 51— )(Po, (Ph=e (P, (6-4)
Q%) = Qo+ Bt + [1(Q%) — B| (1= ™) + 5% [(Po —b] (1 —e7)?,

(6-5)

(P2 = b(1 =€) 4 (P)oe™". (6:6)

The behaviors of the average position and momentum (6-4) indicate that the collision
operator is describing a damped particle in a thermal bath, in contrast to the previous
examples of damped harmonic oscillators, see Eqgs. (3:8)—(3:9) and (5-4)-(5-5). The
linear term of ¢ in (Q?); gives rise to a non-vanishing diffusion coefficient

D R I Q%) — (Q)? _ hwo p Lo, kT

mwp t—00 t my my

(6-7)

The solutions to the right eigenvalue problem K%u)) = p,u) and its left coun-
terpart can be obtained as follows.' We notice that the final equilibrium function
is proportional to exp(—P?/2b) and we can separate the @ coordinate from the first
term of K% with exp(ikQ). So we write u¥ = exp(—P?/2b)exp(ikQ)u!, and the
eigenvalue problem turns into a standard second order differential equation,®
d?u!) dul, i

+ —(py — wokP)ul, = 0. (6-8)

b
dP? dP  ~

Writing u;, = exp(—iwokP/v)%, and introducing the variable £ = P/+/2b+iv/2bwok /7,
it reduces to an equation satisfied by the Hermite polynomials,

@ di i buw?
v _ 2 v 2 — Uy — O 2 o — . .
i e T (v“ 72’“)“” ! (69)
The solution is
. bw? 9
Mnk:_“z’y(n"{"—:y%k)? n=0,1,2,..., k=real, (610)
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P Ll , : P w
¥ (Q, P) = ——— ul,(P)eR@—wokP/v (——— +7I\/2b—0k:> , 6-11
k(Q ) \/2”’—71' eq( ) 7 \/ﬁ ~ ( )

with the equilibrium solution

Ueq(P) = ugo(P)

v exp(—P?/2b) . (6-12)

1
2wV 21h
The normalization is determined by the orthonormality relation (6-15) below. Due
to the flow term, the component in the @ space is a plane wave and does not belong
to the Hilbert space in the first place. However, the eigenfunctions as a function of
P are still square integrable as far as the P space are concerned. We will therefore
focus our attention on the P space component in our discussion below.

The solution to the left eigenvalue problem can be obtained by first extracting
the equilibrium solution from the eigenvalue problem of Eq. (6-1) through u)) =
exp(—P?/2b)u,,. We then take an overall complex conjugate on the resulting equa-
tion. After relabeling Q) as —@Q), we obtain

[—z’w P—-a——i (—Pi +ba—2)}a (—Q, P) = p,u,(—Q, P) (6-13)
"o T\ e Tapz ) | T ) T AT

The operator on the left-hand side of the equation is the adjoint operator K%f. A
comparison with the left eigenvalue problem K%¥Tv¥ = p*v¥ enables us to set

v (Q, P) = a*(—Q, P) = e P i (—Q, P), (6-14)

which is not square integrable in the P space, since the prefactor exp(P?/2b) on
the right-hand side of (6-14) cancels the regulating factor ug, in w)/;(—Q, P). These
eigenfunctions form a complete set of biorthonormal basis,

/_OO P / T AQ U@, PYuliys (Q P) = 86k — K, (6-15)
> /OO dkupy(Q, P)vpi (Q', P') = 8(Q — Q)o(P — P'), (6-16)
n=0" %

which can be proved by means of the orthogonality of the Hermite functions.'®)
The eigenfunctions in the position space are

; n wibk?/v? n
Unk(Q,7) = (z\\//_b_3 ¢’ 5= eihQ o= 5 (r—wok/7)” (7" + @k’) ) (6-17)
1. V &7

(—i)" cwibk? /7 *Q o ( 1 0 n wo @k) 5 (T n wo k) (6-18)
== [ n —_— —_— I . *
V2rtn! /27h Vapor vy Y

The occurrence of the Dirac delta function clearly shows that the biorthogonal basis
belongs to the generalized spaces, besides the factor exp(ikQ) that is also an object
in the generalized spaces.

U'I‘Lk(Q? T)
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§7. Conclusion

On the level of Liouville space, the reduced dynamics of a quantum oscillator or
a particle interacting with a thermal reservoir acquires generalized spaces structure
due to the existence of damping on the subsystem. This is explicitly indicated by the
generalized spaces structure of the complete set of biorthogonal basis of the eigen-
value problem of the collision operators. The density functions of the reduced system
thus belong to the space of well-behaved functions, which permit eigenfunction ex-
pansion in the space of the right eigenfunctions. While the right eigenfunctions
represent different correlation components of the reduced dynamics, its dual, the
left eigenfunctions, serve as projections onto these correlation components. The left
eigenfunctions are represented by distributions in the position space. Because of
the duality between the position and momentum space representations in quantum
mechanics, the same conclusion holds in the momentum space representation of the
quantum kinetic equations.

In the Wigner representation, the quantum kinetic equation of the reduced sys-
tems closely resemble the classical kinetic equation in phase space. Usual procedures
employed in classical kinetic theory, such as introducing a weighted norm or carrying
out a similarity transformation on the collision operator, can be used to restore the
Hilbert space structure of the quantum kinetic equations to certain extent. How-
ever, on the level of the position or momentum spaces where the quantum dynamics
can find no classical counterpart, the generalized spaces structure of the dissipative
systems cannot be avoided. This may be considered as a manifestation of the distinc-
tion between classical systems that naturally occur in the phase space and quantum
systems that naturally occur in the position or momentum space.
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Appendix A
—— List of Eigenfunctions of C¥,

Using the variables P = P/v2b, Q@ = Q/V2b, and Apy = —n + im@’, where
W = 2w [y and A = YA\, ;m, the first few eigenfunctions can be obtained from
the list by FY,, = NymPoFy,, and G}, (Q,P) = NpynFY_, (—Q,P). In the
equations, \, = v/),. Note that since Asm = An,—m, We have Fy = By oo

Eafb = 17 (JX'l)
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Vo = Py @ (A2)
FYoy =14 (AP + :\1;1@)2, (A-3)
Yo =Mz + (A P+ M ;1@'2, (A-4)
-glﬂ,:t% = % ;%,igp—l— Xg};g@) + (5\%’:&%}’%—5\%;%@)3, (A-5)

iy =3 (M ahias P M pdyas@) + 3 sy hs g PP
+ 3f\%,i%/~\2%’¢%P2Q + SX%,q:%Xz’%yi%PQQ + Xéﬁ%ig,ﬁc%@?’ (A-6)

The normalization constants are chosen so that the orthonormality and com-
pleteness relations (6-15)—(6-16) between the eigenfunctions hold.

Noo = Noo = L, Nyiy =TFiNy 43 = 2/@, (A7)
Nig=Nig=1/, Nit1=—Ni =1/V2w? (A-8)
. — — —3
N%,i% —:I:ZN%_ia 22/9 @ N%’il =$2N%7i%—2/ 30" . (Ag)
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