日本流体力学会年会 2003 講演論文集

格子ボルツマン熟売体 BGK モデルは構築可能か?

Is It Possible to Construct a Thermally Correct BGK Model of Lattice Boltzmann Method?

O 渡利 實 (航技研), 蔦原道久 (神大自然科学研究科)

Minoru WATARI* and Michihisa TSUTAHARA**

*Wind Tunnel Technology Center, NAL, Tokyo 182-8522, Japan

**Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan

Multi-speed thermal models of the lattice Boltzmann method (LBM) that have a single relaxation (BGK) scheme have been proposed by several authors. While these models are intended to correctly represent heat characteristics and compressibility, existing models do not provide satisfactory accuracy. This paper discusses the possibility of a correct model and how to construct it. It is concluded that it is possible to construct a thermally correct two-dimensional multi-speed LBM BGK model. However, a correct three-dimensional multi-speed LBM BGK thermal model is theoretically impossible.

1. はじめに

流体の圧縮性と熱を正確に扱うことのできる multi-speed BGK 型格子ボルツマン法(LBM) モデルとしていくつか¹⁻³⁾提案 されている。しかし、数値シミュレーションに実際に適用し てみるとその多くが十分な精度の解を与えない。正しい BGK 型熱流体 LBM モデルを導く条件と、そのような条件を満足す るモデルは構築可能なのか、を研究した。

2. 正しい熱流体LBMモデルを導く条件

正しい BGK 型熱流体 LBM モデルを導くための局所平衡分布 **開教** f.⁽⁰⁾ の条件は以下に示すとおりである。

$$\sum_{k} \sum_{i} f_{ki}^{(0)} = \rho \tag{1}$$

$$\sum_{k} \sum_{j} f_{k}^{(0)} c_{ka} = \rho u_{a} \tag{2}$$

$$\sum_{k} \sum_{i} f_{ki}^{(0)} c_{ki\alpha} c_{ki\beta} = \rho(\frac{2}{D} e \delta_{\alpha\beta} + u_{\alpha} u_{\beta})$$
(3)

$$\sum_{k} \sum_{r} \int_{\mu}^{r} \sigma_{\mu a} c_{\mu \beta} c_{\mu \gamma}$$

$$= \rho \left[\frac{2}{D} e(u_{a} \delta_{\rho \gamma} + u_{\beta} \delta_{\gamma a} + u_{\gamma} \delta_{a\beta}) + u_{a} u_{\beta} u_{\gamma} \right]$$

$$\tag{4}$$

$$\sum_{k} \sum_{j} f_{kj}^{(0)} \frac{c_k^2}{2} = \rho(e + \frac{u^2}{2})$$
(5)

$$\sum_{k} \sum_{r} f_{\mu}^{(0)} \frac{c_{k}^{2}}{2} c_{\mu \alpha} = \rho u_{\alpha} (\frac{D+2}{D} e + \frac{\mu^{2}}{2})$$
(6)

$$\sum_{\mathbf{k}} \sum_{i} \int_{\mathbf{k}}^{(0)} \frac{c_{\mathbf{k}}^{2}}{2} c_{\mathbf{k}a} c_{\mathbf{k}\beta}$$

$$= \rho \left[\frac{2}{D} e(\frac{D+2}{D} e + \frac{u^{2}}{2}) \delta_{\alpha\beta} + u_{\alpha} u_{\beta} (\frac{D+4}{D} e + \frac{u^{2}}{2}) \right]$$

$$\tag{7}$$

ここで ρ:密度、u:速度、e:内部エネルギ、c_{ki}:粒子速度であ り、添字 k は粒子速度の大きさ、i は方向を示す。D は空間 次元、添字α、β、γは各軸成分を示す。

(7)式が示すように局所平衡分布関数は速度 u に関し4次項 まで必要であり、したがって局所平衡分布関数は4階テンソ ルまで含むようになる。(4)式左辺は3階テンソル+ $f_{ki}^{(0)}$ の4 階テンソル=計1階テンソルを含み、粒子速度の選択に当っ ては7階テンソルまで等方的であることが必要である。

3. LBM粒子速度

LBMで用いられる粒子速度は2次元、3次元それぞれ図1、 図2に示すもの、及びそれらの整数倍速度の粒子である(2 次元6角格子では5階テンソル等方性までしか保証されな いので検討から除いた)。図に示した粒子速度の奇数階テン ソルはゼロであり、偶数階テンソルは以下の式で表される。 101

$$\sum_{i}^{l} l = \pi_{k} \tag{8}$$

$$\sum_{i}^{l} c_{ki\beta} = \chi_{k} \delta_{\alpha\beta} \tag{9}$$

$$\sum c_{ki\alpha} c_{ki\beta} c_{ki\gamma} c_{ki\xi} = \varphi_k \Delta^{(4)}_{\alpha\beta\gamma\xi} + \psi_k \delta_{\alpha\beta\gamma\xi}$$
(10)

$$\sum_{i} c_{ki\alpha} c_{ki\beta} c_{ki\gamma} c_{ki\zeta} c_{ki\gamma} c_{ki\zeta} = \theta_k \Delta^{(6)}_{\alpha\beta\gamma\zeta\eta\zeta} + \omega_k \Delta^{(4,2)}_{\alpha\beta\gamma\zeta\eta\zeta} + \lambda_k \delta_{\alpha\beta\gamma\zeta\eta\zeta}$$
(11)

$$\sum_{i} \frac{c_k^2}{2} = \Pi_k \,, \tag{12}$$

$$\sum_{i} \frac{c_k^2}{2} c_{ki\alpha} c_{kj\beta} = X_k \delta_{\alpha\beta}$$
(13)

$$\sum_{i} \frac{c_{k}^{*}}{2} c_{ki\alpha} c_{kj\beta} c_{ki\gamma} c_{ki\xi} = \Phi_{k} \Delta_{\alpha\beta\gamma\xi}^{(4)} + \Psi_{k} \delta_{\alpha\beta\gamma\xi}$$
(14)

$$\sum_{i} \frac{c_{k}}{2} c_{ki\sigma} c_{ki\sigma} c_{ki\sigma} c_{ki\sigma} c_{ki\sigma} c_{ki\sigma} c_{ki\sigma} = \Theta_{k} \Delta^{(6)}_{\alpha\beta\gamma\varsigma\eta\zeta} + \Omega_{k} \Delta^{(4,2)}_{\alpha\beta\gamma\varsigma\eta\zeta} + \Lambda_{k} \delta_{\alpha\beta\gamma\varsigma\eta\zeta}$$
(15)

ここで $\delta_{aetaeta}, \Delta^{(4)}_{aetaeta}, \Delta^{(6)}_{aetaetaeta}$ は等方テンソル、 $\delta_{aetaeta}$ 、 $\delta_{aetaeta}$ 、 $\Delta^{(4,2)}_{aetaeta}$ は非等方テンソルであり、次式で定義される。

$$\begin{split} \partial_{\alpha\beta} &= 1 \text{ (if } \alpha = \beta \text{), } = 0 \text{ (otherwise)} \\ \delta_{\alpha\beta\gamma\xi} &= 1 \text{ (if } \alpha = \beta = \gamma = \xi \text{), } = 0 \text{ (otherwise)} \\ \delta_{\alpha\beta\gamma\xi} &= 1 \text{ (if } \alpha = \beta = \gamma = \xi \text{), } = 0 \text{ (otherwise)} \\ \Delta_{\alpha\beta\gamma\xi}^{(4)} &= \delta_{\alpha\beta}\delta_{\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\xi} + \delta_{\alpha\xi}\delta_{\beta\gamma} \\ \Delta_{\alpha\beta\gamma\xi\gamma\xi}^{(4)} &= \delta_{\alpha\beta}\Delta_{\gamma\xi\gamma\xi}^{(4)} + \delta_{\alpha\gamma}\Delta_{\beta\xi\gamma\xi}^{(4)} + \delta_{\alpha\xi}\Delta_{\beta\gamma\gamma\xi}^{(4)} + \delta_{\alpha\gamma}\Delta_{\beta\gamma\xi\xi}^{(4)} + \delta_{\alpha\zeta}\delta_{\beta\gamma\gamma\xi}^{(4)} \\ \Delta_{\alpha\beta\gamma\xi\gamma\xi}^{(4)} &= \delta_{\alpha\beta}\delta_{\gamma\xi\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\xi\gamma\xi} + \delta_{\alpha\xi}\delta_{\beta\gamma\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\gamma\xi\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\xi\gamma} + \cdots \text{ (if } \beta = \xi \text{ (if } \beta = \xi \text{), } \\ \Delta_{\alpha\beta\gamma\xi\gamma\xi}^{(4)} &= \delta_{\alpha\beta}\delta_{\gamma\xi\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\xi\gamma\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\gamma\xi\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\gamma\xi} + \cdots \text{ (if } \beta = \xi \text{), } \\ \Delta_{\alpha\beta\gamma\xi\gamma\xi}^{(4)} &= \delta_{\alpha\beta}\delta_{\gamma\xi\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\xi\gamma\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\gamma\xi} + \delta_{\alpha\gamma}\delta_{\beta\gamma\xi\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\gamma\xi} + \delta_{\alpha\zeta}\delta_{\beta\gamma\zeta} + \delta_{\alpha\zeta}\delta_{\beta\gamma} + \delta_{\alpha\zeta}\delta_{\beta\gamma}$$

係数 πk, χk, φk...の値を表1、2に示す。表では粒子のスピー 3倍速を用いると c¹ グループの係数は 3" 倍になる。

Fig.2 Particle velocities in 3D Fig.1 Particle velocities in 2D

Table 1	Specific val	ues for	π_k in	2D	Table	2 Specific v	alues fo	or π_k	in 3D
Group	Parameter	k = 1	<i>k</i> = 2		Group	Parameter	k = 1	k = 2	k = 3
C 4	π_{k}	4	4		C_k^0	π_{i}	6	12	8
.,	χ.	2	4	C_k^2	χ.	2	8	8	
C_k^*	п,	2	4		П,	3	12	12	
	φ_{\star}	0	4		C ⁴	φ_{\star}	0	4	8
C_k^4	Ψ.	2	-8			¥.	2	4	-16
	X,	1	4			X	1	8	12
	θ_{\star}	0	4/3	C &	θ_{\star}	0	8	0	
	ω_{\star}	0	0		ω_{\star}	0	4	-16	
C_k^6	λ,	2	-16		r de la companya de l	2	52	128	
	Φ,	0	4		Φ,	0	4	12	
	Ψ,	1	-8		Ψ_{\star}	1	-4	-24	
C ⁸ _k	Θ,	0	4/3		Θ,	0	8	0	
	Ω_{\star}	0	Ő	C ⁸		Ω,	0	4	-24
	Λ_{\star}	1	-16		1	Λ,	1	-52	192

Group Parameter
$$k = 1$$
 $k = 2$ $k =$
 C_k^0 π_k 6 12 8

	C_k^2	X.	4	8	ð
		П,	3	12	12
		φ,	0	4	8
	C*	ψ_{\star}	2	4	-16
		X	1	8	12
		θ_{\star}	0	8	0
		ω_{\star}	0	4	-16
	C_k^6	λ_{1}	2	52	128
		Φ,	0	4	12
		Ψ_{\star}	1	4	-24
	C ⁸	Θ,	0	8	0
		Ω_{t}	0	4	-24
		Λ_{k}	1	-52	192

4. Global に係数を与える局所平衡分布関数の場合 文献³⁾のモデルの局所平衡分布関数は Maxwell 分布を速度 に関し展開した多項式全体に対し重み係数Fkを置く。 速度4次項までとると以下の通り。

$$f_{\mu}^{(0)} = \rho F_{k} [(1 - \frac{D}{4e}u^{2} + \frac{D^{2}}{32e^{2}}u^{4}) + \frac{D}{2e}(1 - \frac{D}{4e}u^{2})c_{\mu\xi}u_{\xi} + \frac{D^{2}}{8e^{2}}(1 - \frac{D}{4e}u^{2})c_{\mu\xi}c_{\mu\eta}u_{\xi}u_{\eta} + \frac{D^{3}}{48e^{3}}c_{\mu\xi}c_{\mu\eta}c_{\mu\zeta}u_{\xi}u_{\eta}u_{\zeta} (17) + \frac{D^{4}}{384e^{4}}c_{\mu\xi}c_{\mu\eta}c_{\mu\zeta}c_{\mu\chi}u_{\xi}u_{\eta}u_{\zeta}u_{\chi}]$$

この(17)式を条件(1)~(7)に代入し、奇数階テンソルはゼロ、 偶数階テンソルは式(8)~(15)で表されることを使えば係数 Fk を決める条件:表3が得られる。これは線形代数方程式で ある。2次元モデルを作る場合を考えよう。図1の k=1 粒子 の1、2、3倍速および k=2 粒子の1、2倍速、計5種類の 粒子速度で構成することを仮定して、条件式の一部、例えば c⁴ グループの条件式を書き下すと以下のようになる。

$$\begin{bmatrix} 0 & 0 \times 2^4 & 0 \times 3^4 & 4 & 4 \times 2^4 \\ 2 & 2 \times 2^4 & 2 \times 3^4 & -8 & -8 \times 2^4 \\ 1 & 1 \times 2^4 & 1 \times 3^4 & 4 & 4 \times 2^4 \end{bmatrix} \begin{bmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \end{bmatrix} = \begin{bmatrix} e^2 \\ 0 \\ 2e^2 \end{bmatrix}$$
(18)

この方程式が解を持つか否かは次の rank で判定できる。

$$rankA \equiv rank \begin{bmatrix} 0 & 0 \times 2^{4} & 0 \times 3^{4} & 4 & 4 \times 2^{4} \\ 2 & 2 \times 2^{2} & 2 \times 3^{3} & -8 & -8 \times 2^{4} \\ 1 & 1 \times 2^{4} & 1 \times 3^{4} & 4 & 4 \times 2^{4} \end{bmatrix} = rank \begin{bmatrix} 0 & 4 \\ 2 & -8 \\ 1 & 4 \end{bmatrix}$$
(19)
$$rankB \equiv rank \begin{bmatrix} 0 & 0 \times 2^{4} & 0 \times 3^{4} & 4 & 4 \times 2^{4} & e^{2} \\ 2 & 2 \times 2^{4} & 2 \times 3^{4} & -8 & -8 \times 2^{4} & 0 \\ 1 & 1 \times 2^{4} & 1 \times 3^{4} & 4 & 4 \times 2^{4} & 2e^{2} \end{bmatrix} = rank \begin{bmatrix} 0 & 4 & e^{2} \\ 2 & -8 & 0 \\ 1 & 4 & 2e^{2} \end{bmatrix}$$
(20)

したがって、採用する粒子いかんに関わらず基本粒子に対す る rank 判定で可解か非可解かの判定ができる。結果は表4 に示す通り rankA = rankB、即ち2次元モデルは構築可能で ある。rankの合計は8。8種類の粒子速度が必要である。静 止粒子、図1の k=1 粒子の1、2、3、4倍速、および k=2 粒子の1、2、3倍速で構成したモデルを使ってシミュレー ションを実施した。Couette 流の内部エネルギ分布結果を図 3に、垂直衝撃波シミュレーションの圧力、マッハ数等の分 布結果を図4に示す。いずれも理論解と完全に一致した。

同様な rank 判定を3次元: 図2の粒子速度について行えば 表5が得られる。 c_{i} グループでrankA < rankB、したがっ て3次元モデルは構築不可能である

Table 3 Equations for Fk					
Group	Equations				
C &	$\sum_{k} \pi_{k} F_{k} = 1$				
C _k ²	$\sum_{k} \chi_{k} F_{k} = \frac{2}{D} e$ $\sum_{k} \prod_{k} F_{k} = e$				
C _k	$\sum_{k} \varphi_{k} F_{k} = \frac{4}{D^{2}} e^{2}$ $\sum_{k} \psi_{k} F_{k} = 0$ $\sum_{k} X_{k} F_{k} = \frac{2(D+2)}{D^{2}} e^{2}$				
C _ k	$\sum_{t} \theta_{t} F_{t} = \frac{8}{D^{2}} e^{3}$ $\sum_{t} \omega_{t} F_{t} = 0$ $\sum_{t} \lambda_{t} F_{t} = 0$ $\sum_{t} \Phi_{t} F_{t} = \frac{4(D+4)}{D^{2}} e^{3}$ $\sum_{t} \Psi_{t} F_{t} = 0$				
C ⁸ _k	$\sum_{t} \Theta_{t} F_{t} = \frac{8(D+6)}{D^{4}} e^{t}$ $\sum_{t} \Omega_{t} F_{t} = 0$ $\sum \Lambda_{t} F_{t} = 0$				

able 4 Rank evaluation for 2D model				
Group	rank A	rankB		
C &	1	1		
C ²	1	1		
C4	2	2		
C &	2	2		
C ⁸	2	2		

Table 5 Rank evaluations for 3D model

Group	rank A	rankB
C_k^0	1	1
C2	1	1
C‡	3	3
C 4	3	4
C_k^8	3	3

5. 係数が分布した局所平衡分布関数の場合

文献^{1,2)}のモデルは係数を展開項それぞれに置く形をとる。

$$\begin{aligned} f_{ki}^{(0)} &= \rho [A_k + M_k c_{ki\zeta} u_{\zeta} + G_k u^2 + J_k c_{ki\zeta} c_{ki\eta} u_{\zeta} u_{\eta} \\ &+ Q_k c_{ki\zeta} u_{\zeta} u^2 + H_k c_{ki\zeta} c_{ki\eta} c_{ki\zeta} u_{\zeta} u_{\eta} u_{\zeta} \\ &+ S_k u^4 + R_k c_{ki\zeta} c_{ki\eta} u_{\zeta} u_{\eta} u^2 + T_k c_{ki\zeta} c_{ki\eta} c_{ki\zeta} c_{ki\chi} u_{\zeta} u_{\eta} u_{\zeta} u_{\chi}] \end{aligned}$$
(21)

係数 A_k, M_k, G_k...を決める条件を表6に示す。2次元:図1の粒 子速度について rank 判定を行えば2次元モデルは構築可能 であることがわかり文献2)の2次元モデルと全く一致する結 果を得る。しかし、3次元モデルについては H_kの cg グルー プでrankA < rankB になり構築不可能ということが判る。

引用文献

1) F. J. Alexander et al, Phys. Rev. E 47:R2249-52 (1993).

- 2) Y. Chen, et al, Phys. Rev. E 50:2776-83 (1994).
- 3) N. Takada, et al, JSME B 64, 628:4-11 (1998).

		Table 6 Equations	for A_k ,	M _k ,	<i>G</i> _{k}
Gro	oup	Equations	Gr	oup	Equations
A _*	C_k^0	$\sum_{k} \pi_{k} A_{k} = 1$	1	C_k^2	$\sum_{k} \chi_{k} Q_{k} = -3 \sum_{k} \varphi_{k} H_{k}$
	C_k^2	$\sum_{k} \chi_{k} A_{k} = \frac{2}{D} e$	Q.	C_{k}^{4}	$\sum_{k} \varphi_{k} Q_{k} = -\frac{1}{2}$
	C_k^4	$\sum_{k} X_k A_k = \frac{2(D+2)}{D^2} e^2$			$\sum_{k} \Psi_{k} Q_{k} = 0$
	C_k^2	$\sum_{k} \chi_{k} M_{k} = 1$		C_k^4	$\sum_{k} \psi_{k} H_{k} = 0$
	C _k ⁴	$\sum_{k} \varphi_{k} M_{k} = \frac{2}{D} e$ $\sum_{k} \Psi_{k} M_{k} = 0$ $\sum_{k} X_{k} M_{k} = \frac{D+2}{D} e$	H,	C 4	$\sum_{i} \Phi_{i} H_{i} = \frac{1}{12}$ $\sum_{i} \theta_{i} H_{k} = \frac{1}{6}$ $\sum_{i} \omega_{i} H_{k} = 0$ $\sum \lambda_{k} H_{k} = 0$
G,	C_k^0	$\sum_{k} \pi_{k} G_{k} = -\sum_{k} \chi_{k} J_{k}$			$\sum_{k}^{k} \Psi_{k} H_{k} = 0$
	C_k^2	$\sum_{k} \chi_{k} G_{k} = -\frac{1}{2}$		C_k^0	$\sum_{k} \pi_{k} S_{k} = -\sum_{k} \chi_{k} R_{k} - 3 \sum_{k} \varphi_{k} T_{k}$
	C_k^4	$\sum_{k} X_{k} G_{k} = -\frac{D+2}{2D}e$	S,	C_k^2	$\sum_{k} \chi_{k} S_{k} = -\sum_{k} \varphi_{k} R_{k} - 3 \sum_{k} \theta_{k} T_{k}$
		$\sum_{k} \varphi_{k} J_{k} = \frac{1}{2}$		C_k^4	$\sum_{k} X_{k} S_{k} = -\sum_{k} \Phi_{k} R_{k} - 3 \sum_{k} \Theta_{k} T_{k}$
J,	C	$\sum_{k} \Psi_{k} J_{k} = 0$ $\sum_{k} X_{k} J_{k} = \frac{D+2}{4}$ $\sum_{k} Z_{k} J_{k} = \frac{D+4}{4}$	D	C 4	$\sum_{k} X_{k} R_{k} = -\sum_{k} (3 \mathbf{\Phi}_{k} + \frac{3D}{2} \theta_{k}) T_{k}$ $\sum_{k} \varphi_{k} R_{k} = -6 \sum_{k} \theta_{k} T_{k}$
	C k	$\sum_{i} \Phi_{i} J_{i} = \frac{1}{2D} e$ $\sum_{i} \Psi_{i} J_{i} = 0$	Λ _k	C _ k	$\sum_{t} \frac{\varphi_{t} \kappa_{t}}{\sum_{t} \Phi_{t} R_{t}} = -6 \sum_{t} \Theta_{t} R_{t} + \frac{1}{4}$ $\sum_{t} \Psi_{t} R_{t} = 0$
				C_k^A	$\sum_{k} \Psi_{k} T_{k} = 0$
					$\sum_{k} \omega_{k} T_{k} = 0$
		T		C_k^6	$\sum_{k} \lambda_{k} T_{k} = 0$ $\sum_{k} \Psi_{k} T_{k} = 0$
				C *	$\sum_{k}^{k} \Omega_{k} T_{k} = 0$ $\sum_{k}^{k} \Lambda_{k} T_{k} = 0$

