BUNSEKI KAGAKU Vol. 48, No. 3, pp. 365–375 (1999) © 1999 The Japan Society for Analytical Chemistry

報 文

誘導結合プラズマ発光分析法及び誘導結合プラズマ質量 分析法による湖底堆積物試料の多元素定量分析

衛 蓉*,池田 克弥*,竹内 章浩*,定免 慶*,
 山中 克仁*,猿渡 英之**,原口 紘宏^{®*}

Multielemental determination of major-to-ultratrace elements in lake sediment reference materials by ICP-AES and ICP-MS

Rong Wei^{*}, Katsuya Ikeda, Akihiro Takeuchi, Kei Jomen, Katsuhito Yamanaka^{*}, Hideyuki Sawatari^{**} and Hiroki Haraguchi^{*}

^{*}Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603

** Faculty of Education, Miyagi University of Education, Aramaki, Aoba-ku, Sendai 980-0845

(Received 1 July 1998, Accepted 26 November 1998)

Major-to-ultratrace elements in lake sediment reference materials from Lake Biwa (JLk-1) and Lake Baikal (BIL-1) were determined by inductively coupled plasma atomic-emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The sediment samples were decomposed by lithium metaborate (LiBO₂) fusion in a platinum crucible. Then, the decomposed sediment samples were dissolved in a 1 M HNO₃ solution, and subjected to the determination of the major, minor and trace elements by ICP-AES and ICP-MS. Furthermore, rare-earth elements were determined by ICP-MS after cation-exchange separation from the major and minor elements. Consequently, 43 elements in both sediment reference materials were successfully determined by the present analytical method. This method was also applied to a multielement analysis of 100 m sediment boring core samples (BDP 93-2) collected from Lake Baikal in 1993. The analytical data for sediment reference materials and the vertical distributions of Si, Fe, Ti, Ba, Zn, U and Lu in Lake Baikal sediment core samples are discussed from geochemical points of view.

Keywords : lake sediment reference materials; ICP-AES; ICP-MS; multielemental determination; major-to-ultratrace elements.

* 名古屋大学大学院工学研究科応用化学専攻: 464-8603 愛知県名古屋市千種区不老町

1 緒 言

近年,誘導結合プラズマ質量分析法(ICP-MS)が新 しい高感度分析法として発展,普及しつつある¹⁾²⁾. ICP-MSは,溶液試料を直接プラズマ中に噴霧,導入して,

^{**} 宮城教育大学教育学部:980-0845 宮城県仙台市青葉 区荒巻字青葉

多くの元素を pg ml⁻¹ レベルの検出限界で同時定量する ことが可能である. その定量範囲は 1 pg ml⁻¹~1 µg ml^{-1} と広いが、 $1 \mu g ml^{-1}$ より高濃度の元素(主成分及) び少量成分)については一般に直接定量は困難である. 更に、高濃度マトリックスを有する試料中の微量元素の 定量においては、(i)マトリックス効果、(ii) 多原子 イオン干渉の問題がある¹⁾³⁾.故に,主成分から超微量 成分までの広範な元素の定量を行うには、まず主成分及 び少量成分元素を正確に定量すること、そしてそのデー タを用いてマトリックス効果及び多原子イオン干渉につ いて正確な補正を行うことが、多元素定量のための戦略 として求められる.このような目的のためには、一般的 に溶液試料について 1 ng ml⁻¹~100 μg ml⁻¹の濃度範 囲にある元素の正確かつ精度の良い定量が可能である誘 導結合プラズマ発光分析法 (ICP-AES) を併用すること が有効な手段となる4).

本研究では、ICP-MS 及び ICP-AES を用いてたい(堆) 積物試料の多元素定量分析法を確立することを目的とし た. 堆積物試料については, 従来原子吸光法⁵⁾, 中性子 放射化分析法⁶⁾, ICP-AES⁷⁾ などによる研究が行われて きた.その中で中性子放射化分析法や ICP-AES では多 元素分析が行われている.更に,最近地球環境問題と関 連して, 湖底堆積物のボーリングコア試料について古環 境変動解析等に関する研究が行われている^{8)~10)}.この ようなコア試料の地球化学的解析では、主成分及び少量 成分元素だけでなく、微量から超微量元素までできるだ け多くの元素のデータが環境変動の指標として有効な場 合が多い. そこで, 著者らは地球環境試料の多元素デー タを用いる解析法を"多元素プロファイリング分析法 (multielement profiling analysis)"として提案してい る¹¹⁾.そのためには、主成分から超微量成分までの多元 素の正確な定量分析法の確立が強く望まれる.よって, 本研究では,琵琶湖湖底堆積物標準試料(GSJ JLk-1;地 質調査所)及びバイカル湖湖底堆積物標準試料(BIL-1; ロシア地球化学研究所)を用いて, ICP-AES, ICP-MS による多元素定量分析を検討した.その結果,いずれの 試料についてもメタホウ酸リチウムによる融解後, 直接 分析又はイオン交換分離の併用により43元素の定量が 可能となったので報告する.

2 実 験

2.1 装置

主成分等(少量成分を含む)の元素の定量には, ICP-AES 装置(Jarrell Ash 製 AtomComp Mk II)を用いた. 本装置は Paschen-Runge 型ポリクロメーター(焦点距 離 75 cm)を用いた多元素同時システム(40 チャンネ ル)である. 試料導入には、クロスフロー型ネブライザ ーを用いた. なお、PとSの測定はセイコーインスルメ ンツ製の波長掃引型 ICP-AES 装置 SPS 1500V を用いて 行った.

微量元素,超微量元素の定量に用いた ICP-MS 装置 は、セイコーインスツルメンツ製 SPQ 8000A である. 本装置は、四重極型質量分析計を搭載しており、通常測 定では 30 元素(30 m/z)の同時測定が可能である. 試 料導入にはガラス製同軸型ネブライザーを用いた. ICP-AES 装置及び ICP-MS 装置の測定条件については Table 1 に示した. これらの測定条件は装置パラメーターの最 適化を行って求めたものである.

ICP-MS 測定における主成分元素によるマトリックス 効果は、文献に従い Ge, In, Re, Tl を内標準元素とし て用いる内標準法によって補正を行った¹²⁾.

2・2 試薬及び試料

アルカリ融解法に用いた LiBO₂ は Merck 製 Spectromelt 試薬である.融解試料の溶解及び希釈,更にイオ ン交換カラムからの元素の分離・溶出には関東化学製電 子工業用硝酸を用いた.又,イオン交換分離における主 成分の溶出に用いた塩酸は関東化学製有害金属測定用試 薬である.ICP-AES 及び ICP-MS 測定のための検量線用 多元素標準溶液は,和光純薬製の原子吸光分析用単元素 標準溶液(1000 µg ml⁻¹)を混合希釈して調製した.な お,多元素混合標準溶液は測定上の便宜,溶液の安定性, 分析対象元素の定量範囲などを考慮して,Table 2のよ うにグループに分けたものを使用した.

分析に用いた試料は、地質調査所から頒布されている 琵琶湖湖底堆積物標準試料(JLk-1)及びロシア地球化 学研究所から頒布されているバイカル湖湖底堆積物標準 試料(BIL-1)である.これらの試料は、110℃で4時 間乾燥した後、適当量をひょう取して以下の分析に用い た.

2・3 堆積物試料の分解法

琵琶湖及びバイカル湖湖底堆積物標準試料はいずれも 次のアルカリ融解法によって分解後,硝酸に溶解して溶 液化し, ICP-MS 及び ICP-AES 測定に供した.

試料約 0.2 g を白金るつぼにひょう取し, LiBO₂ 0.5 g を加えて, バーナーで約 15 分間加熱して融解した. その溶融物は白金るつぼと共に 1 M 硝酸溶液約 60 ml が入ったテフロンビーカー (容量 100 ml) に入れ, スターラーを用いて約 2 時間かきまぜ, 溶融物を溶解した.

Table 1 Operating conditions for ICP-MS and

報文

衛,池田,竹内,定免,山中,猿渡,原口:湖底堆積物試料の多元素定量分析

ICP-AES instruments		AES and ICP-MS measu		
ICP-MS	Seiko model SPQ 8000A	Group	Elements	
Plasma conditions		ICP-AFS me	asurement	
RF frequency	27.12 MHz	Group 1	Fe Al Na	
RF power	1.0 kW	Oroup 1	M_{α} Ca Ti Ma	
Coolant gas	$161 \mathrm{min}^{-1} \mathrm{Ar}$	Group 9	si	
Auxiliary gas	$1.01 \min_{1}^{-1} Ar$	Group 3	K .	
Carrier gas	$0.5 \mathrm{min}^{-1} \mathrm{Ar}$	Group 4	D	
Sampling conditions		oroup 4	S	
Sampling depth	12 mm from work coil	ICP MS me	5 Surement ^{a)}	
Sampling cone	Copper, 1.1 mm orifice	Crown 5		
	diameter	Group 5	C_{2} C_{2} C_{2} C_{2} C_{3} C_{3} C_{3} C_{3} C_{3} N_{1} C_{2}	
Skimmer cone	Copper, 0.35 mm orifice	Group 0	a, 2n, 0, nn, 00, nn	
	diameter	Group 7	Σ_1, S_1, K_0	
Nebulizer	Glass concentric type	Casara 9	W V La Ca Du Nd	
Sample uptake rate	0.7 ml min^{-1}	Group o	I, La, Ce, Fr, Nu Sm En Cd Th Du	
Data acquisition		Group 9	JIII, EU, GU, TD, Dy	
Data point	3 points/peak	Group 10	HO, EF, 111, YD, LU	
Dwell time	10 ms/point	a) Each of	the multielement stan	
Integration	100 times	ICP-MS co	ntains Ge, In, Re an	
		each) as int	ernal standard elemen	
ICP-AES	. Jarrell-Ash model 975			
	Plasma AtomComp Mk II			
Plasma conditions	•	,		
RF frequency	27.12 MHz	換樹脂は.B	io-Rad 製の強酸性陽	
RF power	1.0 kW	50141 XQ (100		
Coolant gas	$20 \mathrm{lmin}^{-1}\mathrm{Ar}$	50W-X8 (100	~ 200 × 9 5 ±) Ca	
Auxiliary gas	$1.0 \mathrm{lmin^{-1}Ar}$	ラムは,1M	塩酸溶液に保存した	
Carrier gas	$0.5 \mathrm{lmin}^{-1}\mathrm{Ar}$	長さ 200 mm	のガラス管に充塡し、	
Observation height	18 mm above work coil	した谷純水な	法して調制した この	
Nebulizer	Cross-flow type	して夜がむれてる		
Sample uptake rate	1.2 ml min^{-1}	ml min ⁻¹ であ	った.イオン交換分	
Polychromator	Paschen-Runge mounting	溶解試料溶液	50 ml を陽イオン交換	
Focal length	75 cm	陽イオン成分	を樹脂に捕進した	
Grating	2400 grooves/mm			
Entrance slit width	25 µm	40 ml, 続いて	.3 M 明	
Exit slit width	$50 \ \mu m$	素を溶出させ	た後,8M硝酸100m	
Integration	10 s	素を溶出させ	た。希土類元素を含む	
Repetition	3 times	ЛСПНСС		

溶解した溶液を 5A沪 紙で沪過後,最終的には1M 硝酸 溶液で100 ml に定容し,溶解試料とした.溶解試料の うち一部を希釈し、10 倍希釈した溶液は ICP-AES, 20 倍希釈した溶液は ICP-MS による直接定量に供した.又, 残りのうち 50 ml は希土類元素定量用として、イオン交 換分離を行った後 ICP-MS によって希土類元素を定量し た.

2・4 陽イオン交換法による主成分等元素と希土類元 素の分離

主成分等元素と希土類元素の分離に用いた陽イオン交

Table 2 Multielement standard solutions for ICPrements

Group	Elements	Concentration				
ICP-AES measurement						
Group 1	Fe, Al, Na,	$20~\mu\mathrm{g~ml}^{-1}$				
-	Mg, Ca, Ti, Mn	$10 \ \mu g \ ml^{-1}$				
Group 2	Si	$50 \ \mathrm{\mu g} \ \mathrm{ml}^{-1}$				
Group 3	K	$50 \ \mu \mathrm{g} \ \mathrm{ml}^{-1}$				
Group 4	Ρ	$10 \ \mu g \ ml^{-1}$				
-	S	$15 \mu \mathrm{g} \mathrm{ml}^{-1}$				
ICP-MS meas	surement ^{a)}					
Group 5	Ba, Th, Pb, U, Hf, Cs	$10~{ m ng~ml}^{-1}$				
Group 6	Ga, Zn, Cu, Ni, Co, Cr, V	5 ng ml^{-1}				
Group 7	Zr, Sr, Rb	10 ng ml^{-1}				
-	W	5 ng ml^{-1}				
Group 8	Y, La, Ce, Pr, Nd	10 ng ml^{-1}				
Group 9	Sm, Eu, Gd, Tb, Dy	10 ng ml^{-1}				
Group 10	Ho, Er, Tm, Yb, Lu	10 ng ml^{-1}				
a) Each of the multielement standard solutions for						

d Tl (10 ng ml^{-1}) ts.

イオン交換樹脂 AG ある.イオン交換カ 樹脂を内径 10 mm, 8 M 硝酸溶液で洗浄 つカラムの流量は約2 離では、まず前述の 奥樹脂カラムに流し, 次に,2M塩酸溶液 を流して主成分等元 nl を流して希土類元 密出液は,内標準元 素として Re と Tl を最終的に 10 ng ml⁻¹になるように 加えて 10 倍に希釈し, ICP-MS による希土類元素の測 定を行った.希土類元素の測定値については前述のよう に内標準補正を行った.

3 結果と考察

3・1 ICP-AES 及び ICP-MS 測定における検出限界

本研究では湖底堆積物標準試料中の主成分から超微量 成分までの多元素を ICP-AES と ICP-MS で定量すること を目的としたので、それぞれの方法で測定できる分析元 素の種類と定量濃度範囲を知るために、まず ICP-AES 及び ICP-MS 測定における検出限界を求めた. Table 1 の測定条件において、0.1 M 硝酸溶液を空試験溶液とし てプラズマ中に噴霧して求めた各元素の装置検出限界

BUNSEKI KAGAKU

(instrumental detection limit; 単位 μ g ml⁻¹) を, ICP-AES の場合は波長順に, ICP-MS の場合は質量数 (m/z) の順に並べて Table 3 に示した. ICP-AES の場合の装置

検出限界は、Table 3 に示すそれぞれの波長におけるバ ックグラウンド信号の標準偏差(σ)の3 倍の大きさ (3σ)に相当する信号強度を与える元素濃度として求め

Table 3	The instrumenta	l and analyt	cal detection	a limits obtaine	ed by ICP-AES	and ICP-MS

Element	Wavelength ^{a)} or m/z	Instrumental detection limit ^{b)} /ng ml ⁻¹	Analytical detection limit ^{e)} / μ g g ⁻¹
K	I 766.5 (nm)	100	500
Na	I 589.0	8	40
Ti	II 334.9	0.8	4
Ca	II 317.9	6	30
Al	I 308.2	4	20
Si	I 288.1	10	50
Mg	II 279.0	10	50
Fe	II 259.9	1	5
Mn	II 257.6	0.6	3
Р	I 213.618	7	3
S	I 180.734	5	2
V	51 (m/z)	0.04	0.4
Cr	52	0.05	0.5
Co	59	0.006	0.06
Ni	60	0.09	0.9
Cu	63	0.04	0.4
Zn	66	0.04	0.4
Ga	69	0.001	0.01
Rb	85	0.001	0.01
Sr	88	0.005	0.05
Y	89	0.0004	0.004
Zr	90	0.02	0.2
Cs	133	0.0003	0.003
Ba	137	0.015	0.15
La	139	0.0003	0.003
Ce	140	0.0004	0.004
Pr	141	0.0004	0.004
Nd	146	0.001	0.01
Sm	147	0.0005	0.005
Eu	151	0.0002	0.002
Gd	157	0.0004	0.004
Tb	159	0.0003	0.003
Dy	163	0.001	0.01
Ho	165	0.0002	0.002
Er	167	0.0005	0.005
Tm	169	0.0003	0.003
Yb	174	0.0007	0.007
Lu	175	0.0003	0.003
Hf	178	0.001	0.01
W	182	0.0008	0.008
Pb	208	0.006	0.06
Th	232	0.0007	0.007
\mathbf{U}	238	0.0001	0.001

a) I and II indicate atomic and ionic lines, respectively. The elements with these signs were determined by ICP-AES, and other ones by ICP-MS. b) The detection limits estimated by using 0.1 M HNO₃ as the blank solution (n = 10). c) The detection limits for sediment sample per unit amount (1 g), which were calculated from the instrumental detection limits.

た.又, ICP-MS における装置検出限界は, ICP-AES の 場合と同様に, Table 3 に示す元素の質量数 (m/z) に おけるバックグラウンド信号の 3σ に相当する元素濃度 として求めた. ICP-AES, ICP-MS のいずれの場合も, 検量線の直線範囲は, Table 3 の装置検出限界の値から $4\sim5$ けたにわたる濃度範囲であった.

更に, Table 3 には分析検出限界 (analytical detection limit; 単位 μ g g⁻¹) も示した.分析検出限界は, 堆 積物試料 1 g 中に含まれる元素の検出限界として換算し たものである.実際には, "2·3 堆積物試料の分解法" で述べたように,約 0.2 g の堆積物試料を最終的には ICP-AES 測定では 1000 ml, ICP-MS 測定では 2000 ml の溶液にした場合の元素濃度を定量したことに相当する ので,実試料に対する検出限界としての分析検出限界 は,装置検出限界を ICP-AES では 5000 倍, ICP-MS で は 10000 倍した値を試料 1 g 当たりとして算出した.分 析検出限界は K で 500 μ g g⁻¹と最も大きいが,U で 0.001 μ g g⁻¹,希土類元素では 0.002 ~ 0.01 μ g g⁻¹と非 常に低い値であった.この場合,実際試料分析における 定量下限は分析検出限界の 10 倍を一応の目安とした.

3・2 陽イオン交換樹脂による主成分等元素と希土類 元素の分離

希土類元素は ICP-MS によって定量したが,主成分等 元素によるマトリックス効果及び多原子イオン干渉を軽 減するために,あらかじめ陽イオン交換樹脂を用いて主 成分等元素から分離した.最終的な分離及び溶出の条件 は実験の項2・4 で述べたとおりであるが,実験的には まず主成分等元素と希土類元素の分離条件を検討した. この検討には,湖底堆積物分解溶液中の主成分元素濃 度,及び LiBO₂融剤の使用による Li,Bの濃度を考慮 して,試験溶液を調製して用いた.試験溶液の濃度は以 下のとおりである;Li,B:各100;Si:50;Al,Fe,Ca: 各10;Na,Mg,K,Ba:各5;Mn,希土類元素:各1 $\mu g m l^{-1}$.

この試験溶液 50 ml をイオン交換カラムに流し,溶液 中の金属イオンをイオン交換樹脂に捕集後,2M 塩酸溶 液 40 ml,続いて3M 硝酸溶液 210 ml を順次カラムに 流し,溶出液 10 ml ずつを分取して ICP-AES, ICP-MS でそれぞれ主成分等元素と希土類元素の濃度を測定し た.このように求めた溶出曲線を Fig.1に示す.Fig.1 には示さなかったが,Li,B,Si,Na,Kは2M 塩酸 40 ml を流した時点で既に全部溶出した.Mg,Mn,Fe, Ca も希土類元素の溶出が始まる2M 塩酸 40 ml と3M 硝酸 60 ml を流した時点でほぼ完全に溶出した.しかし, Fig. 1 に見られるように, Al と Ba はこの時点で完全に は溶出しないことが分かった. ICP-MS による希土類元 素の測定において, Al はマトリックス効果を,又 Ba は BaO の生成による Sm, Eu, Gd に対する多原子イオン 干渉を起こす可能性がある. 故に,希土類元素の最終的 な溶出条件を考慮して,カラム中に残った Al と Ba を 8 M 硝酸 100 ml で溶出し,その溶液中の元素濃度を調べ たところ,Al は 10,Ba は 0.01 μ g ml⁻¹であった. この 程度の濃度では Al のマトリックス効果は内標準補正法 を用いれば希土類元素の定量には問題なく,又 Ba によ る多原子イオン干渉もほぼ無視できることが分かった.

Fig. 1から分かるように 3 M 硝酸を 60 ml 以上流し 続けると, Eu と Sm が 70, Gd が 80 ml 付近から溶出 し始め,以下順次そのほかの希土類元素が溶出し, La の溶出が最も遅かった. 但し, 3 M 硝酸 210 ml では希

Fig. 1 Elution curves of (A): major and minor elements, and (B): rare earth elements from cation exchange column

Test solution: Li, B, 100; Si, 50; Al, Fe, Ca, 10; Mn, REEs, $1 \ \mu g \ ml^{-1}$. Ion exchange resin: AG 50W-X8 (100 ~ 200 mesh). Elution condition: first 40 ml of 2 M HCl and then 210 ml of 3 M HNO₃; Column; 10 mm i.d. × 200 mm long; Flow rate; 2 ml min⁻¹

土類元素をすべて溶出することはできなかった. これらの結果から,まず試料溶液をイオン交換カラムに流して金属イオンを補集した後,2M塩酸40ml,3M硝酸60mlを流し主成分等元素をほぼ溶出させた. 続いて8M硝酸を流してイオン交換樹脂から希土類元素を溶出させたところ,100mlで希土類元素はほぼ完全に回収された.故に,8M硝酸100mlによる溶出液をビーカーに分取後10倍に希釈し,ICP-MSによって希土類元素を測定した.

3・3 湖底堆積物標準試料の分析

これまで述べた分析操作によって求めた琵琶湖湖底堆 積物標準試料(JLk-1)及びバイカル湖湖底堆積物標準 試料(BIL-1)の分析結果をそれぞれ Table 4と5にま とめる.前者について地質調査所から,又後者について はロシア地球化学研究所から出されている参考値を表中 に併記した.いずれの試料についても43元素の定量値 が得られたので,これらを濃度順に示した.

まず,琵琶湖湖底堆積物標準試料について定量された 元素は Si 27.42% から Lu 0.60 µg g⁻¹ までの約7けたの 濃度範囲にある 43 元素である. Table 4 では独立 3 回 の繰り返し分析から求められた標準偏差も分析値の濃度 範囲の指標として示すとともに、測定値の相対標準偏差 (RSD) も示した. RSD は Cu で最大 22.2% であり,こ のほか Ca, Sr, Co 及び Lu は 10% 以上であった.し かし、そのほかの元素について RSD は 10% 以下であ り、精度の良い分析値が得られていることを示してい る. Cu については Table 5 に示されるバイカル湖試料 でも RSD は 16.4% と大きかった. この理由は ICP-MS でサンプリングインターフェースとして銅製のサンプリ ングコーン及びスキマーコーンを使用したことによる影 響と考えられる. Caと Sr については、これらの元素が 炭酸塩として存在する場合 LiBO2 による融解が困難な 場合があるので,分解時の問題かもしれない.

本実験で得られた分析値を参考値と比較すると,全体 的にほぼ一致した結果であった.但し,データを更に精 査するために,Table 4には本実験の分析値の参考値に 対する差を相対偏差として示してある.ICP-AESで測定 した主成分元素については P - 20.9%,S - 24.3% と大 きい相対偏差であった.PとSについては参考値の濃度 変動幅も大きく,更に試料分解法や測定法の検討が必要 である.ICP-MSで測定した微量成分元素の場合には, Cu で最大+33.3%,そのほかにもV及び Eu が 20% 以 上のかなり大きな差が見られた.ほかにも,Zn,Zr, Sr,Ni,Cs, Pr,Gd,Sm,U,Hf でも 10% を超える 相対偏差であった.しかし,このような相対偏差が大き い元素についても分析値の範囲はほとんどの場合参考値 の濃度範囲(標準偏差)内であった.そのほかの元素 は±10%以下の範囲にあり,良い一致を示した.

バイカル湖試料も Table 5 に示すように琵琶湖試料 と類似した組成であるために、ほぼ同様のデータが得ら れ, Si 28.45% の最大値から Lu 0.38 μg g⁻¹の最小値ま で43元素の分析値が求められた。バイカル湖試料と琵 琶湖試料のいずれの試料でも S, Zr, Zn, V, Ni, Pr, Sm, Gd, Hf 及び Eu が 10% 以上の相対偏差であった. S, Zn, V, Ni については試料の均一性に問題があるこ とが考えられる、実験的には確認しなかったが、Zrの 場合には試料中にジルコン(ZrSiO₄)が含まれ、その分 解が不安定である影響で Zr の相対偏差が負になったか もしれない¹³⁾. Gd, Eu については, それぞれ m/z =157, 151 で測定したので、¹⁴¹Pr¹⁶O, ¹³⁵Ba¹⁶Oの多原子 イオンの影響を受けている可能性も考えられる. Pr, Sm, Hf については不明であるが,一般に希土類元素の 相対偏差が大きいのは、その濃度が数 µg g⁻¹と低濃度 であり、正確な定量はかなり困難であるためであろう. 又, 琵琶湖試料及びバイカル湖試料のいずれの場合に も、公表されている値は参考値であり、それぞれの研究 所を中心に単独又は複数の測定法によって求められたも のである¹⁴⁾. 故に,いずれの試料の場合についても今回 測定した多くの元素の分析値、参考値ともに更に検討が 必要である.

3・4 湖底堆積物標準試料に関する地球化学的考察

湖底堆積物は湖周囲の地質環境及び気候変動によって 影響されるので,堆積時の環境を反映する¹⁵⁾.故に,日 本最大,最古の湖である琵琶湖⁸⁾,及び世界最大,最古 の湖であるバイカル湖⁹⁾においては湖底堆積物ボーリン グコア試料の採取が行われ,現在までに 300~500万年 にわたる古環境変動の解析が試みられている.

Table 6 には、今回分析に用いた琵琶湖とバイカル湖 の表層堆積物中の主成分元素及び少量成分元素の組成 (すべて酸化物と仮定)と強熱減量(LOI; loss of ignition)の総和をまとめた.又、同様に地殻についてのそ れらも示した.地殻の場合には C, N, S 濃度を CO₃, NO₃, SO₄に換算し、強熱減量分として見積もった. Table 6 から分かるように、主成分組成としては 98.48 ~99.26%の範囲である.しかし、強熱減量が琵琶湖で 最も大きいことは、湖内生物活動も活発であり、かつ人 間活動による有機物の流入も大きいことを示唆してい る. 衛,池田,竹内,定免,山中,猿渡,原口:湖底堆積物試料の多元素定量分析

Table 4 Analytical results for Lake Biwa sediment reference material (JLk-1) determined by ICP-AES and ICP-MS

Element	Observed value ^{a)} / $\mu g g^{-1}$	RSD, %	Relative variance ^{b)} , %	Reference value/ $\mu g g^{-1}$	$M_{ m sed}/M_{ m crust}^{ m c)}$
Si	274200 ± 800	0.29	+9.3	268000 ± 4330	0.989
Al	87600 ± 800	0.23	-16	88994 ± 1398	1 077
Fe	46700 ± 500	1.1	-33	48284 ± 2550	0.935
ĸ	21800 ± 100	0.46	-69	93416 ± 1099	0.842
Mg	10000 ± 300	3	- 6.9	10740 ± 600	0.477
Na	7700 ± 400	5.2	+0.8	7642 ± 645	0.272
Ca	4800 ± 500	10.4	-2.0	4900 ± 236	0.132
Ti	4020 ± 80	20	+11	3978 ± 186	0.914
Mn	1970 ± 20	1.0	-40	2053 ± 132	2 077
P	740 ± 10	1.0	-20.9	930 ± 100	0 701
ŝ	624 ± 8	1.3	-943	894 ± 504	2 400
Ba	560 ± 17	3.0	+4.3	586 ± 55	1 320
Zn	180 ± 4	99	+19.9	151 ± 91	2 568
Rb	136 ± 7	51	-62	101 - 21 145 ± 14	1 509
Zr	119 ± 10	8.4	- 15	140 ± 31	0 799
V	95 ± 8	8.4	-20.2	110 ± 17	0.705
Cu	90 ± 20	22.2	+33.3	675 ± 41	1.636
Ce	83 ± 0.9	11	-68	894 ± 65	1 389
Cr	67 ± 4	6.0	-97	74.9 ± 11.3	0.673
Sr	64 ± 8	19.4	-107	79 ± 15	0.171
Pb	45 ± 0.7	1.6	+5.2	49.4 ± 4.6	3 431
Ni	41 ± 3	7.3	+17.5	34.9 ± 4.9	0.542
La	40 ± 0.6	1.5	-41	41.7 ± 9.8	1 334
Y Y	39 ± 0.5	1.3	-8.3	49 ± 9	1.001
Nd	35 ± 1.0	2.9	-44	365 ± 1.8	1 945
Ga	22 ± 0.6	2.7	+9.5	20 ± 2	1.460
Th	18 ± 0.2	1.1	-9.2	19.6 ± 1	2.477
Co	17 ± 2	11.5	-4.8	16.6 ± 3.5	0.696
Cs	12 ± 0.2	1.6	+12.7	11.0 ± 1.6	4.119
Pr	9.4 ± 0.5	5.3	+12.1	8.4 ± 0.9	1 149
Gd	7.6 ± 0.4	5.3	+15.0	6.6	1.406
Dv ·	6.8 ± 0.1	1.5	+5.8	64 ± 0.6	1.100
Sm	6.7 ± 0.4	6.0	- 18.3	82 ± 0.8	1.110
U	4.1 ± 0.1	2.4	-10.5	3.7 ± 0.7	2.275
Er	4.1 ± 0.2	4.9	+7.1	3.81	1.457
Yb	4.1 ± 0.1	2.5	-1.0	41 ± 0.3	1 353
Hf	3.4 ± 0.1	2.9	+15	4.0 ± 0.6	1.134
W	2.8 ± 0.2	7.1	+4.1	2.7	1.871
Но	1.45 ± 0.05	3.4	-46	1.52	1.208
Tb	1.23 ± 0.04	3.3	-54	1.3 ± 0.1	1 537
Ēu	1.1 ± 0.1	94	-915	1.3 = 0.1 1.35 ± 0.15	0.883
Tm	0.61 ± 0.09	33	-76	0.66	1 990
Lu	0.60 ± 0.02	11 7	7.0 A	0.00 + 0.07	1 900

a) Mean value \pm SD (standard deviation), n = 3. b) { $(M_{\text{sed}} - M_{\text{ref}})/M_{\text{ref}} \times 100$ (%); M_{sed} : observed value for sediment sample, M_{ref} : reference value for sediment sample. c) M_{crust} : elemental abundance in earth crust.

更に, 琵琶湖とバイカル湖の堆積物と地殻中の元素濃 度¹⁶⁾を比較検討するために, 地殻中濃度 (M_{crust}) に対 する堆積物中濃度 (M_{sed})の比, すなわち M_{sed}/M_{crust} を計算して, Table 4, 5の最後の欄に示した.こ のような比がそれぞれの湖全体を代表するかどうかは疑 問もあるが、湖における地質学的特徴と堆積環境を知る 上で一次的な指標データとなると考えられる. 幾つかの 特徴を次にまとめる. 372

Table 5 Analytical results for Lake Baikal sediment reference material (BIL-1) determined by ICP-AES and ICP-MS

Element	Observed value ^{a)} / $\mu g g^{-1}$	RSD, %	Relative variance ^{b)} , %	Reference value/ $\mu g g^{-1}$	$M_{ m sed}/M_{ m crust}^{ m c)}$
Si	284500 ± 500	0.18	-0.2	285000 ± 1200	1.026
Al	70000 ± 700	1	-2.5	71800 ± 700	0.861
Fe	45100 ± 800	1.8	-8.1	49100 ± 1000	0.902
K	20100 ± 800	4.0	+9.8	18300 ± 700	0.776
Na	16400 ± 600	3.6	+13.1	14500 ± 500	0.580
Ca	11700 ± 700	6.0	-11.4	13200 ± 600	0.322
Mg	11300 ± 700	6.2	- 6.6	12100 ± 400	0.541
Ti	3800 ± 70	1.8	- 7.3	4100 ± 20	0.864
Mn	3000 ± 10	0.33	- 3.2	3100 ± 20	3.158
Р	1440 ± 10	0.7	-6.7	1500 ± 66	1.370
S	1088 ± 11	1.0	-21.4	1400	4.185
Ba	700 ± 10	1.4	-1.1	710 ± 70	1.652
Sr	246 ± 18	7.3	-7.5	266 ± 30	0.655
Zr	134 ± 16	11.9	-14.1	156 ± 13	0.812
Zn	121 ± 8	6.6	+26.0	96 ± 14	1.728
Rb	89 ± 3	10.0	-4.3	93 ± 5	0.993
Ce	78 ± 0.6	0.7	-3.0	80 ± 5	1.293
V	76 ± 6	7.9	-30.9	110 ± 10	0.563
Cr	63 ± 3	4.8	-4.5	66 ± 4	0.630
Cu	55 ± 9	16.4	+5.8	52 ± 7	1.000
Ni	44 ± 5	11.4	-18.5	54 ± 6	0.592
La	42 ± 0.4	0.95	-6.2	45 ± 6	1.407
Nd	33 ± 0.7	2.1	-14.4	39 ± 5	1.193
Y	26 ± 0.2	0.78	-15	30 ± 4	0.773
Pb	21 ± 0.5	2.4	-1.4	21 ± 3	1.592
Ga	17 ± 1	5.8	+7.5	16 ± 2	1.147
Со	16 ± 2	12.5	-11.1	18 ± 2	0.640
Th	13 ± 0.6	4.5	+3.9	12.7 ± 1.3	1.833
U	12 ± 0.1	0.81	+2.5	12.0 ± 1.1	6.833
Pr ·	9.4 ± 1.1	11.7	+17.5	8	1.146
Cs	5.9 ± 0.1	16.9	-1.7	6 ± 1	1.967
Sm	5.3 ± 0.7	13.2	-24.3	7 ± 1	0.883
Gd	5.1 ± 0.3	5.9	-11.6	5.8	0.950
Dy	4.4 ± 0.06	1.4	-3.7	4.6	0.923
W	3.8 ± 0.1	2.6	-11.6	4.3	2.533
Hf	3.5 ± 0.2	5.7	-10.2	3.9 ± 0.7	1.167
Er	2.7 ± 0.1	3.7	+3.1	2.6	0.957
Yb	2.6 ± 0.2	7.8	-11.7	2.9 ± 0.4	0.853
Eu	1.0 ± 0.2	20	-28.6	1.4 ± 0.2	0.833
Ho	0.96 ± 0.03	3.1	-4.0	1	0.800
\mathbf{Tb}	0.81 ± 0.03	3.7	-10	0.9 ± 0.1	1.012
Tm	0.39 ± 0.01	2.6	- 7.1	0.42	0.780
Lu	0.38 ± 0.02	5.3	-5.0	0.40 ± 0.05	0.760

a) Mean value \pm SD (standard deviation), n = 3. b) See the footnote in Table 4. c) See the footnote in Table 4.

(1) 堆積物では Na, Mg, Ca, Sr の濃度が地殻に比 べて低い.特に,琵琶湖においては Na, Ca, Sr の減少 が顕著である.逆に、Baは堆積物中に多い.

Pb については自動車排ガスの影響,Zn は湖内の生物活 動を反映するものかもしれない.

(2) 琵琶湖では Zn, Pb の濃度が高い. このことは,

(3) バイカル湖堆積物中には U が非常に高濃度であ る.Uは後述の堆積物コア試料においても高濃度であ

報	又
崔文	×ر

Table 6Compositions of major elements in LakeBiwa and Lake Baikal sediment reference
materials

Composition	Lake Biwa JLk-1	Lake Baikal BIL-1	Earth crust
SiO_2	58.75%	60.96%	59.40%
Al_2O_3	16.55	13.22	15.36
Fe_2O_3	6.68	6.44	7.14
K_2O	2.63	2.42	3.12
Na ₂ O	1.04	2.21	3.81
MgO	1.66	1.88	3.48
CaO	0.67	1.64	5.08
TiO_2	0.67	0.63	0.73
MnO	0.25	0.39	0.12
P_2O_5	0.17	0.33	0.24
LOI ^{a)}	10.20	8.34	0.19^{b}
total	99.26	98.48	98.67

a) Loss of ignition. b) Estimated as the total amount of CO_3 , NO_3 and SO_4 from the elemental abundance of C, N and S.

り,湖周囲ないし流入河川域にウラン鉱脈の存在を示唆 する¹⁷⁾.

(4) 希土類元素については, 軽希土類元素はいずれ の試料でもほぼ同濃度であるが, 重希土類元素の濃度が 琵琶湖において高くなる. このことは, Fig. 2 にいん石 中濃度で規格した"希土パターン"として示し, 比較し た.

以上,両方の堆積物の地球化学的特徴について記述したが,これらについては堆積物コア試料について詳細に 検討する必要がある.

Fig. 3には今回測定した琵琶湖とバイカル湖堆積物標 準試料中の元素濃度の相関を示した.堆積物の主成分で ある Si, Al, Fe, K, Mg, Ti はほとんど同じ濃度であ るが, Na, Ca, Mn, P, S はバイカル湖において高濃 度である.ほかに, Sr, U はバイカル試料について顕著 に高い濃度となっている.一方, Zn, Rb, Cu, Pb, Cs については琵琶湖試料で高濃度である.これらのこと は,自然環境が保存されているシベリアに位置するバイ カル湖と,人口密度の大きい地域に位置する琵琶湖の差 異を表すものとして興味深い.

3.5 バイカル湖湖底堆積物のコア試料中の元素分布

湖底堆積物のコア試料は古環境変動を保存している可 能性があることから,これまで多くの研究が行われてき た.著者らも琵琶湖湖底堆積物 1400 m コア試料の共同 研究に参加し,例えば Mn の濃度分布は湖の古水深と相

Fig. 2 REE distribution patterns of sediment reference materials

 \times : Lake Biwa sediment reference material (JLk-1),

•: Lake Baikal sediment reference material (BIL-1)

Fig. 3 Concentration correlation between Lake Biwa sediment reference material (JLk-1) and Lake Baikal sediment reference material (BIL-1)

関があることを示した15).

バイカル湖についても湖底堆積物ボーリングコア試料 掘削計画(Baikal Drilling Project; BDP)が日本,ロシ ア,米国を中心とする国際共同研究によって1989年以 来進められている⁹⁾.この共同研究によって1993年に 掘削された100mコア試料(BDP 93-2)について,本 研究で開発した多元素分析法を応用し,濃度垂直分布を 測定した.その結果の一部を試料中主成分元素である Si,Fe,Ti及び微量成分元素であるBa,Zn,U,Luに ついてFig.4に示した.Fig.4の実験では,100mコア 試料よりほぼ等間隔に切り出された堆積物の総計229 試料の定量したデータを深度ごとにプロットしたもので

ある.コア試料の年代は約50万年と推定されている.

Fig. 4から分かるように、それぞれの元素は特異的な パターンを示している. Si は最上層部で高い濃度とな っているが、下部では 25~30%の範囲内でほぼ一定濃 度になっている. Si の場合には岩石、鉱物由来の無機 態にケイ藻類などプランクトン由来の有機態が混入して いる可能性があり、細かい濃度変動の解析が必要であ る. Fe は表層で濃度が低く、又コア試料上部で濃度変 動が大きくなっているが、コア下部でやや高濃度となっ ている. Ti は Fe と類似したパターンを示した. Fig. 4 に示した Lu の分布パターンと同様に、希土類元素は一 般には Fe, Ti と類似した分布であった.

前節で述べたように,バイカル湖堆積物中のUの濃 度が地殻より高濃度で推移し,かつかなり高濃度のピー クが見られる.このことは湖周囲にウラン鉱脈の存在を うかがわせるものと考えられる.ZnはFig.4に示した 元素の濃度垂直分布の中では最も特徴的なパターンを示 し,最上層部及び58m付近で高濃度のピークを示した. その理由についてはわからないが,Znは水環境中でも 生物活動と関連の深い元素であるので,バイカル湖にお ける気候の温暖化と生物活動の関係を解明する指標とな れば興味深い.

湖底堆積物標準試料について, ICP-AES と ICP-MS を 併用し,主成分元素から超微量元素までの多元素定量法 を確立した.堆積物については,約 28% の Si から 0.28 ~ 0.60 μ g g⁻¹ の Lu と約 7 けたの濃度範囲にわたる 43 元素の定量値が得られた.本研究では,LiBO₂ による融 解試料を,(1) ICP-AES による直接測定,(2) ICP-MS による直接測定,(3) イオン交換分離後 ICP-MS による 希土類元素の測定,と3グループに分けた分析を行っ たが,定量値はそれぞれの試料の参考値とおおむね一致 した結果であった.バイカル湖湖底堆積物コア試料 (BDP 93-2) で幾つかの元素の濃度垂直分布の例を示し たが,このような多元素の定量は地球化学試料において は元素の化学的,物理的かつ生物学的挙動を知る重要な 情報であるので,今回測定できなかった微量元素を含め て,更に精密かつ迅速な定量法の開発,確立が望まれ る.

文 献

- 1) 原口紘炁, 寺前紀夫, 古田直紀, 猿渡英之共訳: "微量元素分析の実際", (1994), (丸善); C. Vandecasteele, C. B. Block: "Modern Methods for Trace Element Determination", (1993), (J. Wiley & Sons, Chichester).
- 2) 河口広司,中原武利編: "プラズマイオン源質量 分析法", (1993), (学会出版センター).
- 3) A. R. Date, Y. Y. Cheung, M. E. Stvant: *Spectrochim. Acta*, **42B**, 3 (1987).
- 第口紘炁: "ICP 発光分析の基礎と応用", (1986), (講談社).
- 5) W. Klemm, G. Bomback: Fresenius' J. Anal. Chem., 353, 12 (1995).
- 6) M. Ebihara, S. Kimura, H. Akaiwa: Fresenius' J. Anal. Chem., 351, 514 (1995).
- H. Haraguchi: Proc. Japan Acad., 61 (Ser. B), 415 (1985).
- 40 堀江正治編: "琵琶湖湖底深層 1400 m に秘められた変遷の歴史", (1988), (同朋舎出版).
- 9) 原口紘炁編: "バイカル湖湖底堆積物コア試料の 地球化学的研究", 平成7年度文部省科学研究費 (国際学術研究)成果報告書, (1996).
- 10) J. C. Bailey: Geochem. J., 27, 71 (1993).
- 11) R. Wei, H. Sawatari, H. Haraguchi: Anal. Sci., 13 (supplement), 419 (1997).
- 12) H. Sawatari, E. Fujimori, H. Haraguchi: Anal. Sci., 11, 369 (1995).
- 13) K. Toyoda, H. Haraguchi: Chem. Lett., 1985, 981.
- 14) A. Ando, T. Okai, Y. Inouchi, T. Igarashi, S. Sudo, K. Marumo, S. Itoh, S. Terashima: *Bull. Geo. Jpn.*, 41, 27 (1990).
- 15) 原口紘炁,不破敬一郎,豊田和弘:"琵琶湖湖底 深層 1400 m に秘められた変遷の歴史",堀江正治 編, pp. 132~155 (1988), (同朋舎出版).
- 16) 半谷高久編著:"地球化学入門", (1991), (丸善).
- 17) G. H. T. Kimble, M. H. Sinclair: Nucleonics, 4, 48 (1950).

The Japan Society for Analytical Chemistry

報文

衛,池田,竹内,定免,山中,猿渡,原口:湖底堆積物試料の多元素定量分析

要 旨

誘導結合プラズマ発光分析法(ICP-AES)と誘導結合プラズマ質量分析法(ICP-MS)を用いて,琵琶 湖湖底堆積物標準試料(JLk-1)及びバイカル湖湖底堆積物標準試料(BIL-1)中の主成分から超微量成 分までの多元素定量分析を行った.堆積物試料はまず白金るつぼ中でメタホウ酸リチウムを用いて融解 した.融解試料は、1 M 硝酸に溶解後適宜希釈して,ICP-AES及び ICP-MSを用いて主成分,少量成分, 微量成分の定量を行った.更に,この1 M 硝酸溶液の一部について陽イオン交換樹脂を用いて主成分及 び少量成分の分離を行った後,ICP-MSによって希土類元素を定量した.上記の分析法によって,すべ ての試料について43元素の定量が可能となった.今回測定した堆積物試料中の元素濃度と地殻中の元 素存在度との相関などについて検討したところ,琵琶湖湖底堆積物試料中にはバイカル湖湖底堆積物に 比較して Pb,Zn などが高濃度であり,このような堆積物標準試料の分析からも人為汚染の進行を示唆 する結果が得られた.本法をバイカル湖湖底堆積物コア試料(BDP 93-2)の分析に応用し,濃度垂直分 布を測定した.