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Generalized  Green-Kubo  Formula
for a  Dissipative Quantum  System

Hisao HAYAKAWA

Yiticawa instit?ite forTheovetical Physics, Kttoto Ubl}iversity, KZJoto 606-8502, Japan

  A  generalized Green-Kubo  formula is derived for a  quantum  dissipative system  of  driven
Brownian  particle, in which  the coupling  between  the systcm  and  the  environment  is linear.
The  structure  is esselltially  the same  as  that  for the  genera!ized  Green-Kubo  fbrmula for
driven granular  particles, It is demonstrated  that  the correction  to t･he corwent-ional  Green-
Kubo  formula is zero  for a  free Brownian  particle.

Sl. Introduction

   Green-Kubo formulai) is one  of  the most  fundamental relations  in nonequilib-

rium  statistical  physics. The  original  derivation is restricted  to the  linear nonequi-

librium case,  but a  number  of  generalizations are  proposed  by many  researchers,2)'6)

though  the  re!ationship  among  their formulations is not  still  well  understood,

   We  believe that roles  of  dissipation in Green-Kubo foTmula should  be clarified,

though  it is unclear  in the  original  derivation. Indeed, the  Green-Kubo  fbrmula
defines the transport coeficient  which  represents  the dissipation. Moreover, if there
is no  dissipation in a  system,  the time  integral of  current  correlation  fullction in

the fbTmula  should  diverge. [I]herefbre, purely mechanical  derivation of  Green-Kubo
formula  might  be  misleading,  but  correct  derivations should  include the dissipation

explicitly,

   Recently, Chong  et  al.7)  have derived a  new  generalized Green-Kubo  fbrmula

for driveri dissipative and  classical  particles as  a  natural  extension  of  that by Evans
and  Morriss.2) [rheir derivation has several  remarkable  points;  (i) the  fbrmulation can
include the  integral fluctuation theorem  without  microscopic  time-reversal symmetry,

(ii) the role  of  dissipation is clear  in their derivation, and  (iii) one  can  develop the

nonequilibriuiii  mode-coupling  theory  for sheared  granular liquids or  sheared  glassy
systems,  Their deriva'tion is so  general that one  can  expect  that their method  can  be

used  for quantum  cases.  In this paper  we  demonstrate  how  to apply  such  a formula
to quantum  systems.

   In this paper,  we  fbcus on  a nonequilibrium  steady  state  ef  a  quantum  Brow-
nian  particle. This is because (i) it is the simplest  system  among  open  quantum
sy, stems,8)-i2)  (ii) we  know  the origin  of  dissipation of quantum  Brownian system

as  the energy  flux between  the  system  and  the  environment,  and  (iii) there is the

quantum  version  of  the  violation  of  fiuctuation-dissipation relation.]'3)

   The  organization  of  this paper  is as  fol]ews. In the next  section,  we  specify  the

basic equations  to be analyzed  in this paper.  In g3, we  will  obtain  an  exact  solution

of  our  model.  In g4, we  will  present  the  forrrial form  of  generalized Green-Kubo
formula whose  bilinear fbrm  is reduced  te the conventional  Green-Kubo formula. In

i5, we  will  focus on  the  case  that a  Brownian particle in a harmonic potential, in
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which  the integratien involved  in the generaiized Green-Kubo  formula can  be carried

out.  In g6, we  will  discuss and  conciude  our  results.  We  also  involve two  Appendices,
where  Appendix  A  is devoted to the derivation of  generalized Kubo's  identity, and

Appendix  B  gives an  explicit  calculation  of  t･he time  evolution  of  the momentum  of

the Brownian  particle.

S2. Mode}

   Let us  begin wit･h  a  quantum  master  equation  for a  Brownian particle8) under
an  external  field 4.(t), which  is essentially  the  same  as  Caldeira-Leggett model.iO)

Note  that  the generalization to IV BroinyJnian particles is straightforward  fr'oin that

presented  here, for simplicity,  we  restrict  our  interest to a  particle coupled  with  the

heat bath.

   Let us  consider  a  Brownian particle of  mass  m  with  its coordinate  m  and  mo-

rnenturn  p in a  potential V(:c) under  a  steady  external  field Fl,.(t).') The particle
is assumed  to be coupled  with  a  bath consisting  of  a  large nurnber  of  harmonic os-

cillators  with  masses  m.  and  frequencies w..  Thus,  the  total Hamiltonian  might  be

wrltten  as

    ff(t) =  Hs  +  IIa +  llB +  H, +  Hh.(t)

        =  2Pi +V(X)  -  XI  l'x(t) +\  ( 2P,.'2.
 +Sm"av,2, ("" -  rc" ,.f.z)

2

) (2 1)
Here, the  system  Hamiltonian of  the  particle is given by

                           Hs=2Pi+V(x),  (2-2)

where  we  do  not  specify  the form of  the potential in the fbrmulation in the  main

part of  our  paper. The  bath Hamiltonian  is represented  by

           HB  =  ]!ll) han (b; bn + 3) =  \, (2S,.pZ +lmnwY,x?t)  (2 3)

Here, bA and  b. denete the Bosonic creation  and  the  annihilation  operators  of  the

bath, respectively,  while  x.  and  p. are  the  cerresponding  coordinat･e  and  the mo-

mentum.  Similarly, the  interaction Hamiltonian  is given by.

                        HJ=-x2Knxn=-xB,  (2"4)
                                n

where  Kn  is the  coupling  censtallt,  a,nd  the bath  operator  is

                      
'rt Tl

   
')

 Of  course,  the  cxtcrnal  field can  be involved in the potential, but we  separate  the coiitribution

of  the  external  field frorn the  stationary  potential  V(x).
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We  introduce the external  Hamiltonian  coupled  with  the  external  force .Flix  as

                           q.(t)=-x4.(t).  (2･6)

Note  that Hb.  can  be absorbed  in Hs  but  we  separate  its contribution  to clarify  the

response  to the external  field. We  also  introduce the  counter-term  Hamiltonian:

                       ffC=rc=2  ii X2  >IP 2.rc.Z.a (2 7)

This counter-term  Hamiltenian can  be absorbed  in the  poteritial term  V(x) as

liZff (x) =  V(x)+Ha.  However,  if we  regard  the unperturbed  Hamiltonian as  Hs+HB
without  coupling  between the system  and  the bath  at  t =  0, the effect  o ±

'
 Ha  appears

in later expressions.  We  also  note  that Hc  must  be treated as  a term  of  second  order

in the  coupling,  while  Hf  is of  the  first erder.

   Caldeira and  LeggettiO) were  interested in the  lew frequency behavior of  parti-
cles, Then  they  adopted  a  quasi-classical approximat-ion

                xs(-T)  =. e-iHs'lhxe'HS'lh  ux-  ii[Hs,x]7, (2'8)

where  k and  T  are  the  Boltzmann  constant  and  the temperature,  respectively,  Here,

however, we  do not  have t･o use  this quasi-cLassical expression  (2･8) fbr our  argument.

Here, we  have introduced the  commutation  relation  [A, B] E  AB  
-

 BA.

   The  starting  equation  is 'the Born-Markov  approximation  for the  reduced  density

matrix  of  the Brownian particle, which  ebeys8)

ditPs(t)

=  -tl  [Hs + Hc,  ps(t)] + 
iE]fi(t)

 [x, ps(t)] -  i Y[I
OO

 d7trB[Hi, [H'i(-T), ps(t) op pB]]･

                                                                 (2･9)
Hereafter, we  adopt  the interaction picture  with  the respect  to the unperturbed

Hamiltonian  Hb  =  Hlst +  HB.  We  shall  assume  that the initial condition  satisfies

                           PS(0)=PeqXPB,  (2'10)

where

              peq=t,e.X.P.[p
-

[5-Usiili].], pB=t,e.X.P.[p
-

[6-Hf3i2i].] (2U)

with  6 =  1/kT.  Note  that the assumption  on  ps(O) might  be removable.  Indeed, the
steady  distribution ps(t -  cx]) of  Caldeira-Leggett model  with  Eq, (2･8) is relaxed
to ps(o),8),ii) if the  particle is trapped  in a  potential.

   For  the  discussion of  quanturn  Brownian motion  we  introduce the  spectral  func-
tions

           D(T) i  i<[B, BB  (-7)]>B, Di  (7> i  <{B, BB  (-7)}>B, (2･12)
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where  BB(t)  E  eiHBt/hBe-ZH"t!fi'  and  {A,B} !! AB  +  BA.  Note  that  IIs and  IIB
are  decoupled with  each  other  in the  unperturbed  state,  where  <･ ･ ･ >B represent･s  the
average  in terms  of  the density matrix  pB. We  also  note  that D(7)  and  Di(7)  are

respectively  referred  to as the  dissipation and  the noise  kernel, Making  use  of  the
spectral  density

                      J(C") =:= 22.?.
2`,..

 6(C"-`"n), (2 13)
                              

･n

we  can  write  the explicit  representations  foT the  correlatioll  functions

                 D(T)=2h  Y[ 
OO

 dw ,J  (w) sm  avT,  (2･14)

                Di (T) =  2h y()
OO

 dtu ,J(w)coth  (611Etl) cos  wr  (2 is)

After straightfbrward  calculation,  Eq. (2-9) can  be rewrittcn  as8)

  it ps(t) =:'` -k[ffs  +  Hc,  ps(t)] + 
ifik

£
(t)
 [x, p,(t)]

      +2h  Y[
OS

 d7 (iD(T)[x, {ws(-7), ps(t)}] 
-
 Di(T)[x, [xs(-r), ps(t)]l) , (2･16)

which  is the  basic equation  of  this  paper.

   The properties of  the second  line of  (2-16) strongly  depend on  the behavior of

the  dissipation and  the noise  which  are  determined  by JCw). We  adopt  a  continuous

distribution of  the bath modes  and  replace  the spectral  density by a  smooth  function
of  w  for the explicit  calcu]atien.

S3. Thesolution  of  Liouville  equation

   Let us  rewrite  Eq. (2-16) as

                         gtps(t) ==  -iLt(t)ps(t),

where  the Liouville operntor  is givell by

       ･iLt(t) -- £[Hs +  Hc,]  -  !Feit)- [=,]

              
-fin

 L
OC

 dT(iD(T)[x, {xs(-.), }]1 - Di(T)[m, [xs(-7),]])･

Since this Liouville opeTator  il[;t(t) is independellt of  time, we  can  use  the i

Te  exp  [ -z  ll
`

 dsLt (,s)].. 1 +  Y[l
t

 dtlT. exp  [ -  t
where  Tt- represents  the  time  ordering  operator  d

fbr ti >  t2 a-nd  TeA(ti)ACt2)  =  A(t2)A(ti) for

(3･1)

(3･2)

dentity

y(l
ti

 dt,,,ct(t,)](-iLt(t,)), (3･3)

efined  by [ll.A(ti)A(t2) =  A(ti)A(t2)
etherwise.  Substituting Eq. (2-10)

NII-Electronic  
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into Eq. (3･3), we  ebtain

             ps(t) =  p.q +  Y[i
`

 dtlTee-Z  jLli 
dt2£ t(t2)(7iLt(tl))peq.

 (3'4)

HeTe, -iLipeq  consists  of  four terms:

   
-iO(t)p.,

 =  
iE2

£
(t)
 [x, p.,] '  kK;[x2, peq] +  2k2 L

OO

 dTD(')[m, {xs(-')7 Peq}]

              
-2Z2

 YI
OO

 dTDi (7)[X, Ixs(rmT)7peq]l (3'5)

    The  first term  on  the  Tight-hand  side  of  Eq, (3･5) produces  t-he conventional

Green-Kubo  formula. With  the aid  of  Kubo's  identity (A･1), we  can  rewrite

                   [X, Peq] =  peq va
fi

 dAeAHS [Hs, x]eTAHs

                         =-t.h  peq Xi
ff

 dAps(-zhA)7 (3'6)

whe!'e  we  have used  [Hs,x] =  
-ihf)/nz.

 T'hus, the first t･erm on  the  right-hand  side

of  (3･5) is reduced  to

                 
il71r
 :(t) [., p.,] =  

lil';:(t)
 p.. 7g

B

 (IJ){ps(-ihJ'L).  (3'7)

   Similarly, the second  term  on  the right-hand  side  of (3･5) which  is the  order  of

square  of  the  coupling  constant  caii  be calculated.  Fbeorn (A･1) we  readily  obtain

               [x2, p,.] =  
-ihSieq

 y[
6

 dA{xs(-ihA),ps(-ihA)}, (3'8)

where  we  have used  [ffs,x21 =  -ah(xp  +  px)/m,  Thus, the second  term  on  the
right-hand  side  of  (3･5) is reduced  to

             -il rc[x2,peq] =  -rc,P.eq 
.1[

'S

 d)t{xs(-ih)L),ps(-ihA)}. (3･9)

   The  contributions  from the third term  and  the fburth term  on  the right-hand

side  of  (3･5) are  more  complicated.  From  (A-1), (A･2) and  (A･3) we  obtain  an  identity

      [X, {Xs(m7), Peq}] =  Peq ([X, Xs(-7)]  +  [x, xs(-ih6  -  7)])

                      -#tlPeq  /]
fi

 dAPs(-ihA)(xs(-T) +  xs(NihP  -  7)). (3'10)

Similar}y, thanks  to (AJI) we  obtain

      [X, [Xs(-T)7 Peq]] =

 Peq ([I;, Ms(-ih5  
7
 T)] T  IM7 Xs(-T)])

                      -iht#'ilq yC
edAps(-ihA)(xs(-ihl3

 -  7)  -  xs(-T)),  (3･11)
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Thus,  the third tcrm  and  the fourth terrn on  the right-hand  side  of  (3･5) are  reduced

to

      2k2 .1[

oo

 d'Di(T)[xT {xs<-7)7 peq}] T  2Z, Y:
OC

 dTD(T)[m, [xs(-7), p..]]

     -  2Pheq, lg
OO

 d7-b.(T){[,;, ar.(-.)]  -  l/l Xl
edAp,(-ih),).,(-.)}

       -  2Pheq, 
.lg

co

 d7D-(T){[x,xs(-f)] -  #il 
.lg

"dAp,(-ihA)x,(-f)},

 (3.12)

wherc  f =  T  +  ihX3 and

                        D ± (T)iDi(T)± iD(7). (3･13)
Thus. we  can  write    '

     [I7. exp[-i  Yg
`

 dsLt(s)](-Lt(t))p., =  (-iLt(t))ps(t) =  9(t)ps(t) (3'14)

and

               ps(t) =  peq +  .7[

t

 dtlTee-i JbCt 
dt2Lt

 (t2)[S2(tl)p.,], (3"15)
where

      s?(t) =. 
"E'h(t)-

 y[i
SdAps(-zhA)

 -  ll,ii, 7[
BdA{xs(-ihA),ps(-ihA)}

            +2i.  /I
OO

 dT{Dm  (7) L
ff

 dAps(-ihA)ms(-r -  ih,B)

             -  D+(7') Y[
fi

 dAps(-zhA)xs(-T)}

            +  2}2 .v(

"O

 d7 (D+(T)[x,xs(-T)] 
-
 
"

                                          D-(7')lgv,xs(-7'-ih6)1) (3･16)

   Before closing  this section,  we  should  note  an  important proper'ty of  9  which

satisfies

                       <S2(t)>eq i!i trs{Peq9(t)}=O.  (3"17)
r]]his

 relation  is easily  verified  from  Eq, (3･5) with  the  invariant property  of  the trace

under  a  cyclic  permutation.

                 g4. Generalized  Green-Kubo  formula

    Let us  derive the  generalized Green-Kubo  formula. For simplicity,  , 
we  assumc

the external  force Ph.(t) ==  E)eiW"'t, and  only  diseuss the  average  beha:vior of  the

momentum  p

                           <p>t =-  trs{ps(t)p}, (4･1)
Substituting (4･1) into (3-15), we  obtain

          <p>t :=  trs{p,,p}  +  Yli
`

 dtltrs{T<-erZ J:i 
d`2Lt

 (`2) [p., S2(tl)]p}, C4'2)

                                                       NII-Electronic  
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Wkh  the  help of  the preperty

              trs{e-i Jg dSL'(S) [9(t)p.,]p} ==  trs{p.q S? (t)pH (t)} (4'3)

with  x)H(t) ii  ei ,X 
dsL(s)p  =  et Jg d$ll(s)fhpe-i J}l dSH(S)/h, we  can  write  the generalized

Green-Kubo  fbrmula, where  the Liouville opeTator  iL(t) satisfies  Heisenberg's equa-

tion of  motion  AH(t) =  iL(t)AH(t) =  k[H(t),AH(t)l. We  note  that the last equality

for 1)ii(t) holds because of  our  special  set-up,  where  we  adopt  the  basic model  under

the  Bern-Markevian  approximation  with  the linear coupling  bet-ween the system  and

the environment/.

   The  explicit  fbrm of  i£ (t) is given by

       iL(t) =  £[Hs +  ua,] -  
iRiS(t)

 [x,]

              
-2Z,

 Y(I
OO

 d7 (iD(T){=s(-T), [x,]} + Di(T)[xs(-.),  [.,ll), (4.4)

where  we  have  used  the invariant property of  the trace  under  a  cyclic  permutation.
   We  can  introduce

                           A!iLt(t)-iL(t),  (4･5)
whose  expectation  value  corresponds  to the  phase  volume  contraction  in classical

situations.  The  operator  A  is immediately obtained  as

            A=  2h, 
.IC

 
'O

 dTDi (T) ([x, [xs(-T),l] + [xs(-7), [x,]])

                -2k,  
.L

OO

 d.D(.){[.,.,(-.)],}. (4.6)

Tihus, we  expect  <A>t represents  the quantum  counter-part  of  the phase  volume

contraction.

    In the steady  state  limit, we  should  take the limit of  t -  oc  as

                 <p>ss !! ,ttm..<p>t 
=  

.L

OO

 dttrs[p.,S2(t)pii(t)] (4･7)

    The  contributien  of  the first term  on  the  right-hand  side  of  (3･16) is

               <p>gi,) ==  ill? y[
DO

 dt XI
fi

 dA<ps(-zhA)pH(t)>.,ezwot, (4 s)

which  is the conventional  Green-Kubo  fbrmula. The  contribution  of  the  second  term
on  the right-hand  side  ef  (3･16) is

           <p>k2,) -  - l: L
OC

 dt 
.1[i

B

 dA<{xs(LzhA),ps(-zhA)}pu(t)>eq) (4'9)

where  we  have used  <p(t)>.q =:  O. The  contribution  of  the third term  on  the right-

hand  side  ot' (3-16) is

       <p>g3s) =  2i., Y[I
OO

 dt Y[I
OO

 d7{DL(T)  Y:
fl

 dA<ps(-zhA)xs(-f)pu(t)>,,
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              -  D. (7) ,7[
S

 dA <ps(-zhA)xs(-7)pH Ct)>eq}-

The  cont･ribution  of the fourth term  on  the  right-hand  side  of  (3･16) is

          <p> g4,)- 2i, y: 
Do

 d. yg 
oo

 
N

                             dt (D+(T)<[x,Xs('rT)]Pu(t))eq
                                  

ntbT(r)<[m,xs(Tf)]pH(t)>eq)

Thus, we  obtain  the generalized Grecn formula

                                   4

                            <p>ss -  2<i)>giB ,

                                  d=1

It is obvious  that thi'ee terms El=2<p>g"g represeiit  the nonlinear

conventional  Green-Kubo fbrrnula, in which

through  the time evelution  of  pH(t).  "le also  nete  that <p>k2s) and  <p>g3s)
come  from non-dissipative  parts, though  pH(t) should  involvc
far, there is no  approximation  once  we  start  from  the  basic

S2.
   It should  be neted  that the curreiit  pH(t)  in Eqs. (4･8)-(4･11)
by ApH(t) iii pH(t)  

-
 pH(oo)  if pH(oo)  is finite because of  Eq, (3･17).

(4･le)

(4･11)

(4･12)

                  correction  to the

the effect  of  the external  force appears

                       essentially

              dissipative effects,  So

             equations  presented in

can  be replaced

g5. Simpleexample

   In the  previous section,  we  have  presented formal representations  of  g'eneralized
Green-Kubo  formu]ae, but such  i'ormal expressions  might  be insuMcient to demon-
strate  its relevancy,  In this section,  we  demonstrate  what  the  result  is in the  case

of  V(x) =  O. It should  be  noted  that the model  is exactly  solvable  for the  harmonic

potential  but  in such  a  case  there  is no  steady  current  ofthe  particle because of  the

trap of  the particle in the potential.

   If we  assume  V(x) =  0 and  Luo  ==  O, xs(-T),  xs(-ihA)  and  ps(-ihA)  are  respec-

tively written  as

                           xs(.-T)  =m+  -ZZ- 7,  (lr)･1)
                                       m

                         xs(-ihA)  =x-ihA2,  (s･2)
                                          m

                         ps(-ihA)=p.  (5-3)
   From  Eq. (5･3) we  immediately  obtain

                           ･B

                          /, dAps(-ihA)  
--

 ,Bp,  (5･4)

VSrith the aid  of  Eqs. (4･8) and  (B･11), thus, we  obtain

                 <p>gi,) ..  {Il.l} 
.z:

Oe

 dt yg
"

 dA<p2>.,e-2ort -  Sli,. (s s)
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where  we  have used  <p2>.q =  mkT.  This is the resuLt  firom the conventional  Green-
Kubo  formula. We  also  need  to stress  that this result  is identicaL to the  exact  solution

ofp"(t  -  oo)  in Eq. (B-11) without  any  statistical  averagc.  Thus, we  expect  that

the contributions  from Eqs. (4J9)-(4･11) are  zero  in this simple  example.  Indeed, it

is quite easy  to prove  the abovc  statement,

   Let us  evaluate  the  contribution  of  Eq. (4･9). IJIrom (5･2) and  (5･3), we  obt･ain

                                               ihA 2
                                                  P-  (5･6)                 {xs(-ihA), f)s(-ihA)}  =  xp  +  p=  

-
 2

                                                m

Therefbre, we  immediately  obtain

                    ({Ms(-ihA),Ps(-ihA)}1)ii(t)>eq=0; (5'7)

where  we  have used  <{xs(-ihA),ps(-ihA)}>.q =  O and  function conta･ining  odd

powers  of  x  or  p  becomes traceless. Here  we  note  pu(t) is given by  Eq. (B･11).
   Let us  evaluate  the  integral terms on  the right-hand  side  of  (2-16). By  using

(5･1) we  can  write

               [cc, {xs(-T),peq}] =  [x,{rc, peq}] +  -1!- [M7 {P, Peq}]･ (5'8)
                                           Trb

Therefore, we  directly obtaln

                     trS{[Xi{XS(-7),Peq}]PH(t)}=O,  (5･9)

where  we  have used  trs{[x,{xs(-T),p.q}]  =O  and  Eq. (B･11).
   Siinilarly, from

                                           T

                                                                (5-10)                [X, [X(TT),Peq]] =  [X, [Xi Peq]] +                                            [M) [[), Peq]l
                                          m

we  immediately obta,in

                     trS{[X, [MS(-T), Peq]]PH(t)} =::  O,

where  we  have  used  trs{[x, [xs(-7),p.q]] =  O and  Eq. (B･11).
   Therefbre, the  generalized Green-Kubo  fbrimila fbr the motion  wi

is reduced  to the result  obtained  by conventional  Green-Kubo  fbrmula as

                              <p>ss =  :II'l
[[b know the nonlinear  contributions  in Eqs. (4･9)-(4･11) explicitly,  we

troduce  nonlinear  effects  of  potential or  the interaction between particles.

                    g6. Discussion and  conclusion

   We  have  obtained  the  generalized Green-Kubo  formula, The  final
should  be nearly  equal  to  (4･8) -(4･11). We  also  verify  the  validity  of

(5･11)

'thout
 potential

(5･12)

need  to in-

    expresslon

our  fbrmulation
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in the  simp]est  case  for a  firee Brownian  particle undeT  the external  fbrce Fle., where

the  result  is obtained  from  the conventional  Green-Kubo formula.

   There are  a  couple  of  unsolved  questions t･o be answered.  (i) The  generalized
Greell-Kubo formula  is not  directly related  to that we  have obtained  for classical
systems,7)  where  S2(t) is sum  of  ,B<fis>.q 

-  <A>.q, where  <A>.q is the  classical  phase
volume  contraction.  (ii) Saitoi3) foimd  that <es> (more precisely, quantum  version  of

Rayleigh's dissipation function) is directly, related  to quanturn  version  of  Harada-Sasa

rclation.i4)  However,  the  connection  betweell my  formulation and  quantum  Harada-
Sasa relation  is not  clear.  (iii) We  believe that it is straightforward  to derive the
integral fluctuatien theorem  in this context  without  using  time-reversed path.  This
is the next  task. (iv) Closely. related  to the  above,  how  to understand  generalized
Oiisager-Casmir relation  in this context?4)  (v) How  to apply  this tbrmulatioii to thc

case  of  microscopic  time irreversible quantum  systems?i5>  (vi) We  hEwe analyzed

a  case  of  steady  cxternal  force, but we  should  extend  the formulation for the case

of  time-depeiident  external  field. This is indeed nccessary  to discuss fluctuation-
dissipation relation  and  its violation,  See also  the argument  by Utsumi and  Salto.i6)

(vii) We  should  analyze  the case  of nonlinear  potentials to clarify  the correctiQn  of

conventional  Green-Kubo  fbrmu}a. In this case,  we  cannot  obtaill  the  exact  solution.
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     Appendix  A
GeneT'alized K?tbo's Iden'tity

Kubo  used  an  impertant･ identity in his paper,i) 
'This

 identity can  be written  as

[A.eri3"s] =r.  e-6Hs  1
'B

 dAeAHs[Hs,A]errAHs  =  -zhe-BH"  L
S

 dAAs(-zhA), (A 1)

where  A  is any  obscrvable,  One  can  generalize this identity to fermionic  commuta-

tion relation  or  t/he case  including double  commutators  as

{A, c-8Hs  } =  2e 
-･SJIsA

 +  e-Slfs  Y[
-V

 dAeAllS [H's, A]e-AHS , (A･2)

[A, e-SffS  Bs(-7)]  =  e-'3fJ"  [A, Bs(-T)]  +  e-SHs  L
rs

 dAeAHS  [Hs, A]e-AH" Bs(-T)
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                .,  e-6iis[A,  Bs(-T)]  -  ihe-SHs 
,7[

e

 dAAs<-ihA)Bs(-T).  (A･3)

   The derivation ofthese  identities are  straightforward.  First, we  derive Eq. (A+2).
It is easy  to confirm

iSZePHS {A, e-6""  } =  effHs  Hs{A,  e-ffHs  }+efiHs {A, dds e-PHs  } :=  e5Eis  ["s, A]e-fiHs

                                                                 (A･4)
On  the other  hand, it is easy  to confirm  the  identity

              ziii .L

S

 dAeA"s  [Hs,A]e-AAs ==  e6Hs  [Hs,A]e-fiH". (A･s)

Thus, we  readily  obtain  Eq. (A+2) where  we  have used  e･eifs{A,e'BHs}  -  2A

as  fi -  O. The derivation of  Eq. (A-3) is almost  identical to the above.

If we  can  use  (d/d5)e5iiS[A,eJPHSBs(-7)] =  e･3HS[Hs,A]eJffHSBs(-7)  and

e/BUs[A,e-･3HsBs(-T))  -  [A,Bs(-T)] as  e -  O, we  readily  obtain  Eq. (AE3),

                             Appendix  B

                       E]:rpgicit Calczalation ofpH(t)

   It is possible te ebtain  the exact  solution  of  pH(t) if the  potential is absent  and

wo  =  O. The fbrmal solution  pH(t)  is written  as

                      p.(t)=ezLtp=]Sl)  :
r

ll (iL)np, (B･l)
                                    n=O

where  iL is given by iL(t) with  putting wo  =  O in Eq, (4･4), Thus, the  most  important

process to obtain  pH(t) is to obtain  i£ p which  consists  of  the five terms  as  ijC =

E,"-=i iLi. The  first of  iLp is

                                 i
                                                                 (B･2)                          

z£ ip  
i
 fi [Hs,p] 

=

 
O.

The  second  terrn of  iLp is

                               i

                        i£ 2p  
i
 
-h
 [q,p] =

 
-2rcm.

The third term  is given by

                                iFb

                        iL3p =- 
-
 h [x,p] 

=

 Fb,

The  fburth term  is the  most  complicated,  which  is given by

       iL4p =- -2k,  y[
OO

 drD(7){xs(-T), [x,p]} =  X y[
oo

 dTD(T)xs(-T)

            =  : yC
OO

 d.D(.) 
-
 il: .L]

OC

 d.D(.)7

            =r-  
-2orp

 +  2rcx,

(B-3)

(B･4)

(B･5)
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where  we  have  used(5･1)for  the second  equality,  and

y[
OO

 d7D(7) =  2h 2rrum.. 
.7g

OO

 dw 
,L

OO

 d.,J(.).-cT

          =  2h P.m, 
,7(]

O`]

 dcv £l,tJllii`",), =  2hK] (B･6)

"･le shuuld  emphasize  that  the  contribution  of  counter  Hamiltonian  (B･3) is cancelled
fi'om the  c:ontributien  of  Eq. (Bi6). ZVhe five contribution  to iLp  is given by

                zLsp  ii 
-2Z,

 Yg 
'O

 d7Di(r)lxs(-7), [x,p]] =O  (B.7)

Thus,  fromEqs.(B･2)-(B･7)we  obtain

i£ p =  
-2orp

 +  Ib, (B-8)
or  equivalently

iLAp  =  -27Ap, (B･9)
where

Thus.  we  obtain    '

   This leads to(iL)nAp
 ..

Ap  ip-  b.
        2ty

(-27)nAp.

        oo

pH(t)  =  2
       n=O

tn

}I, r! (iL)np 
==  S.i;} + (p -  2) e-2vt

(B･10)

(B-11)
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