薄いせん断層を持つ超音速"top-hat"型平面ジェットの安定性 Stability of a Supersonic "Top-hat" Plane Jet with Thin Shear Layer

○渡辺大輔 (広大院) 前川 博 (広大院)

Daisuke WATANABE* and Hiroshi MAEKAWA*

*Graduate School of Engineering, Hiroshima University., Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan

This paper describes an analytical investigation of supersonic "Top-hat" plane jet with thin shear layer. Instability modes were obtained from linear stability analysis for high convective Mach number (Mc > 1). Linear stability analysis show that increase of the shear layer thickness decrease the growth rate of the anti-symmetry modes. Especially, growthrates of 2-D anti-symmetric mode related to Mach wave at higher wavenumbers are remarkably damped for the thicker shear layers. For three-dimensional unstable modes, viscosity effects for the phase velocities are less influenced by the shear layer thickness and all of them are less than the jet ambient sound speed.

1. まえがき

圧縮性自由せん断流の遷移機構の解明は次世代超音速 輸送機開発のキーテクノロジーの一つとして捉えられ、近 年、圧縮性乱流や遷移構造に関する研究が顕著に増えてい る。超音速ジェットにおける特徴としてマッハ波の放射が ある。このマッハ波は高速ジェットにおける主要な騒音と されマッハ波の放射を抑える又は取り除く方法が模索さ れている。過去の研究からマッハ波はジェットに起こる不 安定波に起因し、その放射強度は不安定波の位相速度が 超音速である場合、非常に高められることが知られてい る。Papamoschou¹⁾ らは、coflow ジェットにおいてジェッ ト中を運ばれる乱流渦の位相速度 (Uc) がジェット周囲の 音速 (a_{∞}) 以下になるように設定する $(Uc < a_{\infty})$ ことに よりマッハ波を除去できることを示した。しかし coflow を用いる方法はジェットエンジンの構造をより複雑化する といった問題があり、他のより効率的な騒音抑制手法を模 索する余地がある。これらのことから超音速ジェット(圧 縮性ジェット)の遷移に関する深い理解が望まれる。

これまで、せん断層厚さ一定の超音速"top-hat"型平面 ジェットの安定解析および直接数値シミュレーションを実 行し、マッハ波を形成する線形不安定モードは、位相速度 が $Uc > a_{\infty}$ となる二次元モード及び二次元モードと成す 角が小さい反対称モードであり、また最も不安定な三次 元反対称モードの位相速度は音速以下であり強いマッハ 波は放射しないことを確認している²⁾。

本研究では、マッハ波形成に寄与する反対称モードに ついて半値半幅(b)とせん断層厚さ(δ)の比(b/δ)に着目 し、線形不安定モードに対するせん断層厚さが及ぼす影 響を調査することにより、より詳細に超音速ジェットから 放出されるマッハ波発生機構を明らかにすることを目的 とする。

2. 計算方法

線形安定解析において支配方程式はデカルト座標系で 記述された圧縮性ナビエ・ストークス方程式である。た だし、支配方程式はジェットの中心速度 u_j ,速度の半値半 幅 y_j ,中心密度 ρ_j および粘性係数 μ_j によって無次元化 した。線形撹乱は平面波とし

$$d(x,y) = Real[A_0\hat{d}(y)exp\{i(\alpha x + \beta z - \omega t)\}]$$
(1)

と表される。ただし、 $\hat{d}(y)$ は固有値 (α, β, ω) に対応する 固有関数である。ジェト (top-hat jet) の層流速度分布は 次式で与えた。

$$\bar{u}(y) = \frac{U_j}{2} \left[1 - \tanh\left\{\frac{1}{4b_\delta} \left(\frac{y}{y_j} - \frac{y_j}{y}\right)\right\}\right]$$
(2)

ここで、 b_{δ} はせん断層厚さを変化させるパラメータである。また、温度分布はプラントル数 Pr=1 として Crocco-Busemann の関係式を用いた。

$$\bar{T}(y) = M_{\infty}^2 \frac{\gamma - 1}{2} \frac{(u_j \bar{u}(y) - u_j^2)}{\bar{u}(y)} + \frac{\bar{T}_j u_j}{\bar{u}(y)} + \frac{\bar{T}_{\infty}(\bar{u}(y) - u_j)}{\bar{u}(y)}.$$
 (3)

ここで $M_{\infty} = u_j/c_{\infty}$ であり c_{∞} はジェット周囲の音 速である。またジェット中心のマッハ数 ($M_j = u_j/c_j$) は $M_j = M_{\infty} \times c_{\infty}/c_j$ により与えられる.本研究では $c_j^2/c_{\infty}^2 = T_j/T_{\infty} = 1.12$ とした.この速度分布と温度分布 を線形撹乱方程式に代入し一様ディリクレ条件を境界条 件としスペクトル法により固有値及び固有関数を計算す る。またジェットの移流マッハ数は次式で定義される。

$$Mc = \frac{M_j \sqrt{T_j/T_{\infty}}}{1 + \sqrt{T_j/T_{\infty}}} \tag{4}$$

4. 計算条件

不安定モードに対するせん断層厚さの影響を調べるため、式(2)中のパラメータ b_δ を変化させた。せん断層厚 さはジェット平均速度 $\bar{u}(y)$ に対し $(\bar{u}(y) - u_j)/\Delta u = 0.01$ 及び $(u_{\infty} - \bar{u}(y))/\Delta u = 0.01$ となる二点間の距離と定 義する。ここで $\Delta u = u_j - u_{\infty}$ である。ここでは b_δ = 0.02,0.04,0.08 の 3 ケースについて計算を行った。このと きそれぞれのケースの半値半幅(b)とせん断層厚さ(δ)の 比 (b/δ) ははそれぞれ $b/\delta = 5.44, 2.72, 1.36$ となる。これ ら 3 ケースの速度分布を Fig.1 に示す。

また、粘性および圧縮性の影響を調べるため移流マッ ハ数 Mc = 1.17, 1.55、レイノルズ数 $Re = 1.0 \times 10^3 \sim 1.0 \times 10^6$ および非粘性の計算を行い比較した。

固有値問題の解の収束性は、Mc = 1.17、 $Re = 1.0 \times 10^6$ での反対称不安定モードの最大成長率を示す $\alpha = 1.1$ に おいて N=128 と N=256 のケースを比較することにより 確認した。N=128 では $\omega_i = 0.2060882767671$ であり、 N=256 では $\omega_i = 0.2060882767673$ となり N=128 で十分 収束することから、本計算では N=128 を用いた

Fig. 1: Jet mean velocity (\bar{u}) plofiles.

5. 計算結果および考察

Fig.2(a,b) に半値半幅とせん断層厚さの比を変化させ た際の二次元反対称モードの成長率および位相速度を示 す。図は、移流マッハ数 Mc = 1.17, Mc = 1.55 におけ る非粘性計算の結果である。図に示した〇、〇の記号は 各ケースにおいてモード位相速度がジェット周囲の音速と なる位置を示す。Mc = 1.17, Mc = 1.55の両ケースとも $b/\delta = 5.44$ では最大成長率を超える波数において、波数 の増加に伴い緩やかに成長率が減衰する。この高波数領 域では位相速度は常に音速を超えており、マッハ波を形 成することが予想される。また Mc = 1.17, Mc = 1.55の 両ケースともせん断層が厚くなるにつれ成長率が減衰す ることが確認でき、この減衰は特に高波数成分に顕著に 表れる。これらの結果から、ノズル直後において放出さ れるマッハ波は波長が短く、下流に向けせん断層が広が ると伴に波長が長くなることが予想される。

Fig. 2: (a) Linear grothrate and (b) phase velocity for inviscid case.

Fig. 3: Linear grothrate for $b/\delta = 5.44$; (a)Mc = 1.17, (b)Mc = 1.55.

Fig.4(a,b) は各せん断層厚さの二次元および三次元反対 称モード最大成長率モード成長率および位相速度のレイ ノルズ数に対する影響を示した図である (Mc=1.17)。こ こで $Re = 1.0 \times 10^7$ に示された結果は、非粘性計算の値 である。せん断層が薄くなるにつれ三次元モード成長率 は、レイノルズ数が高くなるにつれ大幅に増加することが わかる (Fig.4a)。位相速度を見ると (Fig.4b)、三次元モー ドはせん断層厚さが変化してもレイノルズ数の影響をほ とんど受けず、常にジェット周囲の音速 (0.417) 以下であ ることが確認できる。このため最大成長率を示す付近の 三次元反対称モードはマッハ波を形成しにくいことが予 想される。

Fig. 4: (a) Linear grothrate and (b) phase velocity for Mc = 1.17.

4. まとめ 薄いせん断層を持つ超音速"top-hat"型平面 ジェットの線形安定解析を行い以下の事を確認した。

1) せん断層厚さの増加は反対称モード (A1) の成長率 を減少させ、特に強いマッハ波を形成する二次元モード 高波数成分の成長率を大きく減衰させる。

2) 最大成長率を示す三次元モードの位相速度は異なる せん断層厚さに対しつねに周囲の音速以下であることを 確認した

参考文献

1)Papamoschou, D., AIAA 97-0147 (1997).

- 2)Watanabe, D. and Maekawa, H., Journal of Turbulence 3, 047 (2002).
- 3)Seiner, J. M., Studies in Turb., (1992).