LOX/GH₂ロケットエンジン燃焼器の数値シミュレーション Numerical Simulation of LOX/GH₂ Rocket Engine Combustor

松山 新吾, ISTA/JAXA,東京都調布市深大寺東 7-44-1, E-mail: smatsu@chofu.jaxa.jp
新城 淳史, ISTA/JAXA,東京都調布市深大寺東 7-44-1, E-mail: shinjo.junji@jaxa.jp
溝渕 泰寛, ISTA/JAXA,東京都調布市深大寺東 7-44-1, E-mail: mizobuchi.yasuhiro@jaxa.jp
小川 哲, ISTA/JAXA,東京都調布市深大寺東 7-44-1, E-mail: og@chofu.jaxa.jp
Shingo Matsuyama, ISTA/JAXA, 7-44-1 Jindaiji-higashi, Chofu, Tokyo 182-8522
Junji Shinjo, ISTA/JAXA, 7-44-1 Jindaiji-higashi, Chofu, Tokyo 182-8522
Yasuhiro Mizobuchi, ISTA/JAXA, 7-44-1 Jindaiji-higashi, Chofu, Tokyo 182-8522
Satoru Ogawa, ISTA/JAXA, 7-44-1 Jindaiji-higashi, Chofu, Tokyo 182-8522

Numerical simulation of liquid oxygen/gaseous hydrogen rocket engine combustor is conducted to investigate the flame structure under supercritical pressure. A preliminary result by an axisymmetric numerical simulation with detailed chemistry is shown for a single shear coaxial injector element which follows the experiment by Mayer and Tamura. A real gas effect under supercritical pressure is accounted for by van der Waals equation of state. A fine mesh system with minimum mesh spacing of $5\mu m$ is employed to resolve a thin reaction layer under high pressure environment. A brief and short-term (for 0.2msec) analysis on the obtained result is presented.

1. はじめに

ロケットエンジン燃焼器内部で生じる燃焼過程に対する理解は 未だ不十分である.その要因は,液酸/液水エンジン燃焼器内部 では,液体酸素の微粒化,蒸発,混合,燃焼といった複雑な過程 を伴うためである.その結果,実際の燃焼器設計では,試験の積 み重ね,試行錯誤の繰り返しに頼るところが大きく,エンジン性 能の向上・新規エンジンの開発を行う上で,開発期間長期化・開 発コスト増大の要因になっている.

一方で、近年の著しい計算機能力の向上によって、詳細な反応 機構を用いた燃焼シミュレーションが行われ、火炎の構造を理解 する上で重要なツールになってきている.しかし、ロケットエン ジン燃焼器シミュレーションを行う上で困難となるのは、燃焼器 が数十 cm のスケールであることに対し、高圧力下の燃焼で生じ る火炎厚さは mm 以下のスケールになることである.そのため、 必然的に火炎モデル、LES などを用いたアプローチに頼らざるを 得ないが、従来の火炎モデルがロケットエンジン燃焼器内部の高 圧力・高温条件下において妥当であるかどうかは明らかではない.

そこで、本研究では、素反応機構を用いた詳細シミュレーショ ンによって、ロケットエンジン燃焼器内部の高圧条件下で生じる 火炎構造を把握することを目指す.詳細シミュレーションにより 得られた情報から、既存の火炎モデルの適用可能性や新しい火炎 モデルの必要性などを検討する.本報では、その第一歩として、 ロケットエンジン燃焼器の基本要素である同軸型噴射エレメント に対して燃焼シミュレーションを行った結果を報告する.

2. 解析対象

解析対象は図1に示す同軸型噴射エレメントである.これは, 液体酸素(LOX)噴射ノズルの周りに円環状の気体水素(GH₂) 噴射ノズルが配置され、気相-液相間の相互作用によって燃料と 酸化剤の混合・拡散を促進し燃焼させるものである.計算条件は, Mayerと田村によって行われた,超臨界圧力下でのLOX/GH₂燃焼 可視化試験を模擬したものである.

3. 計算結果

今回の計算では、実時間で約0.2msecの間、シミュレーション を実行し、非定常な火炎をとらえることに成功した.ある瞬間に おける温度分布を図2に示す.図中の黒い実線は当量比1の等値 線を示している. 火炎の温度は最高で断熱火炎温度に近い4000K 弱に達する. GH₂ 噴流側では LOX ポスト上端から渦が間欠的に 発生していることがわかる. この渦は下流に流れていくに従い, 隣接する渦と合体し大きくなっていく. 下流では, 渦によって火 炎は大きく変形するが, 局所的な消炎は起こらず, 非定常に運動 しながら定在的に存在する. LOX ポスト近傍には循環領域が存在 しており, 流速が減少することで火炎が吹き消えずに安定して存 在している.

Fig. 1 Schematic diagram of shear coaxial injector.

