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   Black branes, like other  branes, can  bend  elastically  as  well  as  have worldvolume  oscil-

lations. I describe the long-waveleiigth effective  theory that  capt･ures  this dynamics. This
is the theory  of  an  effective  fluid coupled  to a  dynamical  worldvolume.  It･ allows  to st･udy

a  vast  new  regime  of  higher-dimensional  black holes, and  it also  captures  in a  very  simple

manner  the Gregory-Laflamme  instability of  black branes, with  impressive accuracy  if the
effective  shear  and  bulk viscosities  of  the  black brane are  included.

51. Introduction

1.1. Motivation: aeneral Relativity as  a  tool

   Why  should  anyone  be  interested in studying  General Relativity and  its black
holes in dimension D  >  4?

   My  own  main  motivation  is that advances  since  the  late 1990's  make  it clear  that

General Relativity must  be  regarded  as  theoretical  tool  much  like, say,  Quantum
Field Theory that is usefu1  in areas  of  physics that  have  little or  nothing  to do  with

its traditional  fields of  application  in astrophysics  and  cosmology.  Indeed, General
Relativity seems  to be the tool for studying  a  large class  of  strongly  coupled  systems,

which  do  not  involve grayity in the ordinary  sense,  but which  in certain  regimes  ad-

mit  a  semiclassical  description with  emergent  diffeomorphism  invariance. This is the

subject  of  correspendences  derived from AdSICFT,  such  as  AdS/QCD,  AdS/QGP,

AdS/cond-mat,  or  the  fluid/gravity correspondence,  which  is many  cases  involve

black holes in spacetimes  with  dimensionality different, often  larger, than  four. Be-

sides  this, there is of  course  the  fact that higher-dimensional General Relativity is
indispensable in String Theory and  also  in TeV-gravity scenarios,  which  if realized
would  give rise  to the production of  srnall  higher-dimensional black holes at  colliders.

    The  aim  is then  to develop and  understand  better this multi-purpose  tool. To
this effect  I will  fbcus on  the most  basic set up,  namely  General Relativity in vacuum,

Rp. =  O. In this case,  the theory contains  on)y  one  parameter  that can  be adjusted,

namely,  the  number  of  spacetime  dimensions  D,  and  therefore we  are  motivated  to

investigate how  the theory behaves as  this parameter  is changed.  [[b gain a  deep
understanding  of  the  theory  it makes  sense  to study  the  properties of  its most  basic
objects.  These are  D-dimensional black holes, and  in particular higher-dimensional
ones  (D 2 4),

    The emphasis  will  be more  on  developing the fundamentals of  the subject,  with-

out  worrying,  for the  time  being, about  possible quick application  to any  of  the  fields

mentioned  above.  It is good  to remember  here that, when  first found, black holes
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have always  been LCanswers
 waiting  for a  question" .

1.2. Black brane dynarnics

   In this contribution  I will  focus on  a  very  basic aspect  of  higher-dimensional
General  Relativity: the  dynamics  of  its black branes. These  are  well-known  solutions,

which  can  be easily  constructed,  and  of  which  it might  be natural  to ask:

  .  Can  a  black brane  bend, flap, vibrate,  like ether  familiar extended  objects

    (strings, membranes,  p-branes,..) are  known  to do?

   The  answer  is yes, and  the  theory  that describes this shares  in fact ･many  as-

pects of  the more  familiar theories used  to describe the long-wavelength dynamics of
solitonic  objects,  such  as  Nambu-Goto  strings,  D-branes, or  small  black holes when
they can  be treated as  point-particles in a background, or  in trajectory with  small

acceleration.

   The  theory has several  areas  of  application.  The one  that is most  developed,
and  which  in fact motivated  it in the  first place, is the  study  of  novel  dynamical

regimes  of  higher-dimensional black holes, which  do not  have  a  counterpart  in four
dimensions. It has been known  that  in D  >  4 there  are  black holes which  in some

regimes  can  be appropriately  characterized  as  black branes whose  worldvolume  wraps

a  compact  submanifold  of  a spacetime.  These  have  been  dubbed  blacbjblds, and  the

applications  of  these techniques has greatly enlarged  our  understanding  of  higher-
dimensional black holes. Other  applications,  when  the  brane  is charged,  include the

study  of  thermally excited  D-branes.

   This contribution  is based on  the articles,i)-4)  and  we  refer  the  interested reader

to them  for further details,

S2. Effective worldvolume  theory

   We  present the  effective  theory  of  blackfolds trying  to highlight the  similarities

with  the field-theoretical effective  description of  other  extended  objects,  such  as

cosmic  strings  or  D-branes. The  main  differences with  these are,  first, that the short-

distance degrees of  freedom that  are  integrated out  are  not  those of  an  Abelian Higgs
model  nor  massive  string  modes,  but rather  purely gravitational degrees of  freedom.
Second, the extended  objects  

-curved
 black branes-  possess  black hole horizons.

We  obtain  the equations  using  general symmetry  and  conservation  censiderations,

rather  than  doing a  detailed derivation from first principles.

2.1. Collective eoordinates  fbr a black brane

   Schematically, the degrees of  freedom of  General Relativity are  split  into long
and  short  wavelength  components,

gpa. =  {g£i.ong) , gEs.hort) } . (2･1)

The  Einstein-Hilbert action  is then approximated  as

 IEH =  16;G fdDxV=!7R fs 16}G  fdDx 
-g(iong)R(iO"g)

 + Ihff[gfti.ong), ip] , (2 2)
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where  4ff[gthOng), ip] is an  effective  action  obtained  after  integrating-out the short-

wavelength  gravitational degrees of  freedom  (precisely what  we  mean  by this will

be made  clear  in g2.2). The coupling  of  these to the long-wavelength component  of

the  gravitational field is captured  through  a  set  of  
`collective

 coordinates'  that  we

denote schematically  by ip. Our first task is to identify these effective  field variables
and  the  length scales  that allow  this splitting  of  degrees of  freedom,

   The  rnain  clue  to the nature  of  the effective  theory comes  from the observation

that  the limit eM/eJ 
->

 O of  known  black holes, when  it exists,  results  in fiat black
branes. Thus  we  shall  take  the  effective  theory  to describe the  collective  dynamics
of  a  black p-brane.  Its geometry  in D  =  3 +  p  +  n  spacetime  dimensions is

dS;-brane =  
-
 (1 - lli?t.) dt2 +  S.,(dZZ)2 +dr2    rL1-Yt+  r2d9a+i  - (2-3)

The  coordinates  a"  ==  (t,xZ) span  the brane worldvolume.  A  more  general form of

the metric  is obtained  by  boosting it along  the  worldvolume.  If the velocity  field is
ua,  with  u"ubn.b  ==  -1  then

ds;-brane =  ("ab + lliPt. uaub)  da"dffb +
          1-dr2dirn+

 r2dn#+i･ (2･4)

   The  parameters  of  this black brane  solution  consist  of  the  
`horizon

 thickness' ro,

the p independent components  of  the velocity  u  (say, its spatial  components  ui), and

the  D  
-

 p 
-

 1 coordinates  that  parametrize the  position of  the  brane in directions
transverse to the worldvolurne,  which  we  denote collectively  by Xl,  The  D  collective

coordinates  of  the  black brane are

ip(aa) =  {Xi(aa)? ro(aa)?  ui(aa)} (2-5)

and  in the long-wavelength eflective  theory one  allows  OXt,  lnro and  ui to vary

slowly  along  the worldvolume,  )iVp+i, over  a  length scale  R  much  longer than  the

size-scale  of  the black brane,

                               R>  ro.  (2-6)
Typically the  scale  R  is set  by  the  smallest  intrinsic or  extrinsic  curvature  radius  of

the worldvolume.  Observe that we  require  slow  variations  of  OXL,  not  of  Xi,  Like
the  longitudinal velocities  ua,  the  transverse  

`velocities'
 OX ±

 can  be arbitrary.

   In order  to preserve  manifest  diffeomorphism invariance it is convenient  to in-

troduce  some  gauge  redundancy  and  enlarge  the  set  of  embedding  coordinates  of

the worldvolume  of  the black brane to include all the spacetime  coordinates  Xpt(aa).
From  this embedding  we  can  compute  an  induced  metric

7.b =  gthong)o.x"obxy  . (2-7)

This  is naturally  interpreted as  the  geometry  induced  on  the  worldvolume  of  the

brane. 'Ib
 understand  what  this means,  regard  the split  between degrees of  freedom

as  fo11ows: the long-wavelength degrees of  freedom live in a  
`far-zone'

 r  >  ro, and
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they describe the background geometry  in which  the (thin) brane lives. Then  (2-7)
is the  metric  induced on  the  brane  worldvolume.  The  short-wavelength  degrees of

freedom live in the `near-zone'
 r <  R. In the strict  limit where  R  -  oo,  the

near-zone  solution  is (2･4), but when  R  is large but finite, the collective  coordinates

depend on  a.  Also, the long and  short  degrees of  freedom  interact together in the
`overlap'

 or  
`matching-zone'

 ro K  r K  R, where  the metrics  gthO"g) and  gES.hDrt) must

match.  Then  the near-zone  metric  for the  black brane  must  be  of  the  fbrm

 ds?,h..t) 
=

 (or.b(a) + 
rO"

r(.a)ua(a)ub(a))  do"dab + 1 -d;1,.,(..) +r2d93+i  + (2 8)

The dots here indicate that, without  additional  terms, in general this is not  a  solution

to the Einstein equations.  These  equations  contain  terms  with  gradients of  ln ro, u"

and  ry.b. However these terms  can  be seen  to come  multiplied  by powers  of  ro  so  they

are  small  when  ro/R  <  1, Then  we  can  consider  an  expansion  of  the equations  in

derivatives and  add  a  correction  to (2-8) to find a  solution  to the Einstein equations

to first order  in the derivative expansion.  A  subset  of  the  resulting  Einstein equations

can  be rewritten  as equations  on  the collective  field variables  ip(a). An  important
requirement  is that  the  perturbations preserve the  regularity  of  the  horizon, and  to

this effect  working  in a  set  of coordinates  (Eddington-Finkelstein type) different than

the  ones  above  may  be more  appropriate.

   The  development of  this line of  argument,  which  can  be regarded  as a  blend of  the

ideas for the  effective  descriptions of  black hole dynamics  in 5),6) (and references
therein), and  in 7), produces  a  systematic  derivation of  the blackfold equations.

This is however a  technically involved appreach.  Here  we  shall  instead fbllow a  less
rigorous  but quicker and  physically  well-motivated  path, relying  on  general efft]ctive-

theory-type of  arguments  that allow  us  to readily  obtain  the  blackfold formalism

valid  to lowest order  in the  derivative expansion.  As we  will  see,  this is the `perfect

fluid' and  
`generalized

 geodesic' approximation.

2,2. Efflective stress  tensor

   By  the phrase  
Cintegrating

 out  the short-distance  dynamics' we  mean  that  the

Einstein equations  are  solved  at  distances r  <  R  and  then the effects  of  the solution

at  distances r >  ro  are  encoded  in a stress-energy  tensor that depends only  on  the

collective  coordinates.  The  stress  tensor is such  that its effect  on  the long-wavelength

field g£
i.O"g)

 is the same  as that of the black brane at  distances r >  ro.  For reasons

that  will  become  apparent  as  we  proceed,  it is both simpler  and  more  convenient  to

work  with  an  effective  stress-energy  tensor rather  than  with  an  effective  action. In

any  case,  nothing  is lost since  we  work  at  the  classical  level.

   The  effective  equations  from (2･2) are

                    RLi.ong) -  SR(iong)gEi.ong) -  sTG7;:ig, (2-g)

where  the effective  worldvolume  stress  tensor  is

nyff =  -
2 61eff

mg(iong)
 6gacng)Wp+1.

(2-10)
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   We  now  argue  that  the appropriate  notion  for this effective  stress-tensor  that  cap-

tures the coupling  of  the short-wavelength  degrees of  freedom to the long-wavelength
ones,  is the quasilocal stress-energy  tensor  introduced by Brown  and  Ybrk.8) This is
defined by considering  a  timelike hypersurface that lies away  from the black brane
and  encloses  it by  extending  along  the  worldvolume  directions and  the angular  di-

rections  S?(.+i), i.e.,the hypersurface acts  as a boundary. The  angular  directions
are  integrated over  in our  description (and to leading order  they  do  not  play  any

ro!e),  so  we  can  simplify  the  discussion by  focusing exclusively  on  the  worldvolume

directions of  the boundary. If the boundary metric  (along worldvolume  directiolls)
is ry.b then  the quasilocal stress  tensor  is

                         quasi]ocal)-  2 6Icl

                       7-ISb 
-JA67ab'

 (2'11)

where  I6i is the  classical  on-shell  action  of  the  solution.  For our  purposes,  this is

the  action  where  the  short-distance  gravitational degrees of  freedom, r  <  R, are

integrated and  so  it must  be the same  function of  the collective  variables  as  4ff.
[[bgether with  the  relation  (2･7) this implies that  we  can  identify (2･10) with  (2･11),
   It is shown  in 8) that the Einstein equations  with  an  index orthogonal  to the

boundary  are  first-order equations  equivalent  to the  equation  of  conservation  of  the

quasilocal stress  tensor,

                           Da[I'Vqbuasilocal)=O, (2'12)
where  D.  is the covariant  derivative associated  to the boundary metric  or.b. Hence,
solving  Eq. (2･12) is equivalent  to solving  (a subset  of)  the Einstein equations.

   Since we  identify the stress  tensors (2･10) and  (2･11), hencefbrth we  drop the
superscripts  from them.  We  also  drop the  superscript  (iO"g) from  the background

metmC  9pau･

   The  effective  stress  tensor is computed  in the  zone  ro  <  r  <  R, where  the

gravitational field is weak  and  the quasilocal stress  tensor Tab is, to leading order  in

ro/R,  the same  as  the ADM  stress  tensor. For the  boosted black p-brane (2･4) one

can  readily  compute  it and  find

                     Tab =  {lia"T+t;) ron (nuaub-nab), (2･i3)

After introducing a  slow  variation  of  the collective  coordinates  the stress  tensor

becomes

            Tab(a) ==  lian,,+t) ro"(a)  (nu"(c7)?tb(a) -  elab(a))  +---,  (2･14)
where  the dots stand  for terms  with  gradients of  lnro, ua,  and  7.b, which  we  are

neglecting,

g3. Blackfblddynamics

   The general effective  theory of  classical  brane dynamics  can  be  formulated as  a

theory of  a  fluid on  a dynamical worldvolurne.  The  fluid variables  must  satisfy  the
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intrinsic equation  (2-12), and  they  will  be coupled  to the  
`extrinsic'

 equations  fbr

the dynamics of  the worldvolume  geometry, which  we  still have to determine. [[b
this effect,  in the next  subsection  we  introduce a  few notions  about  the  geometry  of

worldvolume  embeddings.

3,1. E7nbedding and  worldvoturne  geometr"y

   Given the  induced metric  on  Wp+i, (2i7), the  first fundamental  form  of the

submanifold  is

                         h"U=Cl,Xpa0bXV7ab,  (3･1)
Indices pa , u  are  raised  and  lowered with  gpt., and  a, b with  ry.b, Defining

                            ±
pau=  gpau-hpau (3'2)

it is easy  to see  that the tensor hP. acts  as a  projector onto  )!Vp+i, and  lpa. along

directions orthogonal  to Wp+i.

   Background tensors tpt'''.... with  support  on  Vt,7p+i can  be converted  into world-
volume  tensors t"'''b,,, and  viceversa  using  0.X". Fbr instance, the velocity  field

                            upt=O.Xpa  u",  (3･3)

preserves  its negative-unit  norm  under  this mapping,

   The  covariant  difrerentiation of  tensors that live in the worldvolume  is well  de-
fined only  along  tangential  directions, which  we  denote  by an  overbar,

                             v.=h.vv..  (3･4)

   Note that in general Vptpt'''.... has both orthogonal  and  tangential components.

The  tangentially  projected part is essentially  the  same  as  the  worldvolume  covariant

derivative D.t"'''b... for the metric  or.b, both tensors being related  via  the pull-back
map  D.Xpt. In particular, the  divergence of  the  stress-energy  tensor

                         TPV=O.X"ObXUTab  (3･5)

satisfies

                        hp.i<7paTpv=ObxPD.Tab. (3･6)
   The  extrinsic  curvature  tensor

                           K"vP=hptUVvhaP  (3'7)

is tangent to )iVp+i along  its (symmetric) lower indices pa, v, and  orthogonal  to YVp+i
along  p. Its trace is the mean  curvature  vector

                        KP=hptVKpa.P=VpthptP. (3･8)

Explicit expressions  fbr the extrinsic  curvature  tensor  in terms  of  the embedding

functions Xpa(aa) can  be found in the appendix.
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3.2. Blacklfold equations

   The  general extrinsic  dynamics  of  a  brane  has been analyzed  by Carter in 9).
The  equations  are  formulated in terms of a  stress-energy  tensor with  support  on  the,

p  +  !-dimensional worldvolume  )IVp+i satisfying  the  tangentiality  condition

                             IP"TPV  =O,  (3･9)

   The  basic assumptions  are  that (i) this effective  stress-energy  tensor  derives

from an  underlying  conservative  dynamics (in our  case,  General Relativity), even

if the macroscopic  (= long-wavelength) dynamics may  be  dissipative; and  that (ii)
spacetime  diffeomorphism invariance holds, or  equivalently,  the worldvolume  theory

can  be consistently  coupled  to the  long-wavelength gravitational field gp.. Under
these assumptions,  the stress  tensor must  obey  the  conservation  equations

                             V.T"P=O.  (3･10)
These  are  in fact the  generic equations  of  motion  for the entire  set  of  worldvolume

field variables  ip(aa), both intrinsic and  extrinsic:  we  can  decompose  (3･10) along

directions parallel and  orthogonal  to )!Vp+i as

               VptTptP =  Vpt(T"Uh.P) =  TpaVVpth.P +  h.PVpaTpaU

                       =  TpaUhyaV'phaP +  huPV'pTpa"

                       =Tpa"Kp.P+6bXPD.T"b,  (3･11)

where  in the last line we  used  (3･6) and  (3･7), Thus the D  equation  (3･10) separate

into D-p-1  equations  in directions orthogonal  to )/Vp+i and  p+1  equations  parallel

tO VVp+1i

                  TP"K".P=O,  (extrinsic eguations)  (3･12)
                    D.T"b=0.  (intrinsic eguations)  (3-13)

   Let us  now  apply  Eq, (3･10) onto  the  specific  stress  tensor  of  a  neutral  black
brane, (2･13). After a  little manipulation  one  finds

                  ckpt +ni  1UPVuUU  =  SKP +Xl7pt ln ro  , (3-14)

These  blackLfbld equations  describe the general collective  dynamics of  a  neutral  black
brane.

   Blackfolds differ from other  branes in that  they  represent  objects  with  black hole

horizons. In the long-distance effective  theory we  lose sight  of  the horizon, since  its
thickness  is of  the  order  of  the  scale  ro  that  we  integrate out.  But  the  presence of

the horizon is reflected  in the effective  theory in the existence  of  an  entropy  and  in

the local thermodynamic  equilibrium  of  the  effective  fluid.

3.3. 7'7ie metric  at  atl length scales:  Matched asymptotic  e:;pansion

   Under the splitting  in (2･2), the set  of  field variables  in the system  are  the  col-

lective worldvolume  fields, intrinsic and  extrinsic,  and  the background  gravitational
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field gpa.. The  complete  set  of  equations  are  the extrinsic  equation  (3･12), intrin-

sic equation  (3d13), and  backreaction equation  (2･9), Since they  are  a  consequcnce

of  general symmetry  and  conservation  principles, these equations  retain  their form

at  any  perturbative order.')  The  specific  form of  the stress  tensor, as  well  as the
background metric,  will  in general be corrected  at  higher orders.

   The  only  equations  that one  has to solve  at  the  Iowest order  are  those  that

suffice  te ensure  that TL. can  be consistently  coupled  to the long-wavelength gravi-
tational field. These are  just the intrinsic and  extrinsic  cquations,  and  backreaction
is neglected.  The  explicit  blackfold equation  (3･14) that result  are  valid  only  fbr test
branes.

   Using this approach,  Ref. 3) has managed  to construct  large new  classes  of

higher-dimensional black holes. In the  fo11owing we  will  concentrate  on  a  difierent
application  of  the  method.

g4. Gregory-Laflamme  instability in blackfolds

   The  blackfbld approach  must  capture  the perturbative  dynamics of  a  black hole
when  the perturbation wavelength  A is Iong,

A )}> ro･ (4･1)

These  perturbations can  be either  intrinsic variations  in the thickness re  and  local

velocity  u,  or  extrinsic  variations  in the  worldvolume  embedding  geometry  X.  In

general, these two  
'kinds

 of  perturbations are  coupled.  Here  we  extract  some  simple

but important consequences  fbr perturbations  with  wavelength

ro  <K  AKR, (4･2)
i.e.,perturbations for which  the worldvolume  looks essentially  flat, Kps.P Rt O. In this
case  it is easy  to see  that the intrinsic and  extrinsic  perturbations decouple.

4.1. Per:fect fluid approximation:  aL  as  a  so?tnd-mode  instability

   It is instructive to perform  the  analysis  for a  general perfect fluid, and  then  par-
ticularize to the neutral  blackfold fluid (2-13). For simplicity  we  consider  a  fluid ini-
tially at  rest  u"  =  (1, O . . . ), with  uniform  equilibrium  energy  density e and  pressure
P. The fiat worldvolume  metric  is parametrized,  in Cstatic

 gauge', using  orthonormal

coordinates  XO  =  t, Xi  ==  zi,  i =  1, . . .p and  the transverse coordinates  XM  are  held
at  constant  values.  Introduce small  perturbations

6e,
     dP
6P=  6e
     dE ' 6ua =  (o, vz) , iXM  ==  CM, (4-3)

and  work  to linearized order  in them.

   
'}
 This, hewever, is a  somewhat  formal statement  due to the appearance  of  gravitational self

force divergences on  the worldvolume  that must  be dealt with  carefu11y,5)  Reference 10) shows  how
the equation  of  stress  tensor  conservation  can  be used  as  t,he basis to obtain  these corrections  to

particle motion.
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The extrinsic  equation(3･12)then  become

                          (eo,2 +  po,2･ ) cm -o.

Thus  transverse,  elastic  oscillations  of  the  brane propagate with  speed

                               2 P
                              CT=--'
                                    s

   The  intrinsic equation  (3-13) give

(a,2 
-
 
EII?io,2)

 6e -  o,

(4･4)

(4-5)

C4･6)

so  longitudinal, sound-mode  oscillations  of the fluid propagate with  speed

                              CZ-fii/ ÷･ (4･7)

   These  Eqs. (4-5) and  (4･7) are  hardly new:  they are  the conventional  speeds

ef  elastic  and  sound  waves.  They  have  a  remarkable  consequence:  a  brane with  a

worldvolume  fluid equation  of  state  such  that

                              P  dP

                              EZiT, >O  (4･8)

has

                              cZ  c;  <0  (4-9)
and  so  is unstable  to either  longitudinal or  transverse  oscillations  with  wavelengths  in

the  range  (4･2). For instance this happens  in the  simple  case  P  =  wE  with  constant

w,  where  the interpretation is casy  Cwe assume  e >  O): positive tension  is required

for elastic  stability,  but  positive  pressure  is needed  to prevent that  the fluid clumps
under  any  density perturbation.
   Neutral blackfblds have

                          cZ=-ci=-.Ii  (4･io)

and  therefore are  generically unstable  to longitudinal sound-mode  oscillations  and

stable  to elastic  oscillations  in the  range  of  wavelengths  (4･2).
   This instability is not  unexpected,  Black branes sufier  from the Gregory-
Laflamme  instability,ii) which  makes  the  horizon radius  vary  as

6ro tv  ent+ik,zt. (4･11)
Here  n  is positive real  and  thus  the frequency is imaginary. The  threshold mode  for
the  instability, with  9  =  O and  k =  k"kt 7C O, has 

`small'

 wavelength  A ==  2T/k  ew  ro

and  therefbre cannot  be seen  in the blackfbld approximation.  But the GL  instability
extends  to arbitrarily  small  ic, i.e., arbitrarily  long wavelengths,  and  when  k is very
small  it should  be captured  by the blackfold dynamics.
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   The  sound-mode  instability corresponds  precisely to this long-wavelength part,
S?,k -  O, of  the  GL  instability. Observe that  sound  waves  in a  blackfold produce
6E N  6P  ev  6ro i,e,, variations  in the horizon thickness. Equation  (4･10) tells us  that

these are  unstable,  of  the form (4･11) with  dispersion relation

                        g=k k+o(k2)  (4 12)

4.2, inclusion of black brane viscosity

   In 4) we  have  analyzed  long wavelength  perturbations of  the black brane and
their effect  on  the stress  tensor measured  near  spatial  infinity. From  this study  we

obtain

                     n=  t.) C=2ny (;-cZ), (4 13)

where  s is the  eniropy  density of  the  fiuid, i,e,, 1/4G  times  the  area  density of  the

black brane.

   Using these results  for n and  C we  can  include the  viscous  damping of  sound

waves  in the  effective  black brane fiuid. The linear perturbation equations  are  now

    -in6p+(p+p)k,6ui+O(k3)=o,  (4･14)

    O(p  +  P)6uJ +  zcZk'6p  + nk26uj + kj ((1 - ;) n +  g) ki6ui + O(k3) =  O

                                                                (4i15)

Applying our  results  above,  any  solution  to these equations  can  be used  to obtain

an  explicit  black brane solution  with  a  small,  long-wavelength fluctuation of  ro  and

ua.  If we  eliminate  6p we  find that non-trivial  sound  waves  require

o-  cZ 
kg2

 +  ;
2

. (2 (i -;)  ny +<)  +o(k3) =o, (4･16)
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Fig, 1. table sound  waves  in the effective  black

   brane fluid Right: S?(k) fbr t･he unstable  Gregory-

   Laflamme  mode  for black  branes (numerical data courtesy  of  P. Figueras). Fbr  black p-branes
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where  k =  hiki and  we  have  used  the  Gibbs-Duhem  relation  p +  P  =  Ts. This

equation  determines the dispersion re}ation  O(k) as

g =  v:El,lk -  ((1 -  ;) Z + lil,7) ii
21

 + o(k3) (4･17)

For the specific  black p-brane  fluid this yields the dispersion relation

                     n=  IXIfi (i-.(le+lli =ii2 kro), (4 is)

which  is valid  up  to corrections  oc k3. Figure 1 compares  this dispersion relation

to the numerical  results  obtained  from linearized perturbations  of  a  black p-brane.
Zooming in on  small  values  of  kro, the  match  is excellent.  When  kro is of  order

one  we  have no  right  to expect  agreement,  but the overall  qualitative  resemblance

of  the  curves  is nevertheless  striking.  The  quantitative agreement  improves  with

increasing n  and  indeed, as  Fig. 2 shows,  at  large n  it becomes impressively good
over  all  wavelengths:  for n  =  100 the  numerical  values  are  reproduced  to better than
1%  accuracy  up  to the maximum  value  of  k.

    The  ordinary  derivation of  the GL  instability involves a  complicated  analysis  of

linearized gravitational perturbations of  a black brane and  the numerical  resolution  of

a  boundary  value  problem  for a  differential equation  (which is moreover  compounded

at  small  k since  larger grids are  required  to avoid  finite-size problems). Here  we  have

shown  tha"he  long-wavelength component  ofthe  instability, (4-12), can  be obtained

by  an  almost  trivial calculation  of  the  sound  speed  in a  fiuid, Including the  effective

viscosity  of  the fiuid refines  this calculation  to the point  of  capturing  in a  simple

manner  all  of  the main  features of  the dispersion relation.  In our  opinion  these

results  are  striking  evidence  of  the power  of  the  blackfbld approach.

 nroO.25

O.20

O.15

O.10

o.os 

           o,oo i kro
             O 2 4 6 8 10

Fig. 2. Dispersion relation  S?(ic) ofunstable  modes  for n  =  100: the solid  line is our  analytic  approx-

   imation  Eq.  (4･18)i t･he dots are  the  numerical  solution  of  the Gregory-Laflamrne perturbations

   of  blaek branes (numerical data courtesy  of  P. Figueras).
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g5. Discussion

   The  effective  worldvolume  theory  that  describes the  long-wavelength dynamics
of  the black brane is quite similar  to the effective  Dirac-Born-Infeld theory for D-
branes in open  string  theory,  or  the  Nambu-Goto  effective  description fbr Nielsen-
Oleseii vortices,  In our  opinion,  the blackfold approach  should  be regarded  and

judged in much  the same  way  as  one  does in the case  of  these other  effective  theories,

both in terms  of  its validity  and  of  its utility. Blackfolds provide the leading order
description of  objects  for which  an  exact  account  is very  probably out  of  practical
reach.  Corrections to this leading order  are  more  often  than  not  very  complicated

too, but unless  there is good  reason  to do so,  one  does not  doubt the validity  of

this approximation  to a  fu11, physical solution  describing the  object  in the  complete

theory,

   There  is however  one  significant  respect  in which  blackfolds differ from  DBI

branes or  NG  strings  (or indeed any  other  dynamical  branes that we  are  aware  of):

the worldvolume  theory of  blackfolds features proper hydrodynamical  behavior, in

the  sense  of  requiring  local thermodynamical  equilibrium.  In contrast,  NG  strings

have constant  energy  density and  pressure, so  their intrinsic dynamics is trivial, while

the  worldvolume  dynamics  of  DBI  branes is a  nonlinear  electrodynamics  that  does

not  involve thermal  features. This is the main  reason  that in the blackfbld theory
configurations  in stationary  equilibrium  are  particularly  singled  out.

   This approach  is a  powerfu1 tool fbr the identification of  new  solutions  and  their

properties. But  its utility  should  not  be reduced  to only  describing novel  classes

of  stationary  black holes, but also  to analyzing  their dynamics in specific  physical
situations.

7'he metric  at  all length scales

   The  blackfold approach  might  be regarded  with  scepticism  since,  although  it is
claimed  that  new  black holes are  found, no  explicit  black hole metric  appears  to be

produced. Expressed  in this crude  form, this criticism  is unwarranted.  First, let
us  emphasize  again  the similarity  to the  fact that  in general a  solution  of  the  DBI

action  does not  provide an  explicit  solution  to the fu11 open  string  theory (indeed
quite  often  it is not  even  known  how to solve  string  theory in the backgrounds where

this effective  theory is applied),  and  a  similar  situation  occurs  for vortex  strings  and

their Nambu-Goto  description, Second, it is not  quite true that no  metric  for the
new  black hole is given. It actually  is, to leading order:  far from  the black hole,
it is the background metric,  with  a  submanifold  singled  out  as  the location of  the

blackfold; and  near  the  black hole, it is the  metric  of  a  boosted  black brane.

   Nevertheless we  admit  that there is a  point  in this criticism,  since  traditionally

black holes have been regarded  as  embodying  a  non-trivial  geometry, and  it might

be desirable to see  how  a new  metric  is obtained  for the  new  black hole, at  least
in principle. Indeed the  first application  of  the blackfold methodology  included a
long and  detailed analysis  of  the next-to-leading  order  metric  for higher-dimensional

black rings,i2)  A  more  general analysis  can  be performed  and  is underway.

   As explained  in detail in 2),3),12), the method  ofmatched  asymptotic  expansions
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(MAE;s) systematically  produces  an  explicit  solution  for the geometry  of  the black
hole spacetime  at  all scales,  including the  regioii  near  the  horizon, with  the  effects

of the bending  of the  black brane in an  expansion  in rolR.  It should  be appreciated

that the leading order  MAE  is a  rather  involved technical task even  in the very

symmetric  situations  that we  have  studied,  a  fact that  emphasizes  once  again  the

virtue  of  having  a universal,  long-distance effective  theory that  captures  in a simple

manner  most  of  the  physically interestiiig features of  the  solution.

Dynamical aspects:  Stability and  time-dependence

    Many  of  the emerging  new  solutions  of  higher-dimensional gravity exhibit  regions

of  instability in the blackfold regime.  Fbr example,  ultraspinning  MP  black holes
and  thin black rings  have been arguedi3)  to be unstable  under  GL-type instabilities.
Corresponding statements  can  be made  for more  general  blackfolds. As we  have seen,
the  blackfold approach  does easily  capture  this instability for a  generic blackfold in

a regime  in which  the wavelength  A of  the instability lies in the range  ro  <  A <  R.

    This is one  example  where  one  can  decouple the  extrinsic  equations  from the

stability  analysis  of  the intrinsic sector.  Conversely, there are  situations  where  the

extrinsic  stability  can  be analyzed  while  guaranteeing that the  intrinsic equations

remain  solved.  A  simple  instance is the  study  of  stability  against  variations  of  the  ra-

dius of  round  odd-sphere  blackfblds. These  solutions  extremize  a  potential  V  =  -I!6

where  I is the  action  for the  stationary  configurations.  This  V  is mininvized  by  these

solutions,  implying that they are  stable  to variations  of  R  (this was  in fact already
known  for black ringsi4)).  An  explicit  analysis  of  time-dependent  perturbations con-

firms this result.
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