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   The  relation  between  the  Hilbere space  structure  and  the  generalized spaces  structure

represented  by dual states  for dissipative kinetic equation  is discttssed for quanturn  systems,

As  workin.ff  examples,  we  consider  the systems  of  a  harmonic  oscillator  or  a  particle inter-
acting  with  a  thermal  reservoir  and  construct  analytic  selutions  to the  eigenvaiue  problem

ot' the quantum  collision  operators  of  these  systems,  The  generalized spaces  struct･ure  of

the  eigenfunctions  indicates that  dissipat･ion destroys the Hilbert  space  structure  of  the  un-

damped  system.  In the  Wigner  representatlon  where  the quantum  cQllislon  operators  closely

resernble  the  classical  kinetic operators  in phase  space,  the  Hilbert space  structure  can  be
restored  to  certain  extent  by  introducing  a  weighted  norm  or  a  similarity  transformation  on

t･he operaters.  However, in the  position  space  where  the collision  operators  have no  classical

counterpart,  generalized  spaces  description cannot  be avoided,

Sl. Introduction

   The  conventional  quantum  mechanics  occurs  in the Hilbert space  and  evolves  in
a  time unitary  way.i)  [[b incorporate dissipative phenomena  such  as  resonances  and

damping  into the picture, we  have  to give up  unitary  time evo]ution.  The  spectrum

of  the Hamiltonian then  turns complex  and  the Hilbert space  structure  cannot  be
maintained,  Hence,  generalized spaces  structure  of  quant･um  mechanics  represented

by the dual states  emerges.2)

   In a  parallel line ofthought  that  occurred  much  earlier  in classical  kinetic theory,
Boltzmann's  pioneering work  on  dilute gas3) was  intended to obtain  an  irreversible

picture of  classical  system  out  of  reversible  Hamiltonian  dynamics. As a  result,

the  kinetic operators  that  govern the  time evolution  of  damped  or  diffusive systems

possess complex  eigenvalues.  
rl]he

 dynamics should  alsD  then  occur  in the generalized
spaces.  It may  occur  either  on  the level of  the fu11 Liouville dynamics,4) or  on  the

Ievel of  the reduced  dynamics, which  is our  focus here.

   
r]]he

 reduced  dynamics of  the subsystem  can  be obtained  through  the Markovian
approximation,5)  in which  the memory  effect in the  dynamics is effectively  neglected.

As a  result,  the  reduced  dynarnics dictated by  the  collision  (kinetic) operator  lies in

the generalized spaces.  It obeys  exact  exponential  decay  law  and  possesses complex

eigenvalues,  This will  be shown  through  examples  involving a  harmonic  oscillator  or

a  particle in a  thermal  reservoir  by solving  the eigeTivalue  problem  of  the collision

operators  analytically.

')
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   An  issue arises  with  regard  to the necessity  of  such  these  generalized spaces

description, in view  of  some  procedures in classical  kinetic theory  that  may  briiig
back both the left and  right  eigenfunctions  to the  Hilbert space  (square integrable).

By  applying  the  same  procedures  on  the  quantum  cellision  operators  in the  Wigner
representation  that bears a  much  similar  $tructure  t･o the classical  kinctic operators

in phase  space,  we  find that  the  Hi]bert space  structure  can  be restored  to some

extent,  a  statement  that will  be clarified  later. However, if we  want  to describe the

quantum  dyiiamics in the more  natural  position space  that does not  have  classical

counterpart,,  the  generalized spaces  description cannot  bc avoided.

g2. Free harmonic  oscillator

   We  begin with  a  simple  harmonic oscillator.  The time  evolution  of  its density
fimction iOip/Ot =  Codi is governed  by the  Liouville operator,  Co- =  [HO,･llh,
where  "o  

--
 htvoata is the free oscilla,tor Hamiltonian with  natural  frequency wo  and

annihilation  operator  a,  In the  position coordinate,  we  denote the  density function

by ¢(x, nf) !  <x ip1di>, Using the  coordinate  representation  ofatlx>  =  ei(x+e/0x)ix>
and  a[x>  

==
 ei(m 

-
 e/Ox)lx>, the Liouville operator  becomes

                 co (=. bl) =  EgtL (- aOx
22

 +  oO.N22 +x2-hi2),  (2 1)

where  x  !  V}JJiEJEi7Tt q is the dimensionless position, m  being t･hc mass  ofthe  oscillator

and  q the  usual  position  coordinate  with  the dimension of  length.

   The  Liouville operator  is the  difference bet･ween two  simple  oscillators'  Hamilto-
nian  acting  on  differeiit position coordinates.  [[]he solution  to the eigenvalue  problem
Cbq5. =  cv.di.  is therefore  the  product  of  the  wave  functions of  two  oscillators,

                  
1
 .'-x212=fi212H.(x)H.(th),  rn,n=O,1,2i3,･･･)  C2'2)  ipmn(Xl di) =

              2Tn+"rn!n!T

with  eigenvaluc  cvm.  =  cvo(rn  
-

 rt)/2,  where  H}, is the Hermite po}ynomiai. [I]'he

quantum  mechanical  vacuum  foo is infinitely degenerate in the diagonal states  m  =:  rb.

The eigenfunctions  are  square  integrable under  the norm

      <<¢'mnl ¢'m'n'>>  i! 
.YCIiil,

 dx 
.1[liil,

 `t{Ii ip;nn(a;･ ii)4'm'n'(:ci tEi) =  6Tn,Tn'6n"n' ･ (2'3)

Since the collision  operator  is Hermitian Ca =  Co, its lcft eigenfunctions  are  sepa-

rately  identical with  its right  eigenfunctjons,  and  are  also  square  integrable.

S3. Damped  oscillator  
-

 effect  of  dissipation

   We  now  consider  the  effect  of  dissipation on  the square  integrability of  the

functions, We  consider  an  oscillator  coupled  linearly to a  field6)

             U  =  htdoata +  Ekhwha･tkaic + Iiiz :[lk'vk(a;1'ak t  aa//)  ,

elgen-

(3-1)
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where  A is a  dimensionless coupling  constant  aiid L  is the space  dimension of  the

box the system  resides,  before we  take  t･he thermodynamic  limit.7) On  the level of

Liouville dynamics, we  assume  the Van  Hove limit8) (weak couplirig),  average  out  the

contribution  of  the  field and  eventually  take  the  thermodynamic  limit. As  a  result,

we  obtain  the reduced  dynamics  of  the oscillator  governed by the collision  operator,

C  =  Cb +Cd,  which  is a  completely  positive Kassakowski-Lindblad's operator.9)  The

contribution  to the unitary  component  of  the time  evolution  Co is the  same  as  in g2,
whereas  the  dissipative component  is given by

  Cdf  i  i7Cb +  E)<2afat -  ataf  -  fata) +  tv<b -  l)(2atfa -  aatf  
-
 faab , (3･2)

where  "x  =  A2!(2L) 2k [vhl26(cvk 
-
 Lvo)  is the damping constant  and

                    b ..  i..thch,,,/2ic.T) -IC[.lggoo> i:.llllll (3 3)

is a  thermal  parameter  related  to the temperature  of  the field in thermal  equilibrium.

    Using the cenker  Q =-:  (x +  X)f2 and  relative  r  i! x  
-

 hi coordinates,  the  collision

operator  takes a  compact  form,

   C(([2,r) ==  -wo  (o8S. -  (2r) +t7  (oO(:?(? -rill./) +z7b  (oOcl
?

}2 
-r2)

 , (3 4)

where  we  have ignored the renorn],alization  of thc frequency that ls not  essential  to

our  discussion.

    The  eigenvalue  problem  C,h =  x.fV  can  be solved  analytically  in the  Wigner

representation,iO)  obtained  through a  ]fourier transform on  the r  coordinate

                ir[f] =  I71;ii 
.iLliil

 d7 e-2"'  f(c?,r) iii fw(([?,p) (3 s)

The  collision  operator  in the Wigner representation  is

  CW(Q,P)  ==  -zouo (P eOQ -QoOp)  +z7  (oOQQ+ oOpP) 
+z7b  (oOQ

?2

 + oOp

'2)

                                                                  (3-6)

   We  can  Iearn about  the c]assical  behaviour  of  the oscillator  by  taking  the  en-

sernble  average  of  the  kinetic equation  iOf/Ot  =  Cf  over  q  and  P. We  obtain  the

fbllowing set  of  coupled  equations,

           <([2>-blo<P>-1'<(?>, <P>--wo<(9>-7<P>, (3`7)

whcre  dot represents  time  derivative, The  rnotion  of  a  damped  osciliat･or  is t･hen

                  <Q>t =  e-7`  [<C?>o ces  wot+  <P>o sin  wot]  , C3'8)
                  <P>t =  e-7`  [<P>o cos  wot-  <Q>o sin  wot]  . (3'9)
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   Introducing the  quantum  analog  of  the  classical  action-angle  variables,ii)  P  -

V2 7cos ctz and  Q  i  aJ' sin  dv, the  collision  operator  becomes  separable,

           CW(tL a)  ==  
L2tvoEil,i,

 +zor (bziltr eJ  oOJ 
+  bO-JJ+ fl7 bO.

2,)

 (3 10)

[I]he eigenvalue  problem  of CW  can  now  be solved7>  by separating  the angle  variable

through  the Fourier series  exp( ±ina). We  are  then  left with  a  second  order  differen-
tial equation  in .J,  with  the collision  invariant (i.e., t･he eigenfunction  with  x.  =  0 that
corresponds  to the equilibrium  solut･ioi)  of  the kinetic equation  iOfW/Ot  ==  CWfW)

                         rc"q 
--
 v7i iexp(LJIb), (3 11)

normalized  according  to Eq. (3･17) below,

   W) obtain  the complet･c  solutions  to the  kinet･ic equation,  wc  go on  to extract

the  factor (J/b)"f2fllE from f.W. We  are  then  left with  the  diffei'ential equation

            [bJ e9i 
+b(1+nm  J/b) zil, 7J + (m 

-n)]  Lit (J/b) =o,  (3 12)

satisfied  by the  associated  LaguerTe  polynomials,7)  L;nh(.T/b). [I]he eigeiivalues  aiid

eigenfunctions  are

                  x,
±
..

 = ± nwo  "i  (m- S') or, m2n,  (3･13)

              f.w..
± (J or) VIIIIIIIIIIII'e

± z""(J/b)n!2Lla'  (,J/b)fga, (3 i4)

Thanks  to the  factor exp(-,J/b)  in fgE (3･11), the right  eigenfunctions  are  square

integrable with  respect  t･o t･he norm  (3-17) defined below.

   Since C  is a uoiL-Hermitia"  operator,  we  llce

problem  of  its adjoint,  Ctg. =  x:g.,  defined through

cwt(J. a)  =7- -zwoziltT -  z7  (bSiltr

  d to also  ccmsider  the  left eigenvalue

       <<L,lC' g.)) -  <<g.jC1f7,>>'-

'J  SItJ JJz9,  7J + iSi 8.
22)

 (3 is)

Its solution  can  be obtailled  readily  from  it-s right  counterpart  by  extracting  the

equilibrium  solutiori  from f."' , We  first inrrite  -r =  flvaf.W, and  then take the complex

conjugate  over  the resulting  equation  on  nvr. If we  now  relabel  the  angle  variable

as  -a,  we  obtain  CWt(J,a)Mt."(J,-dv)  =  z;;::,S\:;,'(J,-cr).  Using the  fact that

rt)Y,irl'i'(eJ, 7a)  =  f-1,W,,t. (tJ. cy), wc  can  set

                       gX:(J,  (i)=e"lbfX  I, (,J, a).  (3･16)

Since the exponential  decaying factDr of  f,",r nv  exp(-J/b)  ln ex;l is canceled  by the

prefactor on  the right-hand  side  of  Eq. (3･16), the  left eigenfunctions  are  no  longer
square  integrable. As a  result  of  dissipation, the  biorthogonal pair of  eigenfunctions
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become objects  in the generalized spaces.  The  normalized  eigenfunctions  satisfy  the

orthogonality  and  completcness  relations  (a =  ±)

   <<g.lfl,,>> =:  6.,., e  
.Llill

 dtJ Y[
2"

 da (g.W.a.)'f i7,1, =  6.,.,6.,.,i.,.,, (3'17)

                    e  E  g.(J, cr)A(J',  al) =  6(a･ -  d)6(J -  J').   2lfv>><(gu -f                                                                (3+18)
    v u

[I]hey can  be  proved  by  using  the  orthogonality  ofthe  Fourier series  and  the associated

Laguerre polynomials.7)

   When  we  go back to the  original  position ceordinates,  the  eigenfunctions  become

  f::n(c2,r) =  feq(c? r) 
'

)ll.ii,
L

 };l.ii, S.,ck,i;vff (Jl}i;)
2("MV)'"-a

 H2.+.  (vs7iir) ,

                                                                (3J19)

  g:.,,(Q r) =]  vlli :l
b

i
n

 te.o.2
"

..oc,

±

.ewu  (&)
2("-")+"Ncr6(2v+a)

 (pmr) , (3 2o)

where  the equilibrium  state  and  the coeMcient  are  respectively  given  by

      L2q(C?-T) i  foo((2,r) =  I7±s e-Q2!2bube212  ,

         cgikva  -  (±i)"'ff 
,1,liS.)."i, VI(lllllll!lll] (. [ll 

t,)
 (:) (:) '

The  generalized spaces  structure  stands  out  cleariy  with  the existence

derivative of  the delta function with  respect  to x,  6('t)(x),

   The  f:i. represent  differe

belongs to the space  ef  square  integrable functions, whereas  the  gS.
tions onto  these  components.  This can  be seen  by expanding  V as

            V(x,M) =2  cvfv  (x, bl), cv  =  <<gylth >> ･
                      u

R)r  instance, goo =  6(r

filnctions.

(3･21)

(3i22)

                                   of  the n-th

                        in the  letl eigenfunctions.

rit correlation  components  of  a density function th that
                                serve  as  pro,]ec-

(3･23)

) projects out･ the  probability  components  nf =  x  of  the clensity

g4. Can  generalized  spaces  structure  be  avoided?

   The  structure  of  the quantum  kinetic equations  in the Wigner representation  is
very  rnuch  similar  to the ctassical  kinet･ic equations  in phase  space,  such  as  the Fokker-
Planck  equation,i2)  In classical  kinetic theory, one  can  introduce a  weighted  norm  or

perform  a  similarity  transformation on  the kinetic equation  to obtain  a  symnietrica]

left and  right  eigenfunctions.  The  left and  right  eigenfunctions  then  become  square

integrablel [I]his seems  to suggest  a  way  to avoid  the generalized spaces  structure  in

the  quantum  case,  One  can  then  ask  to what  extent  the  generalized spaces  strueture

can  be  avoided,  to which  we  now  turn  our  attention.
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4.1. Weightednorm

   A  weight  may  be incorporated  into t･he definition of  a, norrn.  It is customary  to
choose  the weight  to be the  inverse of  the equilibrium  solution  1/fSh' of  the kinetic

equation.i2)7i3)  In order  to preserve  the  expectation  value  of' observables,  the new

left eigenfunctions  acquire  a  factor of  ,t U [cf. square  brackct in Eq, (4-1)l, making  it

square  integrable,

<<y,, l f. >>. -  f dQdP(,fgU)-i (Q, P) [faY. (Q, P)g.W. 
*(Q,

 P)] ,"r  (Q, P) . (4･1)

   [I]he weighted  norm  has the  disadvantage that the  integratiori measure  d(?dP/JXI
is divergent if we  want  to go t}ack to the original  posit･ion space,  while  maintaining

the  weighted  structure.  Another subtlety  arises  in view  of  the  fact that the weight

f21}4 is a  fuiiction of  the  thermal  parameter  b. The  eigenfunction  expansion  of  V is
absolutely  convergent  only  for some  range  of  b, In a  simple  example  using  the  weight

1/faE (b') =  exp[(P2+(?2)f2b'],  the norm  of the equilibriurn  function <<fgU(b)1f."a(b) >>.
diverges whenever  1/2b' )  1/b. However, the eigenfunction  expansion  of  th still  holds
in the wcak  sense  under  the  enseiiible  avera,ge  of  an  observable  F, which  is assumed

to be a  polynomial  in P  and  Q,i4)

   <F> i  f dQdPF(9,  P)V(Q,  P) =  
,leM..

 f dQdPF(Q;  I') :ii) Cv  fv (Q, P) (4 2)
                                                      u

Hence, even  though  the eigenfunctions  become  square  integrable through  a  weighted

norm,  but  the  generalized spaces  description rcemerges  in t,he eigenfunction  expan-

sion  o'f the densit}r functions,

4.2. SimitaTity tranefbrrT}ation

    1{]he similarity  transformation is defined oiL C  as

                   O(ny) Es[c]  (ny) i  faG-'12 (ep)c(ny)fgd/2(n) , (4･3)
where  ny may  be either  (Q,r) or  (Q,P), and  fL,q is the  equilibrium  solution  of  the

collision  operator,  i,e,, C.fAq(n) =  0. In order  to preserve the scalar  product  in
Eq, (3･17) in the  Wigner  representation,  the  left and  right  eigenfunctions  transt'orm

accordingly  as  fW =  fW/ f.Wq and  gW =  x/Ir lgW. Consequently, thc  t,ransformed

eigenfun,ctions  are  brought  ba,ck to the Hilbert space.

    An  interesting issue arises  when  we  want  to transform  to the  position  space,  iii

that  the  Fourier transforrn  treats  the  (? alld  P  coordinates  dissymmetrically. Hence,

the similarly  transform collision  operator  in the  position  space

 O'@,r) i  f-isf[c]  =  co(q.r) +z7  +z7b  (oOQ
',

 -  4Qj

22

 -  r2 + 4ib2 oe,

22)

 , (4 4)

is no  longer sirnilarly  related  to the original  one  (C' ; C)

         o(,,?,.) ,,, ,,[.]  .=  .,(,?,,) -  ,,, (C?,r -  {lt. ,a,2 
-  8,l iil.,)
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                        +zry (; -r8,)  +z7b  (oOQ
',

 - 4Q)

2,

 -  !5
2L)

 (4･s)

They  have different equilibriuin  functions,

        .fi, =  exp(-Q2/4b  
-
 br2), ft, =:  exp  (- ([22/4b -  br2/4). (4`6)

In other  words,  the  Fburier transform  and  the  similarity  transform  operations  do  not

cornmute  [8, 1'] l O. Consequently, C'(Q,r) effectively  describes a  different system

not  similarly  related  to the original  one.  We  conclude  that  the generalized spaces

structure  in the position space  cannot  be transfbrmed  away  through  a  similarity

transfbrmation.

                  g5. The  Caldeira-Leggett equation

   Ifor the collision  operator  discussed in S3, the damping effect  acts  symmetrically

on  the Q and  .P  space.  We  now  consider  damping  effect  that affects  only  the P
space,  with  the  collision  operator

            CeL =  
-zwo

 (P eO(? -Qoap)  +z7  (eOpP+boap
P,)

 (5 1)

It goes into the collision  operator  of  the Caldeira-Leggett equationi5)  in the high
temperature  limit (3･3). [[]he Caldeira-Leggctt equation  was  derived from  the  Hamil-

tOIIIall

          HcL  =  haoa'ta+ £ khaka2ak  + hrZkvfo Cat +a)(aL  +  ak),  (s･2)

in the high ternperature limit through  the path integral method.i5)  Here we  gener-
alize  this equation  to arbitrary  temperature  and  obtain  Eq. (5･1). Compared  to  the

Hamiltonian in previous example  (3･1), ffcL includes the virtual  transition intera･c-

tions  between the oscillator  and  field.

   The  time  evolution  of  the  position and  rnomentum  of  the oscillator  is

             <([2>-wo<P>, <P>--wo<(?>-ry<P>, (5･3)

respectively.  It oscillates  with  the  frequency w'  i  w(2/ -  72/4  as

           <Q>t =  e-'`12  [<C?>o cosw't  +  (:i-/ <P>o +  ".,<([2>o) sin  w't]  , (5･4)
           <P>t ==  e-or`/2  [<P>o cosw't  -  (iii5/!' <Q>o +  i[LT, <P>o) sinw't]  . (5･5)

   The  equilibrium  solution  of  CcWI. iS

                     4Wq 
th=
 1bY6 

--
 Ithiit e-(P2'Q2)12b,  (s 6)

which  is identica] to Eq. (3･21). The  nonequilibrium  medes  can  be worked  out  by
assuming  series  solution  in powers of  IecqP"Qb, up  to order  N  i  a  +  b. Due  to
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the  bilinear structure  of  the  collisien  operator,  the N  odd  and  the  N  even  order

polyiLomials are  disconnected. In this way,  we  find that  the  eigenvalues  of  acWLPI") =

A.lilYr are

An,7n =  -in"f  -  2mwt, n  =  O, i, 1, :, 2, ...,
rn  ==  ±n, ±(n -  1), .,., ±S or O, (5･7)

where  integer and  half integer n  correspond  to the  solutions  in even  and  odd  IV,
respectively.  We  list a  few eigenfunctions  in Appendix A, Due  to the  factor 4Wq in
I7; T,,., the  right  eigenfiinctions  are  square  integrab],e.

    The  left eigenvalue  problem  can  be similarly  so!ved  as  in S3. We  extract  the
equilibrium  solution  througl)  .F  :l. =  Nh,..FllaF;"1,m, and  then take the complex  con-

jugate, After relabcling  (? as  -([?, we  obtain  CcW. Lt]tigl,",,(-(?,P) ==  AX,m]ttyIA,(-([?,P),

where  the  adjoint  operator  is

ccW.t =-Lwo  (poOQ -QeOp)  +zry  (-PoOp +boOp
?2)

(5･8)

Erem  thc left eigenvalue  problem  Ct'i'tG>Y,m :-=  AX,,.GX',,. and  the relation  ]Fev,,X,  =

nyl-. (cf. Appendix  A), we  havc

Grr,.(Q, P) -  IVh,,. EY,-.(-q, P) -IV}i,TTiAI-,i-tn(.Fll}4)-i  .FXI-.(-Q,  P) . (5-9)

The left eigenfunctions  are  not  square  integrable, siiice the regulating  factor nya in
JF;i",-,.,  (-(?, P)  is canceled  by the corresponding  prefactor  (.FU/1)-i, as  is seen  fl]om the

right-hand  side  of  (5-9). The P;{",,. and  GXL,. form  a  complete  set of biorthonormal
basis as  in Eqs, (3･17) and  (3･18).
    Once  again  we  find that  the right  eigenfunctions  belong to the space  of  square

integrable functions, whereas  the  left eigenfunctions  are  not  square  integrable aiid

they. are  represented  as  distributions in the position space.  Due  to the similar  struc-

ture ef  the collision  operators,  the  discussion in g4 can  be  app]ied  to the  present case

direct}y. "la coiiclude  that a  dissymmetrical damping  that acts  only  on  the  P  space

also  destroys the  Hilbert space  structure  of  t-he simple  harmonic oscillator.

S6. Damped  particle in therrnal  reservoir

   It is interest･ing to compare  the  resuks  obtained  in the previous collision  oper-

ators  to ones  in thc fbllowing phenomeiiological col}ision  operator  for the  "ligner

representation,

KW(Q,P)  =]  -zwoPoeQ  +z7  (aepP+boep
'2)

(6･1)

In the  high teinperature  limit this reduces  to the well  known  classical  Kramers equa-

tion for a free particle that  is subject  to the  therrnal  fiuctuation (3･3). The quantum
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effect  is in b defined at  (3･3), We  phenomenologica]ly  obtained  this form of  the  colli-

sion  operator  by comparing  this to the quantum  collision  operators  (3･6) and  (5･1),
and  did not･  microscopically  obtain  this form  by  starting  with  a given Hamiltonian

as  done  in the previous sections.  Cemparing (6･1) cspecially  with  (5･1), this collision

operator  (6-1) seems  us  to be a  reasonable  quantum  collision  operator  that  describes

the situatien  fbr a  particLe moving  in a  thermal  bath  without  a.ny  external  potential.
The  first term  on  the  right-hand  side  of  (6-1) is a  fiow term  that initiates the fi'ee
motion  of  the  particle, the  second  term  induces friction and  the  third term  causes

diffusion.

   The  physical meaning  of  the equation  can  be obtained  by considering  the average

motion  of  the particle

    <(?) =:  wo<P>,  <P>--7<P>, (6･2)
   <([?2> =:  <QP>, <P2>= -<P2>+27b,  <([?P> --cr<([?P>+wo<P2>,  (6･3)
which  has the solution

  <Q>t =

 <Q>o+ X' (1 -e-7`)<P>o,  <P>t =

 e-7`<P>o,  (6･4)

 <Q2>t =  <(?2>o +  e#,bt +  [t<e2>, -  
SIY]

 (1 -  e-cr`) +  S.Ili, [<p2>o -  b] (1 -  e-'t)2  ,

                                                                 (6･5)
 <P2>t=b(1-eL2,`)+<P2>oe'27t. (6'6)
The behaviors ofthe  crverage  position and  momentum  (6･4) indicate that the collision
operator  is describing a  damped  particle in a  thermal  bath, in contrast  to the  previous
examples  of  damped  harmonic oscillators,  see  Eqs. (3･8)-(3･9) arid  (5･4)-(5･5). The

linear tcrm  of  t in <Q2>t gives rise  to a  non-vanishing  diffusion coeficient

              Di  
,,,h,.,

 
,ttnLla

 
<`[22>'7<Q>;

 -  lllilebly'oo igfBi,T. (6.7)

   The  solutions  to the right  eigenvalue  problem  KW?tY =  ls.uY and  its left coun-

terpart  can  be obtained  as  fo11ows.i3) We  notice  that  the  final equilibrium  function
is proportional to exp(-P2/2b)  and  we  can  separate  the {[? coordinate  firom the first
term  of  KW  with  exp(ikQ).  So we  write  u:r  =  exp(-P2!2b)exp(ikQ)u'.  and  the
eigenvalue  problem  turns  into a  standard  second  order  differential equation,i6)

                  bdd
2

pU,L 
-p  

Cdl$'

 +g(Le.-cuokp)u'.  
--o

 (6 s)

Writing tt'. -= exp(-iLvoicP/or),'`".  and  introducing the  variable  C i  P!Vli5+ix/li6cvok/or,
it reduces  to an  equation  satisfied  by  the  Hermite  polynomials,

                 
clieU-

2" 
L26  

ddtny

e" 
+2  (k pav- b7Wi k2) av =O  (6 g)

The  solution  is

          pank=-i7  (n+! l,a k2) , n=O,1,2,...,  k=  real,  (6ilO)
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     u;7k@,p)  ==  
ebW:2

k.2

i;
2

 u>v,(p)ctkQ-ZWokP17  H.  (th +zV25EIIIftk) - (6 11)

with  the  equilibrium  solution

                  i`e"q' (P) ii 2LbVo(P)=  
2.Ik;ii;

 exp(rrP2!2b)  (6 12)

The  normalization  is det･ermined by the or'thonorrna!ity  relation  (6･15) below. Due
to thc fiow term, the cempenent  in the  Q  space  is a  plalle wave  and  does not  belong
to the Hilbert space  in the first place. However,  the  eigenfunctions  as  a  function of

P  are  still  square  integrable as  far as  the P  space  are  concerned.  Wc  will  therefore
focus our  attent･ioii  on  the P  space  component  in our  discussion be}ow.

   The  solution  to the  left eigenvalue  problem  can  be ebtained  by first extracting
the  equilibrium  solut･ion  flrrom the eigerivalue  problem  of  Eq, (6･1) t･hrough u),Y :=

exp(-P2/2b)a..  We  then  take  an  overall  complex  coajugate  on  the  resulting  equa-

tjon. Atter relabeling  (? as  
-(?,

 wc  obtain

      [-ZWoPoOc? -i7  (-PaOp +boOp
?,)]

 a:(-C2,P)  -  pa:a;(-C? P) (6 13)

The  operator  on  the left-hand side  of  the  equation  is the adjoint  operator  KW't. A
comparison  with  the  left eigenvalue  problem  KWiv.W ==  pa:v:' enables  us  to set

                v.Wk(Q,  P) =  aPr*(- Q, P) -  eP2  /2b u:,*  (- Q, P),  (6･14)

which  is not  square  integrable in the  P  space,  since  the  prefactor exp(P2/2b)  on

the right-hand  sidc  of  (6･14) cancels  the regulating  factor ugq  in uny,k"(-(?,P),  These
eigenfunctions  form  a  complete  set  of  biorthonormal  basis,

             .Lil;
 dP  

,L

[

.

'

 
.

O

 dQ  vrW,k' (Q, P)"r,',kf @7P) :=  tin,n'6(k 
-
 k'), (6'ls)

            :iil) 1
'C

 dkuX.'r,((2,P)vY.'((?', J") -  fi((? -  (?')6C]P -  P'), (6'16)
            n=O  

'l-
 
oo

which  can  be proved  by mcans  of  the  orthogonality  of  the  Hermite  functions.i3)

    The  eigenfunctions  in the  position  space  are

  ?L.k((?,r)  ==  
(ZIYI3/n

 
e"llltlii

A

,,1

or2

 ezkQ  e-g(rrwokh)2  (r + ElltLk)
",

 (6 i7)

  v.k(q.r)  ==  
(-
2Z.)
 

e"(II'l:il
h2e2kQ

 H.  (hzll, +El'LViEk)  6 (r+ 
Wor)k)

 (6 is)

The  occurrence  of  the  Dirac delta fuiiction clearly  shows  that the biorthogonal basis

belongs to the  geiieralized spaccs,  besides the  factor exp(ikq)  that is also  ari  object

in the gcneralized  spaces.
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g7. Conclusion

   On  the  level of  Liouville space,  the  reduced  dynamics of  a  quantum  oscillator  or

a particle interacting with  a  therinal reservoir  acquires  generalized spaces  structure

due to the  existence  of  damping  on  the subsystem,  This is explicitly  indicated by the

generalized spaces  structure  of  the  complete  set  of  biorthogonal basis of  the eigen-

value  problem  of  the collision  operators,  The  density functioris of  the  reduced  system

thus  belong to the space  of  well-beha;ved  functions, which  perrnit eigenfunction  ex-

pansion  in the space  of  the right  eigenfunctions.  While the right  eigenfunctions

represent･  different correlation  components  of  the reduced  dynamics, its dual, the
left eigenfunctions,  serve  as  projections onto  these  correlation  components.  The  left

eigenfunctioiis  are  represented  by distributions in the position space,  Because of
the duality between  the  position and  momentum  space  representations  in quantum
mechanics,  the same  conclusion  holds in the momentum  space  representation  of  the

quantum  kinetic equations.

   In the Wigner representation,  the quantum  kinetic equation  of  the reduced  sys-

tems  closely  resemble  the  classical  kinetic equation  in phase  space.  Usual  procedures
employed  in classical  kinetic theory, such  as  introducing a  weighted  norm  or  carrying

out  a  similarity  transformation  on  the  collision  operator,  can  be used  to restore  the

Hilber't space  structure  of  the quantum  kinetic equations  to certain  exterrt.  How-
ever,  on  the level of  the position or  momentum  spaces  where  the  quantum  dynamics

can  find no  classical  counterpart,  the generalized spaces  structure  of  the dissipative
systems  cannot  be avoided.  This may  be considered  as  a  manifestation  of  the distinc-
tion  between  classical  systems  that  naturally  occur  in the phase  space  and  quantum
systems  that naturally  occur  in the position  or  momentum  space.
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      Appendix  A
List of EJigenfunctions of  CcWL

   Using the variables  P  ii P/Vl25, (? iE C2/Vli6, and  Xn.,,, !i  -n  +  irndi', where

tl)t 
-=

 2cv'1or and  An,. =  iorA.,., the  first few eigenfunctions  can  be obtained  from
the list by I7Xl. =

 Arh,.4W,E/g. and  Gn',m(([?,P) =:  IV.,.F;Vi,-m(-Q,P). In the

equations,  X. iE  v!l51IJ, Note that since  Xas,. =  Xn,-m, we  have ay,.'. =  FIgy,-.･

phw,o =  1, (A-1)
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F;, 1." =
 As,±}P-  h,.IQ,

IliW
± 1 =  1 +  (AI,± ,P  + Al,Tl<:?

nyo

FgW,.gFi

 ,± l

=  
-Al,

± IAI,Fl  +

)2,
Al,± 1P  +  Al,TIQ2,

=  g(Xs,±gP+  j(g,Tg(}) +  (Xi,± iP+  Xi,iF3([?)3,

=  
-3

 (X23, 
,± iXg,.  .3,.P+ X2i 

,.iXg,
±g([?) +  X/L. 

, ± gXg,.iP3

  +  3X ,ij ,± ,, X2i.iP2Q +  3X3,TgX2,, 
,±lPQ2 +  X?i 

,.iX
 g. ,±gQ3･

(A･2)

(A･3)

(A･4)

(A･5)

(A･6)

   The  normalization  constants  are  chosen  so  that  the  orthonorma}ity  and  com-

pleteness relations  (6･15)- (6･16) between the eigenfunctions  held.

 Nb,o =
 AJb,o =

 1,

 Ni,o =  Ni.o =  lfo'

Aig,±g =
 ± iNg,

± g =' 2/9 Vfdr i3 ,

Nl,
± lNl.

± l

Ng,
± S

-RA)'l,

±s = pm,
=  -N,,.,  =  1/,EE57i,

= ;iN:. 
,.
 s. =  2/ViiE3I3.

(A･7)
(A･8)

(A･9)
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