Vol. 43 (1994)

酸化鉄(III) 粒子表面への二価重金属イオン吸着反応の モデル化

田村紘基^{®*},大喜多鋼治*,片山則昭**,古市隆三郎*

(1994年6月10日受理)

土壌や底質の主要成分である酸化鉄(III) 粒子と接触する自然水や汚染水の水質の理解とその変動の 予測のために、次の仮定の下で二価重金属イオンの吸着反応のモデル化を行った.1) 重金属イオンと 酸化物表面水酸基プロトンとの(1:1) 及び(1:2) 交換反応による表面錯体形成,2) 表面被覆率の 増加に伴う Gibbs 自由エネルギー変化の線形増加による吸着抑制.モデルパラメーターとして表面錯 体の安定度定数及び吸着抑制定数を決定し、イオンの吸着親和性を求めた.その序列は $Co^{2+} \leq Zn^{2+}$ < $Cu^{2+} < Pb^{2+}$ であった.これらのイオンの表面錯体の安定度定数とヒドロキン錯体の安定度定数の 報告値との間には、よい相関が認められた.これは、ヒドロキン錯体と同様に、(格子)酸化物イオン から(吸着) 金属イオンへの電子対供与を考える表面錯体モデルを支持する.

1緒 言

金属酸化物は土壌や底質の成分として微粒子あるいは コロイド状態で存在し、その大きな表面積のため優れた 吸着機能を持つ.重金属イオンは自然水や土壌水中の希 薄濃度成分 (trace element) であるが、その濃度は、環 境中のマンガン、鉄、アルミニウムなどの酸化物への吸 着によって、ある低い値に保たれているものと考えられ ている¹⁾. 原子力発電によって生ずる放射性廃棄物の処 理では、地下埋蔵が有望視され、埋蔵法の設計とその安 全性の評価のため地下水との接触によるイオンの溶出と 生物圏への移行のシミュレーションが課題になっている が、地中成分によるイオン吸着はその移動速度を決定す る重要なプロセスの一つと見なされている^{2)~5)}.又, 金属酸化物へのイオンの吸着は、化学分析(イオンの共 沈,分離,濃縮),水処理(有害イオンの除去),土壌改 良(植物栄養塩保持力の向上),鉱物の富化処理,セラ ミックス原料のコンディショニングなど種々の技術に関 係している.このため、金属酸化物へのイオン吸着につ いて古くから多数の研究が行われ、実験データが集積さ れてきた.

これらのデータから環境におけるイオンの挙動を理 解,予測し,イオン吸着のかかわる技術を制御可能にす るため,吸着反応のモデルが必要である.これまで,経 験的,理論的を問わず,モデルとして種々の吸着等温線 (式)が提案されてきたが,イオン吸着のような固液界 面反応では,おそらく界面化学種間の横方向相互作用の ため質量作用則が成り立たず,吸着現象の本質的モデル 化が困難である.最近発展している^{6)~11)} "表面錯体モ デル"では,界面電気二重層の構造と特性の詳細な仮定 に基づいて界面電位差を計算し,イオン吸着への影響を 考慮している.しかし,金属酸化物粒子を電極として界 面電位差を実測,制御することは困難なので,その当否 を検証できないのが実情である^{12)~16)}.又,このモデル では考慮されていない立体障害などの非静電的要因がイ オン吸着に影響を与えている可能性もある.

著者らは、金属酸化物やイオン交換樹脂へのイオン吸 着について、複数のイオン交換反応の併発と界面化学種 間横方向相互作用による反応抑制を仮定した独自のモデ ルを提案してきた^{17)~26)}.この取り扱いでは、横方向相 互作用を Gibbs 自由エネルギー変化の線形増加項によ って表すので、抑制の原因として静電的なもののみなら ず化学的、幾何学的、その他すべてのものを包含しう る.既報では、幾つかの金属酸化物による二価重金属イ オンの吸着反応のモデル化を行っているが、本研究では 酸化鉄(III) への各種二価重金属イオンの吸着について

^{*} 北海道大学工学部機能材料化学講座:060 北海道札 幌市北区北13条西8丁目

^{**} 旭川工業高等専門学校:071 北海道旭川市春光台 2 条 2 丁目

既報のモデルが適用できることを確かめ、モデルパラ メーターから各種イオンの吸着親和性を決定した.更 に、吸着親和性とそれらのイオンのヒドロキソ錯体形成 能との相関を求め、吸着反応の機構を検討した.

2モデル

既報¹⁷⁾¹⁸⁾²⁰⁾²⁴⁾²⁶⁾にならうと以下のモデル式が得られ る. 一価陰イオン X⁻ の共存下,酸化鉄(III) 粒子表面 への二価重金属イオン M²⁺ の吸着反応は,酸化物の酸 型表面水酸基 -OH(a) のプロトンとの(1:1) 及び (1:2) 交換反応の併発による表面錯体形成として次式 のように表せる.

$$-OH(a) + M^{2+} + X^{-} \rightleftharpoons -OM^{+} \cdot X^{-} + H^{+} (1)$$

$$2 - OH(a) + M^{2+} \rightleftharpoons (-O)_{2}M + 2H^{+} (2)$$

酸型表面水酸基サイトを占めている化学種に関する物質 収支式は、表面水酸基密度 $N_{\rm s} ({
m mol} {
m m}^{-2})$ の半分を陽イ オン交換容量とおけば、各化学種の表面密度 (mol ${
m m}^{-2}$)を用いて次式となる.

$$[-OH(a)] + [-OM^{+} \cdot X^{-}] + 2[(-O)_{2}M] = N_{s}/2$$
 (3)

各表面錯体形成反応の平衡条件式は

$$K_1^{\circ} = K_1 \exp(B_1 \theta_1) \tag{4}$$

$$\boldsymbol{\beta}_2^{\circ} = \boldsymbol{\beta}_2 \exp(\boldsymbol{B}_2 \boldsymbol{\theta}_2) \tag{5}$$

ここで、 K_1° 、 β_2° は表面錯体の安定度定数、 K_1 、 β_2 は 濃度商、 B_1 、 B_2 は定数、 θ_1 、 θ_2 は各表面錯体による陽 イオン交換サイトの表面被覆率である。指数項は界面化 学種間横方向相互作用による吸着抑制効果を表し、 B_1 、 B_2 はその程度を示す定数である。吸着イオンの表 面密度 $\Gamma(\text{mol m}^{-2})$ は、各表面錯体の密度(mol m⁻²) の和として次式で与えられる。

$$\Gamma = [-OM^{+} \cdot X^{-}] + [(-O)_{2}M]$$
(6)

3 実 験

3·1 酸化鉄(III)

酸化鉄(III) は市販の試薬(関東化学製)の α -Fe₂O₃ である.この粉末試料を希薄硝酸溶液で洗浄後水洗し, 110°C で1日乾燥しデシケーター中で保存した.比表 面積 $S_{BET}(m^2g^{-1})$ は窒素吸着による BET 法で決定し た.

3・2 表面水酸基密度の決定

0.5~70gの酸化鉄(III) 粉末を 0.01~6 M 水酸化ナ トリウム溶液 50 cm³ に加え,この懸濁液を 25°C で 4 時間以上振り混ぜた.溶液を沪過あるいは遠心分離し, 沪液中の水酸化物イオンを硝酸標準溶液により滴定し た.酸化鉄(III) 粒子の酸型表面水酸基はアルカリ溶液 中で次式により酸解離する¹⁹⁾²¹⁾²³⁾.

$$-OH(a) + Na^{+} \rightarrow -O^{-} \cdot Na^{+} + H^{+}$$
(7)

水酸化物イオン添加濃度との差から表面水酸基の酸解離 量を求め、高 pH におけるその飽和量と比表面積から 酸化物単位面積あたりの陽イオン交換容量を決定した. 更に酸型及び塩基型の水酸基サイト数が等しいことを考 慮し¹⁹⁾²¹⁾²³⁾,その値を2倍して全表面水酸基密度 N_s と した.

3・3 吸着等温線の測定

酸化鉄(III) 粉末を,硝酸ナトリウムによりイオン強度 *I*を 0.1 M に調節した $10^{-5} \sim 10^{-3}$ M の二価重金属 イオンの溶液 100 cm³ に $5 \sim 160$ g dm⁻³ の濃度で懸濁 し,水酸化ナトリウム及び硝酸溶液を用いて pH を調 節した後, 25°C で振り混ぜた.平衡到達後(12 時 間), pH を測定するとともに溶液中の残存イオン濃度 $[M^{2+}](mol dm^{-3})$ を AAS により測定した.

吸着イオンの表面密度 $\Gamma(\text{mol m}^{-2})$ は

$$\Gamma = ([M^{2^+}]_T - [M^{2^+}]) V/S$$
(8)

ここで、 $[M^{2+}]_T$ はイオンの添加全濃度 (mol dm⁻³)、 V は溶液体積 (dm³)、S は酸化物粉末表面積 (m²) である.

 Γ と溶液濃度 $[M^{2^+}]$ 及び pH の関係を求め吸着等温線を作った.

3・4 モデルのあてはめ

定数項をパラメーターとして式(3)~(6)を吸着等温 線に当てはめ、非線形最小二乗法によりパラメーターの 最適値を決定した¹⁸⁾.

4 結果と考察

酸化鉄(III) 粉末試料の比表面積は S_{BET} =15.9 m² g⁻¹ であった. Fig. 1 は、水酸化ナトリウム溶液中にお けるこの酸化物試料の酸型表面水酸基の解離サイト密度 と遊離 (free) 水酸化物イオン濃度の関係を示す. 解離 サイト密度は水酸化物イオン濃度とともに増加するが、 約4M以上で一定となり、すべてのサイトが解離した 報 文 田村,大喜多,片山,古市:酸化鉄(III)粒子表面への二価重金属イオン吸着反応のモデル化

Fig. 1 Relationship between dissociated acid hydroxyl site density $[-O^- \cdot Na^+]$ and free OH⁻ ion concentration

Fig. 2 Adsorption isotherm of Pb^{2+} on Fe_2O_3 with different pH at ionic strength 0.1 M (NaNO₃) and 25°C

Points: experimental; Curves: calculated

ものとみなせる. この値 $1.19 \times 10^{-5} \mod m^{-2}$ を陽イオン交換容量とし、その2倍を全表面水酸基密度 N_s とした. 得られた値は他の方法で求めた他の酸化物の

Fig. 3 Adsorption isotherm of Cu^{2+} on Fe_2O_3 with different pH at ionic strength 0.1 M (NaNO₃) and 25°C

Points: experimental; Curves: calculated

Points: experimental; Curves: calculated

値²¹⁾²⁴⁾とよく一致している.

Fig. 2~5 に、酸化鉄(III) への種々の二価重金属イ オンの吸着等温線を示す.吸着イオンの表面密度 Γ は 溶液濃度 $[M^{2+}]$ 及び溶液 pH とともに増加する.実測 吸着等温線(点) ヘモデル式を当てはめ、モデルパラ メーターの最適値を決定した(Table 1).図の各実線は

Fig. 5 Adsorption isotherm of Co^{2+} on Fe_2O_3 with different pH at ionic strength 0.1 M (NaNO₃) and 25°C

Points: experimental; Curves: calculated

Table 1 Values of stability and suppression constants for divalent heavy metal ion-Fe₂O₃ surface complexes at ionic strength 0.1 M (NaNO₃) and 25°C

complex	$\log K_1^{\circ}$	$\log oldsymbol{eta}_2^\circ$	$\log B_1$	$\log B_2$
Co^{2^+} -Fe ₂ O ₃	-6.32	-0.745	1.62	2.23
Zn^{2+} -Fe ₂ O ₃	-6.07	-0.610	1.75	2.81
Cu^{2+} -Fe ₂ O ₃	-4.28	0.003	2.16	0.922
Pb^{2+} - Fe_2O_3	-3.70	1.40	1.78	1.70

 $K_1^{\circ}(\text{mol}^{-1}\text{m}^3), \beta_2^{\circ}(\text{m}^{-1})$

最適パラメーター値による計算結果で,実測値との一致 は良好である.

イオン種による吸着親和性の違いを比較するため,共通の条件として $[M^{2+}]_T = 10^{-6} M$, $[Fe_2O_3] = 20 g$ dm⁻³で,表面錯体の安定度定数と抑制定数からイオン の吸着分率を pH の関数として計算した (Fig. 6). イ オンの吸着親和性の序列は, Pb²⁺ > Cu²⁺ > Zn²⁺ >Co²⁺ である.

これらのイオンは水中でヒドロキソ錯体を形成しうる が、吸着親和性との相関を調べるため(1:1)表面錯体 の安定度定数 K_1° と次式によって生成する(1:1)ヒド ロキソ錯体の安定度定数 $K_1^{OH 27)28}$ の関係をプロット した(Fig. 7).

$$M^{2^+} + OH^- \rightleftharpoons MOH^+ \tag{9}$$

Fig. 6 Calculated fractions of adsorbed metal ions as a function of pH for $[M^{2+}]_T = 10^{-6}$ M and $[Fe_2O_3] = 20$ g dm⁻³ at ionic strength 0.1 M (NaNO₃) and 25°C

Fig. 7 Correlation between stability constant of surface complexes K_1° and that of metal hydroxo complexes K_1^{OH}

log K₁° vs. log K₁^{OH} プロットは傾き 1 の直線関係に従っており、ヒドロキソ錯体と表面錯体の安定度には極めてよい相関がある.本研究では、吸着を格子酸化物イオンから金属イオンへの電子対供与による表面錯体形成としてモデル化したが、表面錯体の安定度が、同様に酸化

物イオンからの電子対供与によって生成するヒドロキソ 錯体の安定度とよい相関を示すことは、この吸着モデル を支持するものである.

ヒドロキソ錯体を作りやすいイオンほど吸着されやす いことは古くから知られており、ヒドロキソ錯体を経由 する吸着を考える"加水分解モデル"が提案されてい る²⁹⁾³⁰⁾.しかし、このモデルには著者らが既報²⁶⁾で指 摘した次のような問題がある.吸着は、アクアイオンが 優勢でヒドロキソ錯体が微少な pH 条件でもよく進行 するが、その吸着量を微少成分の吸着によって説明する には異常に大きな吸着平衡定数値を仮定しなければなら ない. たとえばヒドロキソ錯体 MOH⁺ が吸着するも のとすれば、その吸着平衡定数は、対応する一価陽イオ ンであるアルカリ金属イオンの 10¹⁰~10¹¹ 倍もの値に なる.しかし、錯体に含まれる水酸基の寄与を考えて も,同じ一価陽イオン間のこの大きな違いを説明するこ とは難しい. 又,吸着には負の表面サイトと陽イオンの 静電的引力が重要な寄与をしていることを考えると,陽 電荷の小さなヒドロキソ錯体 (+1) が陽電荷の大きい アクアイオン (+2) より吸着親和性が大きいとするこ とは不自然である.

本研究では、酸化鉄(III) 粒子表面への二価重金属イ オンの吸着反応をモデル化し、モデルパラメーターから イオンの吸着親和性を定量的に評価した.イオンの吸着 親和性とヒドロキソ錯体形成能の間によい相関があるこ とを見いだし、吸着の機構を検討した.

本研究は、文部省科学研究費(05680438)によった.付記して謝意を表する.

文 献

- 1) E. A. Jenne: "Trace Inorganics in Water", Edited by R.F. Gould, p. 337, (1968), (American Chemical Society, Washington, D.C.).
- D. C. Girvin, L. L. Ames, A. P. Schwab, J. E. McGarrah: J. Colloid Interface Sci., 141, 67 (1991).
- 3) J.-M. Combes, C. J. Chisholm-Brause, G. E. Brown, Jr., G. A. Parks, S. D. Conradson, P. G. Eller, I. R. Triay, D. E. Hobart, A. Meijer: *Environ. Sci. Technol.*, 26, 376 (1992).
- M. H. Bradbury, B. Baeyens: J. Colloid Interface Sci., 158, 364 (1993).
- 5) J. A. Berry, H. E. Bishop, M. M. Cowper, P. R. Fozard, J. W. McMillan, S. A. Mountfort: *Analyst* (London), **118**, 1241 (1993).
- 6) "Surface and Colloid Science", Edited by E.

Matijević, (1982), (Plenum Press, New York).

- "Geochemical Processes at Mineral Surfaces", Edited by J. A. Davis, K. F. Hayes (1986), (American Chemical Society, Washigton, D.C.).
- 8) "Aquatic Surface Chemistry", Edited by W. Stumm, (1987), (John Wiley & Sons, New York).
- 9) D. A. Dzombak, F. M. M. Morel: "Surface Complexation Modeling", (1990), (John Wiley & Sons, New York).
- 10) "Mineral-Water Interface Geochemistry", Edited by M.
 F. Hochella, Jr., A. F. White (1990), (Mineralogical Society of America, Washington, D.C.).
- 11) W. Stumm: "Chemistry of the Solid-Water Interface", (1992), (John Wiley & Sons, New York).
- 12) J. W. Westall, H. Hohl: Adv. Colloid Interface Sci., 12, 265 (1980).
- 13) G. Sposito: J. Colloid Interface Sci., 91, 540 (1983).
- 14) R. E. Johnson, Jr.: J. Colloid Interface Sci., 100, 540 (1984).
- J. S. Noh, J. A. Schwarz: J. Colloid Interface Sci., 139, 139 (1990).
- 16) S. Goldberg: J. Colloid Interface Sci., 145, 1 (1991).
- H. Tamura, E. Matijević, L. Meites: J. Colloid Interface Sci., 92, 303 (1983).
- 18)田村紘基,片山則昭,古市隆三郎:分析化学,37, 395 (1988).
- 19) H. Tamura, T. Oda, M. Nagayama, R. Furuichi: J. Electrochem. Soc., 136, 2782 (1989).
- 20)田村紘基,辰巳太郎,古市隆三郎:表面技術,40, 1116 (1989).
- 21) 田村紘基, 古市隆三郎: 分析化学, 40, 635 (1991).
- 22) H. Tamura, T. Oda, R. Furuichi: Anal. Chim. Acta, 244, 275 (1991).
- 23) 片山則昭,田村紘基,古市隆三郎:電気化学,60, 887 (1992).
- 24)田村紘基,片山則昭,古市隆三郎:分析化学,42, 719 (1993).
- 25) H. Tamura, M. Kudo, R. Furuichi: Anal. Chim. Acta, 271, 305 (1993).
- 26) 片山則昭,田村清一,田村紘基,古市隆三郎:電気 化学, 62, 251 (1994).
- 27) "分析化学反応の基礎", 日本分析化学会北海道支 部編, p. 262 (1980), (培風館).
- 28)田中信行,杉 晴子訳:"錯形成反応", pp. 272~273 (1965), (産業図書); {A. Ringbom: "Complexation in Analytical Chemistry", (1963), (John Wiley & Sons, New York)}.
- 29) R. O. James, T. W. Healy: J. Colloid Interface Sci., 40, 42, 53, 65 (1972).
- 30) D. P. Rodda, B. B. Johnson, J. D. Wells: J. Colloid Interface Sci., 161, 57 (1993).

BUNSEKI KAGAKU

Modeling of divalent heavy metal ion adsorption on the surface of iron(III) oxide particles. Hiroki TAMURA, Koji OKITA^{*}, Noriaki KATAYAMA^{**} and Ryusaburo FURUICHI^{*} (*Research Group of Materials Chemistry, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo-shi, Hokkaido 060; **Asahikawa National College of Technology, 2-2, Shunkodai, Asahikawa-shi, Hokkaido 071)

Soils and sediments contain metal oxide particles and control the concentration of heavy metal ions in natural waters at low levels by adsorption. The adsorption isotherms of divalent heavy metal ions on the surface of iron(III) oxide particles were obtained, and modeling of the adsorption reaction was made to describe and predict water quality. The model assumes (1) surface complex formation due to the (1 : 1) and (1 : 2) cation exchange reactions with protons of acid surface hydroxyl sites and (2) suppression of the reactions by a linear increase in the Gibbs free energy change (ΔG) with the surface coverage. From the model parameters, it was found that the adsorption affinity increases in the order: $\operatorname{Co}^{2+} \leq \operatorname{Zn}^{2+} < \operatorname{Cu}^{2+} < \operatorname{Pb}^{2+}$. There was a good correlation between the stabilities of surface complexes and hydroxo complexes for these ions. This supports the surface complexation model which assumes that metal ion adsorption is due to the donation of electron pairs from the lattice oxide ions to the metal ion.

(Received June 10, 1994)

Keyword phrases

iron(III) oxide particles; divalent heavy metal ions; surface hyroxyl groups; adsorption of ions by surface complex formation; modeling