# 土石流内部の渦構造 Vortex Structures of Debris-Flow Inside

# ○ 中屋志郎, 京大理, 京都市左京区北白川追分町, E-mail: nakaya@fluid.mbox.media.kyoto-u.ac.jp Shirou NAKAYA, Kyoto Univ., Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto

I discovered clear helical patterns of rubbles in debris-flow deposit which was formed by debris-projection from main part of debris flow. The result of physical analysis indicates that they are organized vortex structures.

## 1. はじめに

土石流の運動機構と乱流構造の詳細については、内部構造の直 接観測が困難であることから、未解明の部分が多く残されている。 扇状地に残された土砂堆積物の多くは、土石流本体の運動速度が 減衰して停止に至り形成されたものである。土石流運動機構の解 明には、発達した土石流の内部構造の研究が重要と考えられる。 この観点から、流路湾曲部の偏流域において土石流本体から分 離・射出した土砂堆積物の観察と計測を行い、内部構造を解析し た。土石流堆積物に発達する渦構造について明らかにするととも に、考察した土石流本体の運動メカニズムについて述べる。

### 2. 計測および解析方法

研究対象としたのは、2009年7月7日に和歌山県田辺市秋津川 の中通谷川において、降雨が誘因となって起きた土石流である。 発達した土石流が流路湾曲部を通過した際、土石流本体から分 離・射出して空中飛翔した後、流路近傍に着地して形成された土 砂堆積物の内部構造を解析した。堆積物の上から水を散布するこ とにより一定量の砂泥基質を洗い流して礫の配列と構造を露わに した後、スケッチおよび写真撮影をおこなった。トータルステー ションを用いて各礫のa軸, b軸および重心の位置を3次元的に 計測するとともに、礫の連続的な配列パターンについて計測した。 礫はサンプルし、質量および礫の3次元的形状を測定した。

### 3. 結果および考察

水平に近い断面における解析結果の一例をFig.1およびFig.2に 示す。Fig.1において礫の配列に着目すると、同規模の径をもつ礫 が連続して石列をなし、これらが収束して組織的ならせん渦構造 が形成されたことがわかる。隣り合う同規模の渦と渦を繋ぐよう に発達するらせん渦構造も明瞭に認められる。大規模渦構造の内 部には同様の形態とメカニズムをもつ、より小さな規模の渦が発 達し階層構造を形成したことが明らかになった。渦の中心には核 となる大径礫が存在し、この大径礫を取り巻くように、より小規 模な礫の群が集合的かつ規則的に配列し、渦の中心に向かってら せん状に収束するパターンを形成することが多い。一部では渦核 となる大径礫が存在せず、中心付近に、より小規模な複数の渦構 造が発達している場合も認められる。渦核および渦と渦の境界付 近に位置する礫には、回転軸(a 軸)を鉛直方向に向けて直立す る現象が認められる。後者の礫は、互いに隣り合う複数の渦相互 の構造に対して共役な姿勢で位置している。各渦は同方向の回転 成分をもち,運動方向前方に向かって反時計回りのスピンを示す。 Fig.2 に示した, 石列のパターンとa軸が示す礫の運動方向との対 応関係からも、連続的に並立する明瞭な渦構造の存在が認められ る。土石流堆積物の内部において、ケルビン - ヘルムホルツ不安 定性から発達する混合層乱流の大規模構造じにきわめてよく似た 渦構造の存在が明らかになった。土石流本体のもつ構造が堆積物 にも保持されたとすると、土石流内部において剪断応力を受けた 大径礫が渦の中心となってスピンし、周囲の流体とともに、より

小規模な固体粒子群を巻き込んで渦運動したことが推定される。 発達した土石流段波の内部および先端には、このような大径礫を 中心に渦度が集中し、一つの段波全体が、それ自体としてより大 規模な渦構造を形成して運動するメカニズムが推察される。



Fig. 1 Helical vortex structures in debris-flow deposit



Fig. 2 Relationship between a-axes of rubbles and vortex structures 参考文献

 Brown, G L. and Roshko, A., On density effects and large structures in turbulent mixing layers. J. Fluid. Mech., 64 (1974), pp. 775-981.