BUNSEKI KAGAKU Vol. 49, No. 10, pp. 735–744 (2000) © 2000 The Japan Society for Analytical Chemistry

報 文

ガラスビード/蛍光 X 線分析法によるアルミナ-クロム質耐火物中の各種成分の定量

朝倉 秀夫^{®*},池上 克重*,中井ゆかり*,脇田 久伸**

Determination of components in alumina - chrome refractories by X-ray fluorescence spectrometry using glass beads

Hideo ASAKURA, Katsushige IKEGAMI, Yukari NAKAI* and Hisanobu WAKITA**

^{*}Research Center, Shinagawa Refractories Co., Ltd., 707, Imbe, Bizen-shi, Okayama 705-8577

** Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0133

(Received 15 May 2000, Accepted 13 July 2000)

The chemical components in alumina-chrome (AC) refractories were determined by X-ray fluorescence spectrometry (XRF) using glass beads (GB). AC refractories which contain much Cr_2O_3 can not be fused with only $Li_2B_4O_7$. Thus, LiNO₃ must be added as an oxidizing agent. The fusing conditions for the GB were chosen as follows: sample (0.2000 g)-Li₂B₄O₇ (3.0000 g)-LiNO₃ (3.000 g), 1250°C-10 min. Complete fusion of the Cr-containing sample was suspected to have been proceeded by the formation of $CrO_4^{2^-}$, caused by the oxidation of Cr(III), converting it to Cr(VI). This possibility was investigated by the CrK-edge X-ray absorption near-edge structure (XANES) spectra. According to preliminary results of Cr(VI) by XANES, the Cr(VI) content in a GB prepared with only Li₂B₄O₇ was merely 7% against the total Cr, but in the GB with $Li_2B_4O_7$ and $LiNO_3$ it was 39%. Moreover, the Cr(VI) content in the GB with $Na_2B_4O_7$ and NaNO₃, which could be easily fused, but could not be used for actual analysis, because of the contain Na₂O content, was 95%. The GBs used for the calibration curve were prepared by accuratly weighing alumina system reference materials and reagent Cr_2O_3 on a micro-balance of 1 µg accuracy limit and fusing them with Li₂B₄O₇ and LiNO₃. As a result, the accuracies (SD) of the calibration curves prepared with these GBs were very satisfactory for Al₂O₃: 0.21 mass%, Cr_2O_3 : 0.07 mass %, SiO₂: 0.027 mass% and so on.

Keywords : X-ray fluorescence spectrometry; refractory; alumina-chrome refractories; glass bead; Al₂O₃; Cr₂O₃; ash melting furnace.

1 緒 言

近年,環境保全の観点から都市ごみ焼却炉から出る焼却 灰やばいじん(飛灰)などを融解して無害化及び減容化す る,各種方式の灰溶融炉及びガス化灰溶融炉の開発が進め られており¹⁾,これら炉材として灰などの融解に伴う高温 に耐え,しかも融解したスラグへの耐食性に優れたアルミ

- * 品川白煉瓦(株)技術研究所: 705-8577 岡山県備前市伊部 707
- ** 福岡大学理学部化学科: 814-0133 福岡県福岡市城南区七隈 8-19-1

ナークロム (Al₂O₃-Cr₂O₃, AC) 質耐火物が使用されるようになっている.しかし,この AC 質耐火物は灰溶融炉用 炉材として注目されるまでは生産量も少なく,その分析法 は著者らが進めてきた標準化^{2)~8)}においても取り上げられ ていない.したがって,我々耐火物分析者には AC 質耐火 物の重用化によって新しい分析対象をもたらされ,これら 耐火物の研究・開発及び品質保証などを支援して行く上 で,迅速でしかも精度良い分析技術の早期確立を強く要請 されるところとなっている.

そこで、今回著者らはこのような AC 質耐火物の分析法

736

として,既に各種耐火物(関連材料も含む)に適用^{9)~17)} して実績のあるガラスビード (GB)/蛍光 X 線分析 (XRF) 法の適用を検討することにした.この方法によれば,試料 を融剤とともにガラス化することによって耐火物などの鉱 物性粉末試料の持つ粒度・鉱物結晶などの不均質性に基づ く誤差因子を排除することができ、均質な GB を使用する ことによって XRF 法において問題となる共存成分の影響 を理論的に補正することが可能となり, AC 質耐火物の精 度良い定量法へとつなげて行けると考えられた.また. XRF 法で最も重要とされる検量線用試料に関しても、著 者らが過去 15 年間をかけて XRF 検量線用標準物質系列 (SeRM) JRRM シリーズ^{11)~14)16)}計 9 系列 97 試料を整備し ているので、これら標準物質と試薬 Cr2O3 をてんびん上で 量り合わせることによって、希望する AC 用組成を得るこ とが期待でき、融剤とともにこれらを融解すれば容易に検 量線用 GB を得ることができると考えられた.

一方,AC 質耐火物のGB/XRF 法では,試料中に多量 に含有される Cr₂O₃によって GB の作製が著しく困難にな ることが予測された.また、本材質には専用の SeRM が ないため、JRRM などの標準物質と試薬 Cr₂O₃をてんびん 上で量り合わせて検量線用 GB を作製しなければならず, 使用するてんびんの精度による誤差¹⁶⁾¹⁷⁾,特に複数試料を 量り合わせた場合の誤差の累積が心配された.これに対し, まず第一の融解条件に関する問題は、クロム-マグネシア 質耐火物において著者らが検討⁹⁾している融剤と試料との 比率及び酸化剤の添加などの検討が参考になると考えられ た. また、Cr₂O₃の融解においては、酸化剤の添加による Cr 原子価の変化と融解の関係を明らかにすることが重要 と考えられた.そこで、本報ではこれらの問題を X 線吸 収端近傍微細構造(XANES)スペクトルによって検討し た. 第二の問題点は、より精密なてんびんの使用によって 解決できると考えられたので、本報では読み取り最小目盛 1µg,最大量り取り量5gの精密てんびんの利用を検討し た. これらてんびんは積載量を正確に読み取ることには適 しているが、一定量を量り取ることには不向きと考えられ たが、実際に複数の試料の量り合わせに用いたところ、最 初の試料の量り取り量を1µgまで精密に読み取ることが できる上,2番目以降の試料も比較的容易に±20µgの範 囲内で量り取ることができた.

今回これらの検討の結果,てんびん上での試薬合成試料 を用いて, GB/XRF 法によって AC 質耐火物中の 11 成分 を精度良く定量することができたので報告する.

2 実 験

2.1 試 薬

融剤として和光純薬製蛍光 X 線分析用四ホウ酸リチウム(Li₂B₄O₇)を650℃で4時間乾燥後,デシケーター中

に保存して用いた.酸化剤としてナカライテスク製特級試 薬硝酸リチウム (LiNO₃)を用いた.融解条件の検討用に は Merck 製蛍光 X 線分析用四ホウ酸ナトリウム (Na₂B₄O₇) を 550 °C で 4 時間乾燥後,デシケーター中に保存したもの 及び片山化学製特級試薬硝酸ナトリウム (NaNO₃)を用 いた.また,X 線吸収端微細構造 (EXAFS)測定装置に よる XANES スペクトル用参照試料として,二クロム酸カ リウム (K₂Cr₂O₇)及び酸化クロム (III) (Cr₂O₃)の各々特 級試薬を用いた.GB のGB 調製容器からのはく離性を高 めるために,片山化学製特級試薬ヨウ化リチウム n 水和 物 (LiI·nH₂O)を用いた.

2・2 検量線用試薬及び標準物質

検量線用としてレアメタリック製 Cr_2O_3 (純度 99.99 mass%)を 1000°C で 1 時間加熱したものを用いた.標準 物質としては,耐火物技術協会標準物質 JRRM 309,310 (以上,高アルミナ質),705,708 及び 710 (以上,アル ミナ-ジルコニア-シリカ質),日本セラミックス協会標準 物質 JCRM R302 (焼成ボーキサイト)及び R031 (アルミ ナ),並びに英国製標準物質 BCS 394 (焼成ボーキサイト) を 110°C で 2 時間乾燥したものを用いた.

2.3 装置

蛍光 X 線測定と理論共存成分補正の算出などのデータ 処理には、理学電機工業製走査型 XRF 装置 3100 型及び その内蔵ソフトウェアを用いた.GB 調製容器は、JIS R 2216 図 1⁷⁾の形状のもので、材質的には白金-金-酸化イ ットリウム(95%-5%-微量)のものを用いた.GB の作 製には、自製上ふた開閉式炭化ケイ素抵抗電気炉を用い た.また、CrK 吸収端の XANES スペクトルの測定には、 X 線源としてタングステン(W)製回転対陰極を装備した 理学電機製 EXAFS 測定装置 R-EXAFS Super を用い、18 kV-300 mA に印加した X 線を Ge(311)を用いて分光して 試料に照射し、5950~6050 eV の範囲(1 eV ステップ) にわたって SSD/PC 検出器を用い、参照試料を 300 秒間 及び GB 試料を 600 秒間測定した.

2·4 実験操作

2・4・1 GBの調製 3・1の結果を基に試料 0.2000 g, 融剤(Li₂B₄O₇)4.0000 g及び酸化剤(LiNO₃)2.000 gを 量り取り,十分混ぜ合わせた後,GB 調製容器に移し入れ, 1250℃の電気炉中で通算3分間調製容器を揺動させなが ら融成物の均質化と脱泡を図り,融解が完了した時点で一 度容器ごと炉外に取り出し,冷却したGB面にLiI・nH₂O 20 mgを加え,再度炉内に移し入れ通算10分間融解後調 製容器ごと急冷してGBを得た.

2•4•2 X線強度の測定と各成分の定量 このように

報 文 朝倉,池上,中井,脇田:ガラスビード/蛍光 X 線分析法によるアルミナ-クロム質耐火物中の各種成分の定量 737

	Condition												
Component line	Time/			PHA			Peak	Backgroun	d, 2 <i>θ</i> /deg.				
	s	СО	DE	UL	LL	Crystal	$2\theta/\text{deg.}$	+ off	- off				
SiO ₂ Si Kα	100	С	FC	100	300	PET	109.00						
$Al_2O_3 Al K\alpha$	100	С	FC	100	300	PET	144.70	2.30	4.50				
Fe ₂ O ₃ Fe Kα	20	С	SC	100	300	LiF200	57.44	1.50	1.58				
$TiO_2 Ti K\alpha$	100	F	FC	100	300	LiF200	86.18	1.56	1.66				
CaO Ca Kα	20	С	\mathbf{FC}	100	300	LiF200	113.10	2.50	2.40				
MgO Mg Kα	100	С	FC	100	300	TAP	45.20	2.15	2.40				
$Na_2O Na K\alpha$	200	C	FC	150	300	TAP	55.15	August 1000					
Κ2Ο Κ Κα	20	С	FC	100	300	LiF200	136.65	2.95	2.50				
Cr ₂ O ₃ Cr Ka	50	С	SC	80	300	LiF200	69.28	1.44	1.46				
$ZrO_2 Zr L\alpha$	100	С	FC	100	300	Ge	136.85	2.95	2.90				
HfO ₂ Hf M α	100	С	\mathbf{FC}	100	300	PET	118.85	2.60	2.70				

Table 1 Analytical conditions for determination of chemical components in glass beads using X-ray fluorescence spectrometer^{a)~d)}

a) A Rigaku RIX3100 X-ray fluorescence spectrometer with Rh target X-ray tube of the end window type was used for X-ray intensity measurements. An X-ray tube was used at 40 kV-90 mA. b) The abbreviated words are as follows: CO, collimator; C, coarse; F, fine; DE, detecter; FC, gas flow proportional counter; SC, scintillation counter; PHA, pulse height analyzer; UL, upper level setting; LL, lower level setting; + off and - off, offset background positions relative to peak. c) In case of SiO₂ and Na₂O, calculation of determination was carried out with only peak intensity. d) Background counting times at each position were as follows; 50 s for Mg, 30 s for Zr and Hf, 20 s for Al and Ti, 10 s for Cr, and 5 s for Fe, Ca and K.

して得られた GB の GB 調製容器底面側を X 線照射面と し, XRF 測定専用ホルダーに装着して Table 1の測定条 件によって測定し, X 線強度を求めた.次に JIS 補正モデ ル検量線式を示す.

$$W_{i} = (aI_{i}^{2} + bI_{i} + c)(1 + \sum d_{i}W_{j}) - \sum l_{i}W_{j}$$
(1)

$$\frac{W_{\rm i} + \sum l_{\rm j} W_{\rm j}}{1 + \sum d_{\rm j} W_{\rm j}} = a I_{\rm i}^2 + b I_{\rm i} + c \tag{2}$$

ここに,Wは測定成分 iの含有率 (mass%), I_i は測定成 分 iのX線強度 (cps),Wは共存成分 jの含有率 (mass%), d_i は共存成分 jの共存成分補正係数, I_i は共存成分 jの重 なり補正係数, a, b, c, は検量線係数である.また,式 (2)の関係式は基準検量線を示す.各測定成分の補正検 量線の係数値 a, b, c及び I_i は,各検量線用 GB ごとに式 (2)にファンダメンタルパラメーター (FP)法によって 求めた理論 d_i (後述,Table 5),測定で得られたX線強 度 I_i 及び化学組成値 W,及び W_i(後述,Table 4)を代入 してこれらを非線型回帰計算して求めた.実際試料の分析 値は,このようにして求めた検量線に試料 GB のX 線強 度 I_i を代入して各成分の仮含有率 (mass%)を順次求め て行き,これを収束するまで繰り返し演算して決定した.

3 結果と考察

3・1 融解条件の検討

試料と Li₂B₄O₇の比が1:10で1150℃において10分間 という通常の融解条件^{7)9)~14)}では、Cr₂O₈含有率7 mass% 程度までの試料しか融解できなかった.そこで、クロム-

Table 2Relationship between fusing condition and
fusing time with lithium system flux

Temperature/	$Li_2B_4O_7/$	LiNO ₃ /	Fusing time/min						
°	g	g	5	10	15	20			
1150	3	1.5			C	⇒●			
	3	2.0				\$			
	3	2.5		\diamond O					
	4	2.0				⇒ ●			
	4	2.5	L	$\diamond O$					
1250	4	1.5		C	\$ O				
	4	2.0	⊑> O						
	4	2.5	\$0						

Sample: JCRM R 031 0.100 g + reagent $Cr_2O_3 0.100$ g • : incomplete fusion(including non-fused matter); \bigcirc : complete fusion

マグネシア(CM) 質耐火物(クロム鉱石も含む)の GB の調製⁹⁾において効果が認められた LiNO₃の添加を検討し た.実験結果を Table 2 に示す.融解実験用試料(Cr₂O₃ 含有率 50 mass%)には,JCRM R031 0.100 g と試薬 Cr₂O₃ 0.100 g をてんびん上で量り合わせたものを用い,これら を融剤と十分混合した後,GB 調製用容器に移し,LiNO₃ を加え,一定温度に昇温された電気炉中に入れ融解状況を 観察した.融解条件と融解状況の関係は CM 質耐火物の 場合(Cr₂O₃含有率 48.97 mass%のクロム鉱で実験)⁹⁾と ほぼ類似した傾向を示しているが,どちらかといえば全般 に AC 質耐火物のほうが容易に融解する傾向が認められ る.例えば,1150°C,Li₂B₄O₇ 3 g,LiNO₃ 2.5 g の融解条 件で両者を比較すると,CM 質では完全に融解することが

Table 3	Relationship between fusing condition and
	fusing time with sodium system flux

Temperature,	/ Na ₂ B ₄ O _{7/}	′ NaNO ₃ /	Fu	Fusing time/min					
°C	g	g	5	10	15	20			
1150	3	0			E	:> 📀			
	3	0.5			C	÷0			
	3	1.0			\diamond O				
1250	3	0			C	> 🌑			
	3	0.5		$\Rightarrow \bigcirc$					
	3	1.0	$\Rightarrow \bigcirc$						

Sample: JCRM R 031 0.100 g + reagent $Cr_2O_5 0.100$ g \bullet : incomplete fusion(including non-fused matter); \bigcirc : complete fusion

できず、融解後の GB も結晶化しているのに対して、AC 質では 10 分間で完全に融解して GB が得られている.同 様に 1250℃ での両者の融解時間を比較すると, Li₂B₄O₇と LiNO₃のいずれの比率においても AC 質は CM 質の約 1/2 程度に短縮されている.このようにほぼ同じ Cr₂O₃ 含有率 の CM 質と AC 質問において融解状況に差が生じているの は、融解を律速する因子が単に Cr₂O₃量のみでないことを 示すもので次のように考えられる. CM 質の構成鉱物相は クロムスピネルのクロマイト (Fe₂O₃·Cr₂O₃) であり融解 が困難であった.一方,今回のAC質ではアルミナ粉と微 粉の試薬 Cr₂O₃の混合物を試料としており、両試料源共に 微粉末であったことが融解を容易にしたのではないかと考 えられる.しかし、実際のAC質耐火物の場合、Cr2O3は Al₂O₃に固溶され安定化しており、また試料も焼結物を粉 砕することから粒度も大きくなり,相対的に本実験よりも 融けにくい傾向が予測される.そこで,ここではAC 質耐 火物の融解条件として, クロマイトをも融かすことのでき る CM 質耐火物と同じ条件(試料 0.2000 g, Li₂B₄O₇ 4.0000g, LiNO₃ 2.0000gを 1250℃ で 10 分間)を採用す ることにした.

3・2 Cr₂O₃の融解機構に関する検討

Na₂B₄O₇ は主成分として Na₂O を多量に含有しているた め、Na₂O を定量成分とする AC 質耐火物の分析には使用 しにくい融剤である.しかし、Na₂B₄O₇ は融点が 741^{\circ} で あり、Li₂B₄O₇ の融点 930^{\circ} (化学便覧による.917^{\circ} と の文献¹⁸⁾もある)に比べ約 200^{\circ} 近くも低いため、Li₂B₄O₇ に比べ融解性が優れていると考えられる.そこで、本項で は Na₂B₄O₇ を Li₂B₄O₇ の比較用融剤として用い、両者によ る GB を比較することによって融解機構の解明を図ること にした.Table 3 に Na₂B₄O₇ と NaNO₃ による融解実験結 果を示す.試料 0.200 g に Na₂B₄O₇ 3 g と NaNO₃ 0.5 g を 加えた場合、試料は 1150^{\circ} で 20 分間、また 1250^{\circ} では 10 分間で完全に融解されている.前述の Table 2 におけ

Fig. 1 The CrK-edge XANES spectra of glass beads and reference samples

a is the reagent Cr_2O_3 . b is the reagent mixture $(K_2Cr_2O_7: Cr_2O_3 = 1:2)$ and a 18:82 Cr(VI)-to-Cr(III) ratio. c is the reagent mixture $(K_2Cr_2O_7: Cr_2O_3 = 2:1)$ and a 46:54 Cr(VI)-to-Cr(III) ratio. d is the reagent mixture $(K_2Cr_2O_7: Cr_2O_3 = 5:1)$ and a 68:32 Cr(VI)-to-Cr(III) ratio. e is the reagent $K_2Cr_2O_7$. f is the glassbead of a 10:1 $Li_2B_4O_7$ -to-sample $(Cr_2O_3 = 7 \text{ mass}\%, 0.279 \text{ g BCS } 394 \text{ and } 0.021 \text{ g } Cr_2O_3)$ ratio. g is the glassbead of a 20:10:1 $Li_2B_4O_7$ -LiNO₃-sample $(Cr_2O_3 = 50 \text{ mass}\%, 0.150 \text{ g BCS } 394 + 0.150 \text{ g } Cr_2O_3)$ ratio. h is the glassbead of a 30:10:3 $Na_2B_4O_7$ -NaNO₃-sample $(Cr_2O_3 = 50 \text{ mass}\%, 0.100 \text{ g BCS } 394 + 0.100 \text{ g } Cr_2O_3)$ ratio.

るリチウム系融剤の場合と比較すると、明らかにナトリウム系融剤の優秀さがうかがえる.しかし、そのナトリウム系融剤においてさえも試料を融剤 Na₂B₄O₇単独で完全に融解させることはできず、酸化剤としての NaNO₃の補助が必用であった.言い換えれば、ホウ酸塩融剤を用いて Cr₂O₃を融解する場合には、硝酸塩の添加が非常に有効であると言える.ところで、ここで得られた GB の概観がナトリウム系とリチウム系で明らかに差が認められる.リチウム系 GB が濃い緑色であるのに対して、ナトリウム系 GB は薄い黄緑色で透光性が良い.GB は硝酸塩によって Cr₂O₃が Cr(III) から Cr(VI) に向けて酸化されているはずで、両融剤間で遷移になんらかの差が現れていると考えら れる. そこで, EXAFS 測定装置を用いて CrK 吸収端での XANES スペクトルを測定した. Fig. 1 に参照試料の試薬 Cr₂O₃ (図中記号: a) 及び試薬 K₂Cr₂O₇ (e) とそれらの 混合物 $(b \sim d)$, $Li_2B_4O_7$ のみで融解した GB (f), $Li_2B_4O_7$ と LiNO₃ による GB (g) 及び Na₂B₄O₇ と NaNO₃ による GB(h)の結果を示す.図は相互比較のために規 格化処理した.一般に、XANES スペクトルは物理現象が 複雑なため理論的解析が難しく、解析の際にはスペクトル を指紋的に比較する方法がとられることが多い19ようであ ることから、ここでは試料のスペクトルはあくまでも参照 試料との比較の基で検討することとした.まず, Fig. 1の Cr_2O_3 (a) 及び $K_2Cr_2O_7$ (e) とそれらの混合物 (b~d) のスペクトルを見ると、Cr 吸収端直近の 5987 eV 付近の ピーク (1s→3d 遷移) が K₂Cr₂O₇ すなわち Cr(VI) の四 面体構造に特有な吸収で,また 6005 から 6010 eV 付近の ピークが Cr₂O₃ すなわち Cr(III) の八面体構造に特異的な 吸収のように見受けられる20)~22).ここで、混合物の XANES スペクトル b~dは、各々が持つ純品 a 及び e 成 分の XANES スペクトルの比率を合成したスペクトルとし て表されているから,各々の XANES スペクトルから逆に 純品の比率を半定量することもできる.そこで, Fig. 2に 示すように線形フィッティング法を用いて参照試料 a と e の成分比率を変動させ、各 GB の中の Cr(VI) 及び Cr(III) 量を半定量した.GB 試料中の Cr(VI) 量は h (95% 以 上)>g (39%)>f (7%) であり,実験で最も容易に融解 した $Na_2B_4O_7$ (3g) と $NaNO_3$ (1g) よる GB の場合, Cr のほとんどが Cr(VI) になっている. 一方, $Li_2B_4O_7$ (4g) と LiNO₃ (2g) の GB の場合,多量に酸化剤を加えてい るにもかかわらず Cr(VI) と Cr(III) の比率が 2:3と Cr(III) のほうが多い. また, Cr₂O₃を7 mass% しか融解 できなかった Li₂B₄O₇のみによる GB の場合, Cr の主体は Cr(III) である. これらの結果から、Cr₂O₃はCr(III) とし ても融解するが、その量には限界があり進行速度も遅い. 一方,硝酸塩などは酸化剤として働き,Cr(VI)への酸化 が融解促進に大きく寄与している.また,ナトリウム系融 剤が融解しやすく、GBの色が薄い黄緑であったのは Cr(VI)の生成量が多かったためで、リチウム系融剤が融 解しにくく, GBの色が濃い緑色だったのは Cr(III) から Cr(VI) への酸化率が低かったことによるものと結論され る. 桂²³⁾は,酸化剤によって Cr がより高次な酸化状態 CrO₄²⁻ になることによって Cr が融解されることを説明し ており,安井ら²⁴⁾は,この生成された CrO₄²⁻ がガラス中 で網目形成イオンとなって、ガラス化を容易にしていると 述べている.実験結果はこれらのことを裏付けるものであ り, Cr(VI) すなわち CrO₄²⁻の生成が融解と密接に関係し ていることを示している.なお、2種の融剤 Li₂B₄O7と Na₂B₄O₇間で Cr(VI) の生成しやすさが異なるのは、網目 修飾酸化物としての Li₂O と Na₂O の部分イオン性が 75% と 80% と異なり²⁵⁾, Li₂B₄O₇のほうが Na₂B₄O₇ よりもガラ ス化が容易なだけ、CrO42-の網目形成イオンとしての役 割も低いのではないかと推察される.なお,Fig.2の3種 の GB のスペクトルが参照試料によるフィッティングスペ クトルと必ずしも一致していない.これらの相違は, Cr(VI) 及び Cr(III) を取り巻く化学種の相違による化学シ フトによるものと考えられる21)22).

以上の結果から、 Cr_2O_3 の融解にはCr(VI)の生成が大 きく関与しており、硝酸塩の添加がCr(VI)生成に有効で あり、 $Li_2B_4O_7$ - $LiNO_3$ 融解によるCr(VI)の生成率は全Crのうちの約40%程度であることが分かった.

3·3 検量線の検討

前述したように AC 質耐火物にはほかの耐火物のように

Fig. 2 Fitting of synthetic Cr_2O_3 - $K_2Cr_2O_7$ XANES spectra against glassbead XANES spectra (a) $Li_2B_4O_7$ + sample, (b) $Li_2B_4O_7$ + $LiNO_3$ + sample, (c) $Na_2B_4O_7$ + $NaNO_3$ + sample

740

E	lase	Cr ₂ O ₃ /	D ₃ / Content ^{b)} , mass%											
No.	RM ^{a)}	μg	SiO_2	Al_2O_3	Fe_2O_3	TiO ₂	CaO	MgO	Na ₂ O	K ₂ O	Cr_2O_3	ZrO_2	HfO_2	
1	R705	80293	1.19_{7}	38.4_{0}	0.08_{4}	1.21_{0}	0.11_{4}	0.27_{5}	0.18_{0}	0.01_{1}	41.3_{5}	16.74	0.29_{0}	
2	R705	70026	1.29_{9}	41.6_{8}	0.09_{2}	1.31_{3}	0.12_{4}	0.29_{9}	0.19_{5}	0.01_{2}	36.3_{2}	18.1_{7}	0.31_{5}	
3	R708	80028	0.32_{8}	47.7_{1}	0.48_{0}	0.61_{2}	0.70_{3}	0.98_{7}	0.05_{3}	0.44_{8}	40.1_{9}	7.7_{0}	0.62_{0}	
4	R708	60029	0.38_{2}	55.6_{5}	0.56_{0}	0.71_{4}	0.82_{0}	1.15_{2}	0.06_{2}	0.52_{2}	30.2_{2}	8.9_{9}	0.72_{3}	
5	R708	50052	0.40_{9}	59.6_{2}	0.60_{0}	0.76_{5}	0.87_{9}	1.23_{4}	0.06_{7}	0.55_{9}	25.2_{5}	9.6_{3}	0.77_{5}	
6	R710	20023	5.06_{1}	74.0_{6}	1.03_{5}	2.70_{2}	0.20_{2}	0.04_{4}	1.27_{7}	0.57_{2}	10.9_{4}	2.6_{7}	1.36_{0}	
7	R710	10023	5.34_{2}	78.1_{7}	1.09_{2}	2.85_{2}	0.21_{4}	0.04_{7}	1.34_{8}	0.60_{4}	5.9_{9}	2.8_{2}	1.43_{5}	
8	R309	30061	1.80_{1}	76.3_{3}	1.08_{5}	3.27_{7}	0.86_{9}	0.24_{5}	0.35_{9}	0.78_{3}	15.0_{3}	0.0_{3}	$nd^{c)}$	
9	R309	10010	2.01_{4}	85.3_{4}	1.21_{3}	3.66_{3}	0.97_{2}	0.27_{4}	0.40_{1}	0.87_{6}	5.0_{0}	0.0_{3}	nd	
10	R310	40065	0.32_{9}	75.7_{4}	0.01_{9}	1.65_{1}	0.03_{0}	0.78_{3}	0.06_{5}	1.06_{0}	20.0_{3}	0.0_{0}^{+}	nd	
11	R310	30018	0.35_{0}	80.5_{0}	0.02_{0}	1.75_{4}	0.03_{2}	0.83_{2}	0.06_{9}	1.12_{7}	15.0_{1}	0.0_{0}	nd	
12	C302	30070	0.00_{1}	84.9_{7}	0.00_{0}	0.00_{0}	0.00_{0}	0.00_{0}	0.00_{2}	0.00_{0}	15.0_{3}	0.0_{0}	nd	
13	C302	40024	0.00_{1}	79.9_{9}	0.00_{0}	0.00_{0}	0.00_{0}	0.00_{0}	0.00_{2}	0.000	20.0_{1}	0.0_{0}	nd	
14	C031	20028	3.10_{5}	81.5_{3}	1.58_{4}	2.85_{3}	0.01_{8}	0.02_{7}	0.01_{8}	0.01_{8}	10.0_{6}	0.2_{7}	nd	
15	C031	40069	2.75_{9}	72.4_{4}	1.40_{7}	2.53_{5}	0.01_{6}	0.02_{4}	0.01_{6}	0.01_{6}	20.0_{8}	0.2_{4}	nd	
16	B394	40083	3.99_{8}	71.3_{0}	1.52_{6}	2.49_{7}	0.06_{4}	0.09_{6}	0.01_{6}	0.01_{6}	20.1_{0}	0.1_{2}	nd	
17	B394	10070	4.75_{0}	84.7_{0}	1.81_{3}	2.96_{7}	0.07_{6}	0.11_{4}	0.01_{9}	0.01_{9}	5.0_{8}	0.1_{4}	nd	

Table 4 Chemical compositions of calibration beads

a) The base RM is base reference material. The base RMs (300000-Cr₂O₃) µg were weighed to accuracy of ± 20 µg. R in R705 is short for JRRM(Japan Refractory Reference Material). The C in C302 is short for JCRM (Japan Ceramics Reference Material). The B in B394 is short for BCS (British Chemical Standard). JRRM 705, 708 and 710 are alunina-zirconia-silica refractories. JRRM 309 and 310 are high alumina refractories. JCRM 302 is calcined bauxite. JCRM 031 is high purity alumina material. BCS 394 is calcined bauxite. b) The small value of the last figure is only an uncertainty value obtained by calculation. c) nd means no data.

Table 5 An example of theoretical matrix correction coefficients for the JIS method for Al_2O_3 - Cr_2O_3 system refractories^{a)}

Correcting C component p	Chemical com-	Analytical component to be corrected ($\times 10^{-5}$)										
	position, mass%	SiO ₂	Al_2O_3	Fe ₂ O ₃	TiO_2	CaO	MgO	Na ₂ O	K ₂ O	Cr_2O_3	ZrO_2	HfO ₂
SiO ₂	1.9		- 37	21	18	16	4	4	14	20	8	- 66
Al_2O_3	69.9											
Fe_2O_3	0.7	-15	17		-51	- 44	62	59	-40	-57	-17	-14
TiO_2	1.8	-50	-18	411		-65	28	30	-67	376	-54	-49
CaO	0.3	-59	-25	418	357		20	21	-54	389	-62	-58
MgO	0.4	-7	31	-12	- 10	-9		-5	-9	-11	- 8	-8
Na ₂ O	0.2	- 15	18	-29	-25	-22	65		-22	-27	-17	-15
K ₂ O	0.4	-67	- 32	412	343	302	13	13		380	-69	-66
Cr_2O_3	19.7	- 34	0	653	-61	-65	44	44	-62		-38	-33
ZrO_2	4.0	- 22	- 1	255	254	239	34	27	230	261		-25
HfO_2	0.8	160	9	303	302	292	38	24	286	310	171	

a) Figures in this table were calculated using Al_2O_3 as base component and Cr_2O_3 as second base component. Sample to flux ratio is 1 to 22.2 ($Li_2O = 5.7$ and $B_2O_3 = 16.5$).

JRRM シリーズの SeRM がない. そこで, 2・2 で用意した 試薬 Cr₂O₃ と JRRM などの標準物質を 1 μ g まで読み取れ る精密てんびん上で量り合わせたものを融解して, 検量線 用 GB を作製した. AC 質耐火物には 20 mass% 以内で酸 化ジルコニウム (ZrO₂) を含むものがあるので, ZrO₂を 含有する検量線用 GB も作製した. Table 4 に調製された 検量線用 GB の化学組成を示す. これらを Table 1 の条件 で各成分の X 線強度を測定し, 2・3・2 によって検量線を 作成した. 式(1)及び(2)中の補正項のうち, *d*は測定 成分の分析線が共存する *j*成分によって受ける干渉補正係 数であり, コンピュータを用いた FP 法によって質量吸収 係数などの基礎的定数を用いて求まる(理論 q_{e} という). ここでは、この理論 q_{e} を用いることにした.Table 5 に第 ーベース成分を $Al_{2}O_{3}$ とし、第二ベース成分 ($Al_{2}O_{3}$ の理 論 q_{g} 営出の場合のみ、ベース成分とする)を $Cr_{2}O_{3}$ とし て得られた検量線用 GB の平均組成における理論 q_{e} を示 す.なお、試料の融解に用いた LiNO₃ は 酸素などを放出 しながら分解し、最終的には LiNO₃ の質量の 21.7 mass% に相当する $Li_{2}O$ として GB 中に固定される.そこで、 q_{i} 計算における融剤量の試料希釈倍率は、22.2 倍($Li_{2}O$ 5.7 倍、 $B_{2}O_{3}$ 16.5 倍)とした.このようにして得られた各成 分の X 線強度と Table 4 の成分値及び理論 q_{i} を、式(2) 報文

150 20 SiO₂ Al₂O₃ 8 Fe₂O₃ X-ray intensity/kcps 00 00 22 X-ray intensity/kcps X-ray intensity/kcps 5 0 5 51 (W_{SiO2}-0.002W_{ZrO2} _{Al2O3}/(1+ΣdjWj) $0.003W_{HfO2})/(1+d_jW_j)$ $W_{Fe2O3}(1 + \Sigma d_jW_j)$ =-0.0001901² =0.003381²+ =0.092041-0.0437 5 +0.628841-0.742 2 0.59361 -0.121 SD:0.027mass% SD:0.027mass% SD:0.213mass% 0 50 0 0 3 5 30 70 90 0 0.5 2 4 50 1 1.5 2 1 Fe₂O₃ ,mass% SiO₂ ,mass% Al₂O₃ ,mass% 12 10 0.4 TiO₂ CaO MgO 10 X-ray intensity/kcps O S X-ray intensity/kcps 8 6 6 ,_o/(1+Σd_jW_j) 4 $W_{CaO}/(1 + \Sigma d_j W_j)$ V_{TiO2}/(1+Σd_jW_j) =2.7211+0.0485 =0.10111-0.0795 =0.28921-0.0009 2 SD:0.011mass% 2 SD:0.009mass% SD:0.013mass% 0 0 0 0 2 3 0 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1 TiO₂ ,mass% CaO ,mass% MgO ,mass% 0.2 180 12 K₂O Na₂O Cr₂O₃ 150 intensity/kcps 9 & 0 X-ray intensity/kcps X-ray intensity/kcps 120 0.1 90 ₀₃/(1+ΣdjWj) $W_{K2O}/(1 + \Sigma d_j W_j)$ =0.0000721² X-ray _{la20}-0.0040W_{zr02})/(1+ Σ d_jW_j)=8.7051-0.2867 60 4 -0.095311-0.0539 +0.208571-0.033 2 30 SD:0.069mass% SD:0.010mass% SD:0.014mass% 0 0 0 1.5 0 0.2 0.4 0.6 0.8 1 0 0.5 1.2 0 10 20 30 40 1 Na₂O ,mass% K₂O ,mass% Cr₂O₃ ,mass% 1.2 ZrO₂ HfO₂ 1 30 X-ray intensity/kcps X-ray intensity/kcps 0.8 20 0.6 $W_{ZrO2}/(1+\Sigma d_jW_i)$ 0.4 $_{2}/(1+\Sigma d_{j}W_{i})$ =0.000231²+0.47821 -0.007 10 =1.2521-0.0128 0.2 SD:0.004mass% SD:0.054mass% 0 0 0 5 10 15 0 0.5 1 1.5 ZrO₂ ,mass% HfO₂ ,mass%

The presumed basic value(\hat{X}) of the analytical component was calculated by substituting the theoretical d_j obtained by the FP method, the l_j was obtained by the regression calculation analysis method(in the case of Na₂O and SiO₂) and the calculated value in Table 2, into the following equation.

$$\hat{X} = \frac{W + \sum l_j \cdot W_j}{1 + \sum d_j \cdot W_j} \qquad \bigcirc \text{ is the certified value}(W), \bullet \text{ is the presumed basic value}(\hat{X}).$$

に代入して推定基準値を求め,回帰計算によって基準検量 線²⁶⁾を作成した. Fig. 3 にこのようにして得られた全成分 の基準検量線と精確さ(SD)を示す. 図中に各試料の X 線強度と推定基準値²⁶⁾ (●) 及び標準値(○)の関係を示 す. ここで SD は、標準値と検量線から得た補正定量値を 統計処理して求めた標準偏差の値である.なお,SiO2及 び Na₂O の検量線では, Si K α が Zr L₁ 及び Hf M β の, ま た Na K α が Zr β_1 及び Zr L α の各二次線の重なり干渉を受 けるので²⁷⁾,各々ピークトップ強度のみを用い,SiO2では ZrO₂とHfO₂の, また Na₂O では ZrO₂の重なり補正を実 施した. Fig. 3の検量線を見ると CaO, Na₂O 及び K₂O のY(X線強度)切片がプラスとなっている. このうち, Na₂O はバックグラウンドの大きなフタル酸タリウム (TAP) 結晶を用いて X 線強度をピークトップのみ測定し ていることから説明がつく.しかし、CaOと K₂O はバッ クグラウンドを差し引いたネット強度を用いているので, 本来検量線は原点を通り、切片はゼロとなるはずである. このようにかなり大きなプラスの値を示したのは、多くの

融剤(試料の20倍)及び酸化剤(10倍)を用いているため,おそらくこれら試薬中に存在していたこれらの成分が,あたかも試料に存在したかのように濃縮されて現れたものと考えられる.また,成分的に見て Na₂O の切片値の一部は試薬の影響を受けている可能性が大きい.

3・4 試料調製再現精度と SD の検討

試料調製再現精度及び検量線のSDの検討には、検量線 の場合と同様に、標準物質と試薬 Cr₂O₃をてんびん上で± 20 μg 以内の精度で量り合わせて調製した GB を、3・3の 検量線で定量して求めた. Table 6 に配合試料 GB 5 個に よる繰り返し再現精度を、また Table 7 に配合試料の分 析結果を示す. Table 6 において、繰り返し標準偏差 (SD)は、含有率が10 mass%以上の成分の場合、小数点 以下2けた、また10 mass%未満の成分の場合、小数点以 下3 けたの分析値を用いて計算した.結果を見ると、測 定精度も含めた試料作製再現精度は、主成分の Al₂O₃ 及び Cr₂O₃ において相対標準偏差(RSD)で 0.2 及び 0.1 mass%

 Table 6 Analytical results and reproducibility of combined sample^{a)} examined by XRF analysis using glass bead method

Component	Calculation	Analytical value	Reproducibility ^{b)}				
Component	value, mass%	(mean), mass%	SD, mass%	RSD, %			
SiO_2	0.44	0.46	0.00_{2}	0.4			
Al_2O_3	$63.62^{(d)}$	63.6_{3}	0.10	0.2			
Fe_2O_3	0.64	0.63	0.00_{2}	0.3			
TiO_2	0.82	0.83	0.00_{4}	0.5			
CaO	0.94	0.93	0.00_{4}	0.4			
MgO	1.32	1.34	0.00_{9}	0.4			
Na ₂ O	0.07	0.07	0.00_{9}	13			
K_2O	0.60	0.60	0.007	1.2			
Cr_2O_3	20.2_{4}	20.1_8	0.02	0.1			
ZrO_2	10.2_{7}	10.2_{6}	0.01	0.1			
HfO_2	0.83	0.83	0.00_{4}	0.5			
$ZrO_2(+HfO_2)$	11.1_{0}	10.0_{9}	0.01	0.1			

a) For combined samples, JRRM 708 160 mg and reagent Cr_2O_3 40 mg were weighed by a precision microbalance to an accuracy of 20 μ g. b) Number of samples is 5. SD is standard deviation. RSD is relative standard deviation. d) The small value of the last figure is only an uncertainty value obtained by calculation.

Table 7 Analytical results of combined reference materials (RMs) by XRF analysis using glass bead method

Name of	Category ^{a)}	Chemical composition, mass%								
combined RMs	Category -	SiO_2	Al_2O_3	Fe_2O_3	TiO ₂	CaO	MgO	Na ₂ O	K_2O	Cr_2O_3
$JCRM R033-Cr_2O_3$ (ratio = 7 : 3)	Standard Analytical	$0.07 \\ 0.07$	$\begin{array}{c} 69.8_6 \\ 69.7_6 \end{array}$	0.01 0.00	0.00 0.01	0.01 0.00	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.04 \\ 0.04 \end{array}$	0.00 0.00	30.0_0 29.9 ₆
JCRM R033-JRRM307- Cr_2O_3 (ratio = 4 : 4 : 2)	Standard Analytical	$4.39 \\ 4.36$	71.9_8 71.7_9	$\begin{array}{c} 1.19\\ 1.18\end{array}$	$\begin{array}{c} 0.49 \\ 0.48 \end{array}$	$\begin{array}{c} 0.07 \\ 0.06 \end{array}$	$\begin{array}{c} 0.25\\ 0.24\end{array}$	$\begin{array}{c} 0.46 \\ 0.43 \end{array}$	$0.95 \\ 0.95$	$\begin{array}{c} 20.0_2 \\ 19.9_7 \end{array}$
JCRM R033-JRRM308-Cr ₂ O ₃ (ratio = 3.5 : 5 : 1.5)	Standard Analytical	$5.16 \\ 5.26$	78.2_3 78.2_3	$\begin{array}{c} 0.21 \\ 0.18 \end{array}$	$\begin{array}{c} 0.90 \\ 0.91 \end{array}$	$\begin{array}{c} 0.06 \\ 0.04 \end{array}$	$\begin{array}{c} 0.03 \\ 0.02 \end{array}$	$\begin{array}{c} 0.15 \\ 0.14 \end{array}$	$\begin{array}{c} 0.06 \\ 0.05 \end{array}$	15.0_1 15.0_3

a) Standard values were obtained from the certified value of RMs and reagent Cr_2O_3 . Analytical values are our analytical values. The small value of last figure is only an information value obtained by calculation.

報 文 朝倉

			Chemical composition, mass%								
Sample	Maker	SiO ₂	Al_2O_3	Fe_2O_3	${\rm TiO}_2$	CaO	MgO	Na ₂ O	K ₂ O	Cr ₂ O ₃	$ZrO_2(+HfO_2)^{a)}$
No.1	Company A	3.04	62.5	0.68	0.33	0.48	1.12	0.29	0.11	25.2	3.67
No.2	Company B	1.23	74.2	0.52	0.39	0.93	0.15	0.30	0.01	21.2	0.06
No.3	Company B	2.54	58.0	0.02	0.58	0.99	0.23	0.30	0.01	36.4	0.05
No.4	Company C	1.60	70.6	0.27	0.10	0.49	0.02	0.20	0.11	19.3	7.07

Table 8 Analytical results of actual refractories by XRF analysis using glass bead method

a) ZrO₂(HfO₂) means content added of ZrO₂ and HfO₂ contents.

であり満足できるものである.これは、標準試料及び試薬 Cr_2O_3 の量り取り精度を $\pm 20 \mu g$ 以内としたことから、量 り取りによって生じる相対誤差を計算上±{2×(0.02/ $200 \times 100)^{2}$ ^{1/2} = ±0.014 mass% 以内としたためと考えら れる.通常の精度 0.1 mg のてんびんを用いた場合,量り 取りによる相対誤差だけで±0.07mass%となることを考 えると、少なくとも検量線の作成や検量線精度の検討実験 においては、±20 µg 以内の精度での量り取りが妥当だっ たことを示していると言える.また,一般に微量成分の繰 り返し再現精度は、融剤の純度及び偏析によって影響を受 けやすいため、3・3の検量線の項で述べたように、多量に 加えられている Li₂B₄O₇ 及び LiNO₃ 中の不純物の影響が 心配されたが、Na2OとK2Oにおいてほかの微量成分に比 べやや高めの SD 及び RSD が認められたものの, 試薬内 での不純物の偏析は少ないようでほぼ満足できる結果が得 られている. Table 7 は、検量線作成に使用外の標準物質 を用いて±20µg以内の精度で量り取りを実施して検量線 の SD を検討した結果である.3 種配合になると誤差も大 きくなるが、全体に満足できる結果が得られていると言え る.

以上の結果から、今回検討した GB/XRF を用いること により、AC 質耐火物を精度良く定量できることが分かっ た.参考までに、Table 8 に本法による実際試料の分析結 果の例を示す.試料の融解など問題なく実施できた.

本研究では、 Cr_2O_3 の融解機構についてまだ検討を要する点も 多い.引き続き検討実験中である.なお、XANES での検討にお いて、理学電機(株)X線研究所田口武慶氏に測定協力と貴重な提 言をいただいた.お礼申上げる.

文 献

- 1) 宮宗真治,小形昌徳,入江幸宏,松原健一:品川 技報,43,1 (2000).
- 2) JIS R 2212, 耐火れんが及び耐火モルタルの化学分析 方法 (1998).
- 3) JIS R 2011, 炭素及び炭化けい素含有耐火物の化学分 析方法 (1998).

- JIS R 2012, ジルコン-ジルコニア質耐火物の化学分析方法 (1998).
- 5) JIS R 2013, アルミナ-ジルコニア-シリカ質耐火物 の化学分析方法 (1998).
- JIS R 2014, アルミナ-マグネシア質耐火物の化学分 析方法 (1998).
- 7) JIS R 2216, 耐火れんが及び耐火モルタルの蛍光 X 線分析方法 (1995).
- 8) ISO/DIS12677, Chemical analysis of refractory products by XRF/fused cast bead method, (1999).
- 9) 市川健治, 藤原禎一, 朝倉秀夫: 品川技報, 27, 37 (1983).
- 10) 石渡 宏, 三橋 久, 朝倉秀夫: 耐火物, **40**, 696 (1988).
- 11) 朝倉秀夫, 三橋 久: X線分析の進歩, **21**, 93 (1990).
- 12) 仁科利純, 三橋 久, 朝倉秀夫: 耐火物, **46**, 253 (1994).
- 13) T. Nishina, H. Mihashi, M. Murata, H. Asakura: *Taikabutsu Overseas*, 14 (3), 10 (1994).
- 14) 朝倉秀夫,山田康治郎,脇田久伸: X線分析の進 歩, **30**, 73 (1999).
- 15) 朝倉秀夫,池上克重,脇田久伸:分析化学 (Bunseki Kagaku), 48, 973 (1999).
- 16) 朝倉秀夫,池上克重,脇田久伸:分析化学 (Bunseki Kagaku), 49, 21 (2000).
- 17) 朝倉秀夫,池上克重,山田康治郎,脇田久伸:分 析化学 (Bunseki Kagaku), 49, 297 (2000).
- 18) B. S. R. Sastry, F. A. Hummel: J. Am. Ceram. Soc., 43, 24 (1960).
- 19) 赤井俊雄: ぶんせき (Bunseki), 1995, 562.
- 20) C. T Dillon, P. A Lay, M. Cholewa, G. J. F. Legge, A. M. Bonon, T. J. Collins, K. L. Kostka, G. Shea-McCarthy: *Chem. Res. Toxicol.*, **10**, 533 (1997).
- 21) M. L. Peterson, G. E. Brown, Jr. G. A. Parks: *Physicochem. Eng. Aspects*, **107**, 77 (1996).
- 22) A. Manceau, L. Charlet: J. Colloid Interface Sci., 148, 425 (1992).
- 23) 桂 敬: ぶんせき (Bunseki), 1979, 648.
- 24) 安井規子,山本 公,松村泰治:鉄と鋼,**72**, S412 (1986).
- 25) 作花済夫, 境野照雄, 高橋克明: "ガラスハンドブ ック", p. 876 (1988), (朝倉書店).
- 26) 例えば, 阿部忠廣, 成田正尚, 佐伯正夫: X 線分析 の進歩, 17, 143 (1986).
- 27) H. Asakura, K. Ikagami, M. Murata, H. Wakita: X-ray Spectrometry 投稿中.

744

BUNSEKI KAGAKU

要 旨

酸化アルミニウム-酸化クロム (III) 質耐火物(AC 質耐火物)へのガラスビード(GB)/蛍光 X 線分析 (XRF) 法の適用を図った. AC 質耐火物中には多量の Cr_2O_3 が含有されているため, 試料の融解は $Li_2B_4O_7$ 単独ではできず,酸化剤として LiNO₃ を添加することによって可能となった. GB 作製条件は,試料 0.2000 g-Li₂B₄O₇ 4.0000 g-LiNO₃ 2.000 g, 1250 C-10 分間とした. Cr 含有試料の融解は, Cr(III) が Cr(VI) に酸 化され, CrO₄²⁻ イオンとなることによって進行することが知られており,このことを CrK 吸収端の X 線吸 収端近傍微細構造(XANES) スペクトルによって確認した.XANES による Cr(VI) の半定量分析結果によ ると,Li₂B₄O₇ 単独で融解した GB 中では全 Cr のうちの 7% に過ぎなかった Cr(VI) の量が,Li₂B₄O₇に LiNO₃ を加えることにより 39% にまで高められていた.また,定量成分の Na₂O を含有するため実用でき ないが,融解が非常に容易だった Na₂B₄O₇に NaNO₃ を加えた GB では 95% が Cr(VI) になっていた.検量 線用 GB は JRRM などの市販標準物質と高純度試薬 Cr₂O₃ を 1 μ g まで読み取れる精密ミクロてんびん上で 量り合わせたものを GB にすることによって作製できた.検量線の標準偏差は Al₂O₃ で 0.21 mass%, Cr₂O₃ で 0.07 mass% であり,微量成分についても満足できるものであった.