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Diffusion Slip for a Binary Mixture of Hard-Sphere Molecular Gases:

Numerical Analysis Based on the Linearized Boltzmann Equation
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The diffusion-slip problem for a binary mixture of gases is investigated on the basis of the linearized Boltzmann
equation for hard-sphere molecules with the diffuse reflection boundary condition. The problem is analyzed

numerically by the finite-difference method, where the col

lision integrals are computed by the numerical kernel

method first introduced by Sone, Ohwada and Aoki for one-component gases [Sone et. al., Phys. Fluids A, Vol.
1, 363 (1989)]. This is the first report in which the method is extended and applied to the case of mixtures.
The analysis is carried out for several combinations of the component gases and the behavior of the mixture is

clarified at the level of the velocity distribution functions.

associated Knudsen-layer functions are obtained.

1. Introduction

As is well known. if there is a concentration gradient of
a component gas in a binary mixture, the diffusion takes
place. It is a relative flow of one of the component gases
to the other and does not necessarily induce a flow of the
total mixture. On the other hand, if the gradient is estab-
lished along a boundary wall in a mixture of slightly rarefied
gases, a low of the total mixture is induced along the wall.
This phenomenon is called the diffusion slip (creep) and the
induced flow is called the diffusion-slip flow.

The diffusion-slip problem is reduced to a half-space
boundary-value problem of the linearized Boltzmann equa-
tion. Since the study by Kramers and Kistemaker', it has
attracted much interest of researchers in the field of kinetic
theory?). The theoretical studies so far, however, have been
limited to those based on model equations, which are not
as successful as the BGK model for one-component gases, or
those based on rough approximations such as the variational
and the moment methods.

In the meantime, we have recently shown® that the dif-
fusion slip is one of the sources of the ghost effect™ in the
mixture. This means that it can cause the failure of the
classical Huid dynamics for the description of the mixture
even in the continuum limit. This fact gives a new impor-
tance to the problem and stimulates us to study it in detail.
In the present study, in order to understand the behavior
of the mixture comprehensively, we carry out an accurate
numerical analysis of the lincarized Boltzmann equation for
a binary mixture of hard-sphere molecular gases. The nu-
merical method is the combination of the finite-difference
and the numerical kernel methods, the latter of which was
introduced in Ref. 6) for one-component gases. 1t is the
other aspect of the present work to show the extention of
this method to the case of mixtures.

2. Problem

Consider a semi-infinite expanse (X; > 0) of a binary mix-
ture of gases, gas A and gas B, over a planc wall (X, = 0),
where X, is the rectangular coordinate system. The wall is
at rest and is kept at a uniform temperature Ty. Far from
the wall. the mixture is also at the temperature To and has
a uniform molecular number density ng, but there is a uni-
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As a result, the coefficient of the diffusion-slip and the

form gradient of the concentration X Aor XP(=1-X )
of the component gas A (or gas B) in the X direction. We
will investigate the steady behavior of the mixture under the
following three assumptions. (i) The behavior of the mix-
ture is described by the Boltzmann equation for hard-sphere
molecules. (ii) The gas molecules are diffusively reflected on
the boundary wall. (iii) The magnitude of the concentration
gradient of each component gas is so small that the equa-
tions and the boundary conditions can be linearized around
a reference state. The reference state is the absolute equilib-
rium state at rest characterized by temperature Ty, molec-
ular number density ng of the mixture, and concentrations
X§ and XE (=1 - X§) of the individual component gases.

We here summarize main notation: m™ (or m"”) and Jd*
(or d®) are the mass and diameter of a molecule of gas A (or
gas B); k is the Boltzmann constant; {o = [\/‘271’(([‘)2”4)] -
is the mean free path of the molecules of gas A at the equi-
librium state at rest with the molecular number density no;
v = Xl ! (\E/Z)l is the nondimensional space rectangu-
lar coordinate systern; 2KkTy/m ™)' 2 ¢ [or (2KTo /i Y177
is the molecular velocity, With o = A, B, " = m" [/ i
A o= dvJjdt, ¢ = K, BT = (i )Y exp(- m ¢y, and
no(2kTo/m™) *PEY(X§ + ¢7) is the velocity distribution
function of the molecules of gas «.

3. Formulation

The following function @5, (@ = A, B) is the solution of

the linearized Boltzmann equation which expresses the state
of the component gas « far from the boundary wall:

¢y =((Ban — dar)z — C2[D™(Q) = DPIOING
+ 2" b () '{)’)(0‘\"4/0.’1:-3),,.l o, (= A DB, (1)

where 844 = dpp = 1 and dap = dpa = 0, b 1s an unde-
. . 3 .
termined constant, and the set of the functions D' 5 the

]

solution of the following simultaneous integral equations
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subsidiary condition: Z mPxp C ‘D@PERIC = 0. (2b)

B=A,B

The definition of the operator L* is given in Eq. (6) below.
The ¢5,, is called the fluid-dynamic part of the solution of
the problem.

If we put the function ¢* (o = A, B) in the form ¢~ =
¢%.y + (0X"/022)z, =00 ®*, we can reduce the problem to
the following one-dimensional boundary-value problem for
D

« jox BN 2
a2 - > (l—id—) L7 (x§9°, X5 %),

ory ‘ 2
B=A,B

(a = A, B), (3)
3 = — 2 bC X5 + C[DV(¢) — D)X,
_2(«‘*)*”/ (1% B°dCdCodC,
¢1<0
(C1 >0, x= O), (4)
I 0, (z1 = 00), (5)

where

P4(f,g) = 4\/_ / F(C) = f(&a) +9(¢") — 9(Q)]

x|V -e|E”( C*)dQ(e)dC*ldC,zd(,s,
ple (6)
(V-ele, ¢.=¢, — Aﬂ (V- e)e,
2m= m’H
me + mb’

¢=¢+t =
77
V=(o-¢ i =

Here e is a unit vector, (. is the variable of integration
corresponding to ¢, and d€2(e) is the solid angle element in
the direction of e. The integration in Eq. (6) is carried out
for the whole space of ¢. and for all directions of e. The
(0X")0x)s, =00 ®™ is called the Knudsen-layer part of the
solution of the problem. When the boundary-value problem
(3)-(5) is solved, the undetermined constant b in Eq. (4) is
simultaneously determined with the solution $“.

The z2-component of the flow velocity (2kTo /m™)* *u; of
the total mixture can be written as

uy = Urpp + Uk,

D= /Cg Z m q)awE‘”deCzd(g/( Z meXg)

B3=A,B a=A,B
Uk ~/¢z ”’a(aX‘A/@xg)ml:oo@ﬂE’Sdeggd@, (M)

JC> mXE),

a=A,B

where (2kTo/ m™)/2Urp represents the fluid- dynarmc part
of the flow velocity in the z;-direction and (2kTo/m™)2Ux
the Knudsen-layer part. The second equation in Eq. (7) is
reduced to

x4

Urp ——b( 2, )Il:oo.

(8)

This relation, if applied at 1 = 0, is no other than the slip
condition on the boundary wall. We call the constant b the
coefficient of the diffusion slip.

4. Numerical Computation and Result

The numerical method adopted here is the combination of
the finite-difference and the numerical kernel methods. For
the latter, we first transform the expression (6) of LP~ into

TABLE 1. The coefficient b of the diffusion slip for dB/d* = 1.

mP /mA

Xy i 2 4 5 10

0 0 0.1002 0.1141 0.1124 0.0987
0.1 0 0.1098 0.1309 0.1299 0.1154
0.3 0 0.1330 0.1769 0.1793  0.1659
0.5 0 0.1637 0.2513 0.2633 0.2618
0.7 0  0.2059 0.3864 0.4276 0.4870
0.9 0 02666 06804 0.8365 1.3108

1 0 03078 09881 13424 3.1722

* The data are analytically obtained.
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FIGURE 1. Profiles of Ug for various values of the reference
concentration X# of gas A in the case of mB/mA = 2 and
dB/dA = 1.

that in terms of integral kernels and then make the database
of the kernels numerically before the computation of the
problem itself. The database is also available for analyses of
other problems. In the computation, we also make use of a
symmetric property of the problem. The details of the above
prot‘eqq will be presented at the meeting. Since mA =d* =
and X§ + X2 = 1, the boundary-value problem (3)—(5) is
characterized by the three parameters: m? (or m” /m*),
d? (or dP /d*), and X§'. We carried out numerical compu-
tations for various values of these parameters.

The coefficient b of the diffusion slip for d®/d* = 1 is
tabulated in Table 1. Although b is non-zero for Xt =0
and Xg =1, the diffusion-slip itself does not take place for
these cases because no concentration gradient is possible.
The profiles of one of the Knudsen-layer functions Uy for

B/m#A = 2 and d®/d* = 1 are shown in Figure 1. The
profiles appear, at a glance, monotonic, but actually they
are not; that is, as r; increases from zero to infinity, the
Uk increases from a negative to a small positive value and
then approaches zero for each case in the figure. The other
Knudsen-layer functions as well as the velocity distribution
function ®* of the Knudsen-layer part will be shown at the
meeting.
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