加速により再層流化する乱流境界層の特性

Properties of the Relaminarizing Turbulent Boundary Layer under Flow Acceleration

○一宮 昌司, 徳島大工, 徳島市南常三島町 2-1, E-mail: ichimiya@me.tokushima-u.ac.jp 中田 昌樹, 徳島大工, 徳島市南常三島町 2-1

Masashi ICHIMIYA, University of Tokushima, 2-1 Minami-Josanjima, Tokushima Masaki NAKATA, University of Tokushima, 2-1 Minami-Josanjima, Tokushima

Relaminarization properties of the turbulent boundary layer by a sink-flow were experimentally investigated. Lateral and transverse correlation hot-wire probes and a X-shaped probe were used. In the coherent structure analysis with u-level method, large amplitude sweep and ejection decreased with the relaminarization within the sink-flow section. This result shows that the downflow of a high-speed fluid and the upflow of a low-speed fluid were prevented by the relaminarization. On the other hand, the width and height of coherent vortex increased with the relaminarization within the sink-flow section. This variation of the coherent vortex affected an extent and an intensity of the coherent structure.

1. 緒言

乱流を順圧力勾配のもとで加速すると、次第に層流に近い特性 を示すようになり、「再層流化」、「逆遷移」と呼ばれている.これ まで再層流化についていくつか研究が行われてきた.中でも乱流 境界層中の組織渦が再層流化によってどう影響を受けるかについ ては興味がもたれる.

本研究はこの再層流化による組織渦の横方向,及び壁垂直方向 のスケール変化について横速度相関係数の変化から考察する.ま た再層流化が組織構造に及ぼす影響についても考察する.縮小形 状は、直線的で主流の加速度合いが一定となる sink flow とした.

2. 実験装置及び実験方法

実験装置は全長約 10m の吹出型風洞で、測定部は図1に示すような全長 4m の測定用平板とそれに向かい合う下側の圧力調整板 からなる. 圧力調整板を途中から直線的に測定用平板に近づけ sink flow を実現する. 流路縮小開始位置である,平板前縁から 2500mm 下流での平板上の中心を座標原点とする. 流れ方向座標 x は流路縮小開始位置における境界層厚さる(≒33mm)で無次元化 して示す. 測定は直径 5µm,長さ 1mm のタングステン線を 2本 z 方向に隔てた z 方向相関 I型熱線プローブ、同様に y 方向に 2 本隔てた y 方向相関 I型熱線プローブ及び X 型熱線プローブを用 い,原点における主流速度と&に基づく Re=11198 として行った. 熱線出力はサンプリング周波数 10kHz,サンプリング時間 26 秒で AD 変換され、処理された.

3.実験結果及び考察

図2に乱流境界層が十分に発達していると思われる断面 $(x/\delta_0 = -27.2)$ と sink flow 最下流断面 $(x/\delta_0 = 9.1)$ における横速度相関係数 g

Fig. 1 Configuration of flow field and coordinate system

の境界層厚さ方向(y⁺で示す)及び横方向(熱線受感部の横方向間隔 r⁺で示す)への分布の壁面近傍(y⁺=0~100)における等値線を示す. 壁近くの負の相関の強い領域が x/ δ_0 =-272 ではr⁺=60 に存在し たのに対し, x/ δ_0 =9.1 ではr⁺=110 に遠ざかった. ゆえに再層流 化により組織渦の横方向スケールが増加していることがわかる. さらに, この負の相関領域のy⁺方向への広がりをみると, x/ δ_0 = -27.2 では y⁺=10 までしか及んでいなかったのに対し, x/ δ_0 =9.1 では y⁺=30 まで及んでおり, 再層流化により組織渦の垂直方向 スケールも増加する.

4. 結言

再層流化によって壁面近くの組織渦の横方向及び垂直方向スケ ールが増加する. これにより組織構造は弱体化する.

壁面近傍ではスイープ、少し離れた位置ではイジェクションの 減少が顕著である. 高速流体の下降及び低速流体の上昇が妨げら れている.

組織構造は壁面近傍では下流上方に傾くが、再層流化によりこの傾きが増加する.壁面から離れるとこの傾きはなくなる.

