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Recent Insights into theBiologicalAction of  Heavy-Ion Radiation
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    Biological effectiveness  varies  with  the linear energy  transfer (LET) of ionizing radiation.  During
cancer  therapy or long-term interplanetary manned  explorations,  humans are exposed  to high-LET ener-

getic heavy ions that inactivate cells  more  effectively  than low-LET  photons like X-rays and  y-rays.
Recent biological studies have illustrated that heavy  ions overcome  tumor  radioresistance  caused  by Bcl-2
overexpression,  p53 mutations  and  intratumor hypoxia, and  possess antiangiogenic  and  antimetastatic

potential, Compared  with  heavy ions alone,  the  combination  with  chemical  agents  (a Bcl-2 inhibitor
HA14-1, an  anticancer  drug docetaxel, and  a halogenated pyrimidine analogue  5-iodo-2'-deoxyuridine) or

hyperthermia further enhances  tumor  cell  killing. Beer, its certain  constituents,  or  me]atonin  ameliorate

heavy ion-induced damage to normal  cells, In addition  to effects in cells directly targeted with  heavy ions,
there is mounting  evidence  for nontargeted  bielogical effects  in cells that have not  themselves  been
directly irradiated, The bystander effect of  heavy ions manifests  itself as the loss of  clonogenic  potential,
a transient apoptotic  response,  de]ayed p53 phosphorylation, alterations in gene expression  profiles, and

the elevated  frequency of  gene mutations,  micronuclei and  chromosome  aberrations,  which  arise in nonir-
radiated  cells  having received  signals from irradiated cells, Proposed mediating  mechanisms  involve gap
junctional intercellular communication,  reactive  oxygen  species  and  nitric oxide.  This paper reviews
briefiy the current  knowledge of the bio]ogicai effects of heavy-ion irradiation with  a focus on  recent  find-
ings regarding  its potential benefits fbr therapeutic use  as well  as  on  the bystander effect,

INTRODUCTION

  For nearly  a  century,  ionizing radiation  has been indis-
pensable to medical  diagnosis and  therapy, The goal of  radi-

ation  therapy for cancer  is to eradicate  tumors  without

harming  healthy tissues. It is well  established  that biological
eilfectiveness  of radiation  differs with  the linear energy  tra-
nsfer  (LET), namely,  the average  amount  of energy  deposited

per unit length (e,g., keV/pm). High-LET energetic  heavy
ions (charged particles heavier than helium ions) produce
dense ionization along their trajectories, and  cause  complex

and  irreparable clustered  DNA  damage,i) Compared with
low-LET  photons and  protons, heavy  ions have higher rela-
tive biological effectiveness  (RBE) with  less cell-cycle  and
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oxygen  dependency of  radiosensitivity,2)  and  possess greater
potential to suppress  angiogenesis,  metastasis  and  arrhyth-

mia,3'S>  The  biological eyidence  that the therapeutic ratio
escalates  with  an  increase in the dose per fraction6) has pro-
vided  the basis for the  short-course  hypofractionated regi-

mens,7)  Unlike photons, heavy  ions form the Bragg peak (a
sharp  rise in energy  deposition at  the end  of  their range)  with

a  steep  dose falloff downstream, thereby enabling  dose esca-
lation to the target tumor volume  without  much  exacerbation

of  normal  tissue complications,  The same  holds true for pro-
tons; however, the ratio of dose at  the Bragg peak to that in
the entrance  region  is higher fOr heavy ions,g) Such superb
biological effectiveness  and  dose conformity  represent  a

rationale  fbr heavy-ion therapy. Ever since  the first clinical

experience  in 1977-1992,9) the number  of  treated patients
has been growing steadily and  exceeded  5000 in total.
Heavy-ion therapy  is currently  available  at the National
Institute of Radiological Sciences (NIRS, Chiba, Japan), the
Gesellschaft fUr Schwerionenfbrschung (GSI, Darmstadt,
Germany) and  Hyogo  Ion BeELm Medical Center (Hyogo,
Japan), and  has thus far achieved good cancer  controllability

in short  treatment  times while  sparing  critical normal

organs,7,ie'i2) Several other  facilities including Gunma
University (Gunma, Japan) ure  also  becoTning operational.

  In addition  to relevance  to radiation  therapy,  the study  of
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biological e'ffects ofheavy-ion  radiation  is also  significant  to

radiation  protection issues. Humans  may  be exposed  to ener-

getic heavy ions during prolonged missions  in deep space,
where  health risk  to astronauts  is a matter  of  grave concern,
necessitating  the deve]opment of  adequate  radiation  protec-
tion strategies fbr space  travel,i3) A growing body of  in vivo
evidence  suggests  that heavy ions cause  tumorigenesis more

effectively  than photons, particularly at low doses.i"'i6) It
should  be stressed  that in a cell population exposed  to a low-
er  dose of  higher-LET heavy ions, less irradiated cells coex-

ist with  more  nonirradiated  counterparts.i7'iS) Hence, to deci-

pher the biologjcal mechanism  of  heavy-ien action,  not

merely  the effects  occuning  in irradiated cells but those in
nonirradiated  cells  should  also  be elucidated  if the effects
could  arise in nonirradiated  celLs.  In this regard,  since

1992,i9} significant evidence  has accumulatecl  demonstrating

that radiation  causes  biological effects in nonirradiated

bystander cells having received  signals from either nucleus-

or cytoplasm-irradiated  cells,20'2i) Bystander cells manifest

genetic and  epigenetic  changes,  alterations in gene expres-
sion, activation  of  signal transduction pathways, and  delayed
effects in their descendants.22m24) Proposed mediating  mech-

anisms  involve gap junctional intercellular communication

(GJIC), reactive  oxygen  species  (ROS), nitric oxide  (NO),
secreted  solub]e  factors, Hpid rafts  and  calcium  fluxes.25'27)
Experimental  systems  include the use  of  microbeams  that
selective]y  target a preset fi;action of cells each  with  a pre-
cise  number  of  partiele(s),i7'iS) At  pTesent, heavy-ion micro-
beams are  available  fbr biological studies  at  three  facilities:
mjcrobeams  are collimated  through microapertures  at

JAEA-[lakasaki (Gunma, Japan),2S) and  focused with  mag-

netic  lenses at GSI2g) and  the [Ibchnische Universittit
MUnchen  (Munich, Germany).30)

  This paper reviews  briefiy the current  knowledge of  the

biological effects of  heavy ions with  emphasis  on  recent

findings concerning  their potential benefits for therapeutic
use  as well  as their impact on  propagation of  bystander
responses.

HEAVY  IONS  AND  THERAPEUTIC  GAIN

Overcoming tumor  radieresistance

  Genetic changes  that accompany  cancer  development and

progression endow  tumor  cells  with  a  survival  advantage

over  their normal  counterparts,  and  often  bring about  a  poor
prognosis because of  resistance  to a multitude  of  therapeutic
modalities.  Heayy-ion therapy improves the responsiveness

of  photon-refractory tumors,7) and  recent  biological studies

have advanced  our  understanding  of  the  underlying  mecha-

nlsms.

  The  overexpression  of  the antiapoptotic  oncoprotein  Bcl-
2 is found in almost  half of  human  cancers  and  has been
associated  with  radio-  and  chemoresistance,3i'32)  Restoring

susceptibility  by nullifying  the eflects  of  Bcl-2 would  hence

be an  artractive strategy to improve the therapeutic edicacy,33)
We  reported  that high-LET  heavy ions (76-161O keVfpm)
overcome  radioresistance  caused  by  Bcl-2 overexpression  in

human cervical  cancer  HeLa  cells in vitro,  which  may  be

potentially accounted  for by the enhanced  apoptotic  Tes-

ponse and  pro]onged G2IM  arTest34) Our preliminary data
show  that whilst  exposure to neither  carbon  ions (108 keVl
pm)  nor  vrays akers the amount  of  Bcl-2 proteins, the

former augments  Bcl-2 phosphorylation at serine 70 more

effectively than the latter (unpublished data), encouraging
further analysis  to delineate the mediating  molecular  events.

  In response  to a  range  of  environmental  gtimuli, the p53
tumor  suppressor  protein, often  terrned the guardian of  the

genome, becomes functionally active via posttranslational
modifications  like phosphorylation, leading to a transient

cell  cycle  arrest,  apoptosis  or cellular senescence,35)  p53
mutations  arise  in nearly  half of  human  cancers  and  have
been related to radie-  and  chemoresistance.36'37)  Regardless
of p53  status, high-LET carbon  ions (70-100 keV/pm)
effectively inactivate tumors  and  induce apoptosis  but not
necrosis  in vitro  in human  non-smal]-cell  lung cancer,  glio-
blastoma and  glioma cells.Sg'40)  Such  p53-independent apo-

ptosis appears  to involve the activation  of  Caspase-3 via

Caspase-9 in human gingival squamous  cell  carcinoma

cells,4i) in vivo  eyidence  also suggests  that carbon  ions are
more  effective than photons at inducing apoptosis  in radiore-
sistant human glioblastoma but not in radiosensitive  human
ependymoblastomacells,42)

  TUmor  oxygenation  affects radiotherapy  eutcome,

Hypoxia is a  common  feature of  the tumor  microenvjron-

ment  and  promotes radioresistance.43)  Evidence has been

presented that in mice  bearing mouse  squamous  cell  carci-

noma  cells, high-LET carbon  ions decrease radioresistance
of  intratumer quiescent cell populations,44) which  contain  a

higher fraction of  hypoxic cells  than proliferating cell  pop-
ulations  in solid tumors.45) The clinieal evidence  has further
documented that there is little difference in the disease-fi'ee
survival  and  local control  rates between hypoxic and  oxy-

genated uterine  cervical  cancers  before and  during carbon-
ion treatments,46) revealing  that heavy-ion therapy reduces
hypoxia-driven tumor  radioresistance.

  Altogether, these  findings predict that heavy-ion therapy
would  be a promising modality  for a wide  variety  of  radiore-

sistant  tumors,  and  possibly for chemoresistant  tumors  as

well,

Enhancing tumor  celt  kilting
  In spite of considerable  interest in cornbined  modalities

(e.g,, chemoradiotherapy)  or  in molecularly  turgeted appro-

aches  to radiosensitize  tumors for conventional  photon ther-
apy,  such  information is very  limited fbr heavy-ion therapy.

  Several studies  have proposed that preirradiation chemical

treatment at  clinically  attainable,  noncytotoxic  concentra-

tions potentiates turnor  cell  ki11ing by  heavy  ions. HAI4-1
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is a nonpeptidic  small-mo]ecule  ligand of  a  Bcl-2 surface

pocket, which  was  recently  identified from in silico

screens.47) HA14-1  selectiyely  disturbs the interaction bet-
ween  Bcl-2 and  Bax, and  sensitizes  tumors  to photons.4S,49)
We  fOund that HA14-1 sensitizes HeLa  cells  and  its Bcl-2

overexpressing  counterparts,  but not normal  hurnan fibro-
blasts, to carbon  ions (108 keVfpm) and  Trays (0,2 keVlpm)
in vitro,SO) suggesting  that Bcl-2 may  be an  attractive target,
in vitro  sensitization  produced by the halogenated pyrimidine
analogue,  5-iodo-2'-deoxyuridine, decreased with  increasing
LEI; such  that human kidney cells were  sensitized  to X-ray$
and  three types of  neon  ions (38, 82 and  lg3 keV/pm), but
not  to lanthanum ions (1OOO keVlpm),5i} An  anticancer  drug
docetaxelS2} rendered  human esophageal  squamous  cell

carcinoma  cel]s more  vulnerable  to two types of  carbon  ions
(50 and  70 keVlym)  both in vitrv and  in vivo,S3)

  Other combination  regimens  harre also been proposed,
0ne  regimen  jnvolves the combination  with  gene therapy.S4)
Adenovirus-mediated p53 gene transfer resulted  in the

enhancement  of  carben  ion-induced cell ki11ing in human
esophageal  squamous  cell carcinoma,  hepatocellular carci-

noma,  cervical  cancer  and  mouse  melanoma  cells,55-fi8) of
interest in this respect  is that in:adiation elevates  adenovirus-

mediated  gene transfer and  expression  of  exogenous

genes.S9) An alternative regimen  includes the combination
with  hyperthemia.60) Carbon-ion irradiation and  subsequent

hyperthemia augmented  ki11ing of human gliob]astoma and

tongue  squamous  cell carcinoma  cells in vitro  supraad-
ditively at  g 70  keVlpm  and  additively  at ) 1OO keV/pm  in
wild-type  p53  cells,  but additive]y  in p53-mutated ce]ls

irrespective of  LET.6i'62) Such treatments synergistically

suppressed  growth of  huinan head and  neek  squamous  cell

carcinoma  cells in vivo.63) Another regimen  is the combina-
tion with  high-energy X-rays, which  acted  additively  and  did
not  depend on  the irradiation sequence  in vitro,64)

  The  above  combined  approaches  may  enhance  the eff-
icacy of  heavy-ion therapy.

Protecting normal  cetls

  The  therapeutic ratio relies on  the relative probability of
tumor control  and  normal  tissue complications.  Norrnal
tissue protection may  thus offer  an  improved  therapeutic out-

come,65)  and  is also critical for reducing  health risks  to astro-
nauts. Incubatien of  pri mary  human lymphocytes in beer, and
ks constituents  B-pseudouridine and  glycine betaine, but not
ethanol,  decreased the frequency ofchromosome  aberrations

induced by  carbon  ions (50 keV/pm), Such treatments  also

reduced  rnouse  mortality,66'70} Melatonin,7i) which  the epi-

physis synthesizes  and  secretes, improved the survival  and

lowered the frequency of  gene mutations  induced by carbon
ions (100 keV/pm)  in Chinese hamster fibroblasts.72) L-
selenomethionine  abolished  the  induction of  nearly  half o'f
the genes whose  expression  changed  in iron ion-irradiated
human  thyroid epithelial  cells,73) Such protectors may  relieve

heavy ion-induced damage to normal  tissues, warranting

fmher studies to assess its impact on  tumor control.

BYSTANDER  EFFECTS

  in vitro experimental  approaches  used  to study  the

bystander effect  broadly fal1 into two categories.  The fust
category  involves the bystander effect in confiuent  cultures,

where  direct intercellular interactions (e,g,, 6JIC) between
irradiated and  bystander cells  are  operational,  The second
includes the  bystander effect in the ce]ls treated with condi-
tioned medium  from  irradjated cells, whereby  such  direct
interactions are  inoperable and  secreted  soluble  factor(s)
would  be a  central  player, Further details of culture and  irra-
diation systems  have been reviewed  previeusly,26}

ELfiiects in normag  cells

  All data available  hitherto for heavy ion-induced bystander
effect in normal  cells were  obtained  with  norrnal  human

fibroblasts.

  Tb examine  the direct intercellular interaction-mediated
bystander effect,  we  targeted O.OO026, O.OO13 or O.O066% of
cells in confluent  cultures  with  microbeams of  carbon  (103
keVtpm)  or two  types of  neon  ions (294 and  375 keV/pm)

in confluent  cultures. Irrespective of  ion species  and  the

fraction of  hit cells,  similar bystander responses  were

observed,74-76) First, bystander cells underwent  a transient

apoptotic  response  and  delayed p53  phosphorylation in com-

parison with  irradiated cells.74'75) There is also  the evidence
for delayed foci fbrmation of  phosphorylated histone H2AX
(yt{2AX),77) which  fbrms discrete foci at the site of  ettch

nascent  DNA  double-strand break (DSB).78'79) This thence
suggests  a temporally djstinct response  of  irradiated arid

bystander ce]ls. Secondly, gene expression  was  altered at a

genome-wide level.76) More  than half of  the genes whose

expression  changed  in bystander cells  were  downregulated,76)
This wtts in eontrast  to the lack of  downregulation among

genes examined  in bystander cells that were  treated with

cenditioned  medium  from irradiated cells,24} indicative of

temporal differences in gene  expression  or dissimilar mech-

anism  for direct intercellular interaction-mediated versus

medium-mediated  bystander effect. Expression profiles dif-
fered greatly between irradiated and  bystander cells, such

that most  of  the genes upregulated  in irradiated cells were

downregulated in bystander cells.76)  Pathway ana]ysis

revealed  serial activation  of  NF-iCB (nuclear factor icl3) and

p21W"fi pathways in irradiated cells, but G  proteinlPI-3
(phosphatidylinositide 3) kinase pathway jn bystander
cells.76) Upregulated genes included interleukin genes in
irradiated cells, but its receptor  gene in bystander cells,76)
This implies that intercellular signaling  between irradiated
arid bystander cells activate intracellular signaling,  leading
to the transcriptional response  in bystander cells, Thirdly,
the bystander effect  was  manifested  as reduced  survival.74･7S)
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Loss of  clonogenicity  should  refiect the summed  response  of

a plated parental cell and  its progeny. In this light, convinc-

ing evidence  now  exists that the progeny of  bystander ce]ls
express  delayed phenotypes, and  that the neighbors  of  the

progeny of  surviving  cells  show  bystander responses.gO,8i)

These findings are  suggestive  of  the interrelation between
the bystander effect and  genomic  instability, for which  per-
sistent  oxidative  stress may  be a  cornmon  mechanism.2S･S2)

This highlights that continual  spatiotemporal  propagation of

signals initially transmitted  frem irradiated to bystander
cells may  perpetuate the radiation  eiTects in their progeny
over  time. Accordingly, bystander-induced reductions  in sur-
vival  may  be attributable  to death of  plated bystander cells
and  delayed death of  their progeny. We  recently  found clonal
merphotypic  heteregeneity and  delayed loss of  clonogenic-

ity in colonies  arising  from heavy ion-irradiated cells, both
of  which  occur  in a LEI[Ldependent fashion.S3-S6) [[Ihis enc-
ourages  further studies to test if this is also the case  for col-

enies  arising  from bystander cells.

  Other studies  haye also  assessed  the direct intercellular
interaction-mediated bystander effect. ROS  and  GJIC medi-
ated  bystander-induced micronucleation  regardless  of  ien

species  (100-1260 keV/pm).87'89) G"C  contributed  to car-

bon ion-induced bystander effect, which  was  expressed  as

increased gene mutation  frequency and  decreased survival,90)

Irrespective of ion species  (1I-15000 keVfpm), bystander
cells went  through  a  transient  Gi arTest along  with  con-

current  accumul  ation  of  p53 and  its downstream p2 IWhfi pro-
teins.9])

  In terms of  a medium-mediated  bystander effect,  exposure

to iron ions (151 keVlpm) and  X-rays similarly  produced
bystander-induced reduction$  in survival  and  fbrmation of

micronuc]ei and  VH2AX foci, in which  NO  and  ROS  partic-
ipated.92･93) lrradiation with  neon  ions (437 keV/pm)  gave
rise to chromosome  aberrations  in bystander cells,  which

inve]ved NO  and  may  be partially reparable  by DNA-PKcs

(catalytic subunit  of DNA-dependent protein kinase)-medi-
ated  DSB  repair  machinery,  in particular nonhomologous

endjoining.94)

Efi?7cts in tumor  ceUs

  As regards  the direct intercellular interaction-mediated
bystander effect, clonogenic  potential of  bystander HeLa
cells was  inactivated irrespective of  ion species  (103-375
keV/pm) and  Bcl-2 overexpression,  but was  less pronounced
than in nomial  human fibroblasts,75} This may  be partially
explained  by  a  lack of  GJIC  (a key contributor  to the clirect
intercellular interaction-mediated bystander response)25)  in
HeLa  cells.95)

  With respect  to the medium-medjated  bystander effeet,

exposure  of human salivary  gland turnor (HSG) cells to X-
rays  and  two  types of carbon  ions (13 and  100 keVfpm)
increased cell  proliferation, the  plating efflciency  and  micro-

nucleus  frequency in bystander HSG  cells,96-9S)  IrTadiation

of  HSG  cells  with  X-rays and  carbon  ions (100 keVlym)
decreased the survival  and  induced apoptosis  and  necrosis  in
bystander murine  lymphoma  cells.99)  Such bystander
responses  involved NO  and  varied  with  the radiation

quality.96-99}

LETdqpendency

  There is currently  ]imited evidence  for heavy ion-induced
bystander effects, It is nonetheless  tempting to speculate  on

the LET  dependency. Most  data reported  to date imply its

potential LET  independence for normal  human  fibroblasts;
by comparison,  its potential LET  dependence  has been dem-
onstrated  for several types of tumor  cells,96-99)  Furthermore,

with  regard  to the bystander effect of  neon  ions (437 keV/
pm) and  soft  X-rays (5 keV/pm) for chromosome  aberra-

tions in normal  human fibroblasts, theTe was  a dji}icrence in
the types of al]errations but liule difference in total yields,94)
suggesting  that the underlying  causes  difTer with  the radia-

tion quality. More  specifically, even  with  similar  ion species
at  a  similar  LET,  exposure  to broadbeamteO) but net  to

microbeami(}i) reduced  the survival  of bystander normal

human fibroblasts, Collectively, the LET  dependence of  the
by$tander effect appears  possibly to vary  among  experimen-

ta1 systems,  and  therefore must  be more  carefu11y  confirmed

or refuted  under  comparable  experimental  conditions  (e.g.,
consistent  endpoint,  dose, irradiation system  and  cell  type).

Signptcance

  Observed measurable  bystander responses  may  result

from a cascade  of feed-forward signal amplification  events,

such  that signal(s) from irradiated cells are transduced into

primary bystander ce]ls, which  in turn produce signals fur-
ther transmissible to their secondary  bystander cells one
after another,26) On  one  hand, the cytotoxic  bystander effect
arising in normal  cells ceuld  be a defensive mechanism  that
woutd  avert  or  minimize  further expansion  of aberrant  cells,

thus maintaining  genome integrity and  cellular  home-

ostasi$,74} On the other, the bystander efTect occurring  in
tumor cells, and  the pertinent phenomenon of anti-tumor

abscopal  effects fbr cancers  distant from an  irradiated local
area  of the body,i02) may  be beneficial to heavy-ion therapy
in eradieating  more  tumor  cells than targeted.i03'ion) This is
reminiscent  of  the case  for the bystander effect of suicide

gene therapy, which  has been incorporated into clinical

studies.ie5) potentiation of  bystander responses  by enhancing

GllC between tumors  (e.g., via  the introduction of  connexin

genes, or  administration  of chemicals  such  as retinoids, car-

otenoids  and  green tea  components  that upregulate  GJIC)
may  allow  heavy-ion irradiation of  a smaller  target volume

with  fat; less dose to the surroundings.26)  The expression  of

bystander effects in vivo  and  further characterization  of the

communication  between irradiated and  bystander cells as
well  as crosstalk  between irradiated tumor  and  bystander
cells  await  fUrther investigation,
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PERSPECTIVES

 Despite a  series of studies,  the question as to how  heavy
ions enhance  cell ki1ling remains  fu1]y open.  [[he LET

dependence of  DSB  and  clustered  DNA  damage induction is
stM  a fascinating question.t't06) Not just direct action  but
indirect action  may  play parts in heavy ion-induced cell

inactivation.i07) Cell death modes-'84'gS,iOg'i]e) and  the infiu-
ence  of cetlular  ultrastructureiii'ii2)  may  differ with  LET  fbl-
lowing acute  or chronic  exposure  even  at an  isosurvival
level. Biological effectiveness  may  also  vary  among  ion spe-
cies  (or track structure) even  at  a  comparable  LET,ii3-ii6) [fb
gain a deeper insight into the biological mechanism  of

heavy-ion actien, dependence of the early- and  late-arising
effects upon  LET  and  ion species  therefbre needs  to bc
characterized  more  extensively.  The nematode,H7-ii9)  tardi.

grades,i20,i2i) silkwormsi22'i23)  and  chironomidi24)  have

emerged  as  in vivo  model  systems,  in addition  to rodents.

Such basic but informative in vitro and  in vivo  studies  would

be of  extreme  importance and  should  be continued  to reduce
uncertamties  m  assessing  health risks to astronauts,  and  to

improve the therapeutic ethcacy.  For future heavy-ion ther-
apy,  in efforts to maximize  the therapeutic ratio, identifica-
tion of  the potential agents  or  combination  regimens  that
could  enhance  tumor  control  without  aggravating  or  even

with  assuaging  normal  tissue cornplications  warrants  further
extensive  studies, Closer interdisciplinary interactions (e.g.,
between clinicians and  biologists) could  facilitate the
bedside-to-bench interpretation as well  as the bench-to-bed-
side  translation.
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