吸い込み渦の構造と力学:底面境界層の重要性

Dynamics and Structure of a Bathtub Vortex: Importance of the Bottom Boundary Layer

雪本真治, 東大・海洋研(現在:三菱 UFJ ニコス株式会社), 〒164-8639 東京都中野区南台.

○ 新野 宏, 東大・海洋研, 〒164-8639 東京都中野区南台, E-mail: niino@ori.u-tokyo.ac.jp

野口尚史, 京大院・工, 〒606-8501 京都市左京区吉田本町

木村龍治,放送大学,〒261-8586千葉市美浜区岩葉 2-11

フレデリック・ムーラン、トゥールーズ流体力学研究所、トゥールーズ 31400、フランス

Shinji Yukimoto, Ocean Research Institute, The University of Tokyo, Nakano 164-8639, Tokyo.

Hiroshi Niino, Ocean Research Institute, The University of Tokyo, Nakano 164-8639, Tokyo.

Takashi Noguchi, Graduate School of Engineering, Kyoto University, Kyoto 606-8501.

Ryuji Kimura, The Open University of Japan, Chiba 261-8586.

Frédéric Moulin, Institut de Mécanique des Fluides de Toulouse (IMFT), 31400 Toulouse, France.

A bathtub vortex in a cylindrical tank rotating at a constant angular velocity Ω is studied by a laboratory experiment, a numerical experiment and a boundary layer theory. When the volume flux Q is large and Ω is small, a vortex in which angular momentum is constant outside the vortex core is formed (Regime I). When Q is small or Ω is large, however, one in which the angular momentum decreases with decreasing radius occurs (Regime II). When the ratio of Q to the theoretical boundary-layer radial flux Q_b (scaled by $2\pi R^2 (\nu \Omega)^{1/2}$ for a potential vortex) at the radius of the drain hole is larger than a critical value (of order 1), the radial flow in the interior exists at all radii and Regime I is realized. When the ratio is less than the critical value, the radial flow in the interior nearly vanishes inside a critical radius and almost all of the radial flux occurs in the boundary layer, resulting in Regime II.

1. はじめに

大気中の強い渦の接線速度の半径分布は、渦核の外側で角運動 量一定のランキンの複合渦¹⁾でモデル化されることが多いが、近 年の竜巻の速度分布の観測²⁾によると角運動量は一定とはいえな い。本研究では、強い渦における接線速度の分布の決定の仕組み を理解するために、回転円筒内に生ずるバスタブ渦を室内実験、 数値実験、境界層理論により調べた。バスタブ渦については、こ れまでも多くの研究³⁷⁾があるが、接線速度の分布の決定の仕組み やこれに果たす底面境界層の役割は適切に理解されていない。

2. 室内実験

角速度Ωで回転する半径 40cm の円筒水槽に深さ 18cm の水を 入れ、底面中心にある直径 2.5cm の穴から流量Q で水を抜き、同 量の水を側壁の上部にあるスポンジを通して水槽に水を戻すこと で定常な渦を実現した。実験の結果、Q が大きくΩが小さいとき には、渦核の外で角運動量が一定の渦(レジーム I)、Q が小さい かΩが大きいときには角運動量が半径と共に増加する渦(レジー ム II)が実現することがわかった。

3. 数値実験

円筒座標系の軸対称の数値モデルを用いて、角運動量や(r,z)平 面内での流線などの詳しい分布を調べた。境界条件は、中心軸上 で stress free、上蓋は free-slip、底面と側壁は no-slip で角速度 *Q*で 回転しているとした。水面の変形は無視した。

Fig. 1は(r,z)平面内の流線と底面から 10cm の高さでの角運動量の半径分布を示したもので、レジーム1(Fig. 3a,b)ではほとんどの流線は内部領域を渦核の半径まで流入して角運動量一定の分布が実現するが、レジームII(Fig. 3c,d)ではほとんどの流線は境界層に流入し、内部領域では半径方向の流れがなくなっている。

4. 境界層理論

角運動量が半径に依らないポテンシャル渦の下に形成される底

は、境界層理論 から、Rを円筒 の内径、vを動 粘性とするとき $2\pi R^2 (vQ)^{12}$ でス ケールされる。 浩核の外縁の半 径における流量 Q_{bmax} は本実験 の場合、 $0.88 \times 2\pi R^2 (vQ)^{12}$ で与 えられるので $Q>Q_{bmax}$ (1)

面境界層の流量

がポテンシャル渦が実 現する基準となる。こ の結果は、室内実験・ 数値実験の結果を良く 説明する (Fig. 2)。

参考文献

 Rankine, W.J.M., A Manual of Applied Physics. 10th Ed., Charles Griffin and Company, (1882) 633pp.

 Ω (rad's) Fig. 2: The angular momentum at r=4cm scaled by that at the sidewall on the Ω -Q plane as obtained from the numerical experiment. The green curve shows the criterion given by (1).

Wurman, J., and S.
 Gill, Mon. Wea. Rev., 128, (2000) pp.2135-2164.

- (3) Lewellen, W. S., J. Fluid Mech., 14, (1962) pp.420-432.
- (4) Turner, J. S., J. Fluid Mech., 25, (1966) pp.377-400.
- (1) Funder, 5. 5. 7 Fluid Mech., 25, (1966) pp.377 100.
 (5) Lundgren, T.S. J. Fluid Mech., 155, (1985) pp.381-412.
- (6) Echavez, G and E. McCann, Exp. Fluids, 33, (2002) pp.414-421.
- (7) Andersen, A. et al., J. Fluid Mech., 556, (2006) pp.121-146.

Fig. 1 The streamlines in the *r*-*z* plane (a and c) and radial profiles of angular momentum at the mid-depth (b and d). For (a) and (b), $\Omega = 0.1$ rad/s and Q = 100 cm³/s, and for (c) and (d), $\Omega = 0.4$ rad/s and Q = 33 cm³/s.

+0.98

Potential

