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  The theory of  Brownian motion  of  a  particle in a  fluid at  rest  is one  of  the most  brilliant

success  of  the statistical  mechanics  around  the e'quilibrium  state.  While the theory around  the

equilibrium  state  has been well-established  and  is impeccable, extension  of  the theory to the

systeM  far from equilibrium  seems  to remain  at primitive level and  to be rather  rare.  It is, in

part, due to its dificulty of  analysis.  Our purpose here is to give a  theory of Brownian  motion

in a  nonequilibrium  steady  states equilibrium  starting  with  as  rigorous  basis as  possible.

   We  ,consider the spherical,  rigid,  and  electro-magnetically  neutral  particle immersed in an

incornpressble fluid subject  to a  shear  flow given by

                               v(r)=P･r,  . (1)
                                                                    '

where  P is the constant  traceless tensor. We  start with  constructing  the Langevin equation

which  describes the stochastic  behavior of  the sphere,

   First we  evaluate  the friction fbrce exerted  on  the sphere.  In the absence  of  the shear  flow,

the fbrce is given by well-known  Stokes low, F(w)  ==  -4(w)u(w)  ==  
-6Tan(1+

 
-ipwlna)u(w)

(for srnall  w),  where  F(w)  is the friction force, e(w) is the frictidn coeMcient,  p and  n is the

density and  shear  viscosity  of  ambient  fluid, respectively,  a  is the radius  of  the sphere,  and

u(w)  is the velocity  of  the sphere.  We  extended  this result  to the case  in the pr6sence of  shear

flow using  the induced force method[1],  The  friction force is expressed  as

                      F(to)=-e(w)-[u(w)-P･R(w)],  (2)

where  R  is the position of  the sphere,  The friction coeficient  E(tu) now  becomes a  tensor and

given by 
･
 

'

           E(tv) =  [fdr fdr' y[codt eiW`6(r -  a)G(r  -  r',t)6(r'(t)  -  a)] 
-i

 , (3)

where  G(r  
-

 r',t)  is the Green function of  the (linearized) Navier-Steke equation  and  r(t) i

exp[St]-r.  This formula is valid  up  to the first order  in v'[iiE i! fipa21n <K  1 and  wpa21n,

where  Re  is the Reynolds number  and  fl i  IPId
   Next, using  the above  expression  for the friction coeMcient  and  the theory of  fluctuating

hydrodynamics, we  derive a  La[ngevin eqpation;

                -itomu(w)=-C(w)･[u(w)-P･R(w)l+.IiiR(w),  (4)
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                                                         '                            '
where  FR(w)  is the random  fbrce, We  show  that  the fiuctuation-dissipation theorern is not  valid

in the presence of  the macroscopic  shear  flow. The  autocorrelation  function of  the random  fbrce

is given by .r

               '

             <FR(",)Fk(cv')>=kBT[C(w)+6E(w)+(H.C.)]2T6(Lv-Lv'), (5)
where  6C(w) is a  function which  can  not  express  in terms of  the friction coeficient  alone  and

(H.C.) denotes the Hermite conjugate.  6e(w) is the same  order  in magnitude  as  the modification

of  e(w) due to the shear  flow and,  therefore, can  not  be neglected.

   Due to the strong  coupling  with  the convection  term  which  appears  in eq.(4),  the difusion

constant  can  not  be derived from the mean  square  displacement. We  also  derive an  alternative

expression  equivalent  to the Langevin equation,  i.e., the diffusion equation.  The difusion

equation  for the probability distribution function, P(r,t), is given by

      (S + v(r)  V]  P(r,t) =  Yli.dt' V(t - t')･D(t -  t')･V(t - t')P(r(t  - t'), t'), (6)

where  V(t) i  OIOr(t). In this expression,  D  is the diffusion coeficient  tensor which  depends

on  both time(frequency) and'  shear  rate  and  is given in terms of  the velocity  autocorrelation

function as

                        D(t)=exp[-Pt]･<6u(t)6u(O)>, (7)
where  6ll(t) E  u(t)  

-
 P･R(t). This is the generalized Green-Kubo  fbrmula for the diffusion

coeficient,  Substituting the solution  of  eq.(4)-into  this expression  one  obt'ains

                     D(t)=kBTexp[-fit]･{lt(t)+6iL(t)}, (8)
where  "(t) !  e-i(t) is the mobility  tensor and  6p(t) i  pa(t)-6e(t)･pt(t). This is the generalized
Einstein-Stokes relation.

   The  diffusion coeficient  features behavior commen  to transport coeficients  fbr the  fiuidal

system  in steady  shear  fiow[2];

   D(O, fi) AJ  Do -  D'vllii, for small  w,  D(w, O) N  Do -  D"vllJ, for small  P, (9)
where  Do' i! kBTf6Tan  is the Einstein-Stokes diffusion coeficient.

   Asides of  the above  argument,  the relevance  of  the friction coeficient  with  the principle of

Material Rrame Indifference(MFI) was  also  discussed[3].
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