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　DNA に は多くの 遺伝子が含まれ て い るが 、各遺伝子 に は タ ン パ ク質 に 関す る 情報が 記述 され 、必要に 応

じて 遺伝子か ら タ ン パ ク質が 合成 され る。生物 の 理解の ため には．遺伝子がど の よ うに制御され る か （す

なわち、各タ ン パ ク質が 、い っ 、なぜ、ど の よ うに合成され る か）、各タ ン パ ク質はど の よ うな機能を持 っ

か 、タ ン パ ク質ど うし 、もしくは、タン パ ク 質が周囲の 物質や刺激 と ど う相 互 作用 す る か 、を 明 らか に す る

こ とが 必 要 で あ る 。近年 、開発 され た DNA マ イ ク ロ ア レ イ や DNA チ ッ プ と い っ た技術を 用 い る こ と に よ

り、様 々 な条件下にお い て 、各生物 の ほぼすべ て の 遺伝子 の 発現 （タ ン パ ク質の 生成）量 を間接的に 同時に

観測す る こ とが で き る ようになりつ つ あ る た め 、そ の 情 報解析手法 の 開発 も重要 な 課題 と な っ て い る 。

1．DNA マ イク ロ ア レ イ技術

　DNA マ イクロ アレイは 、 あらかじめ各遺伝子配列よ り作成した
一

本鎖 の プロ
ーブ DNA をガ ラ ス 基板などの

上 に 配置 し た も の で あ る 。一
方、細胞 よ りメ ッ セ ン ジ ャ

ー RNA を通じ て 抽出 した 一
本鎖 の 相補 DNA （cDNA ）

を 蛍光物質な ど で ラベ ル し て お き 、これ ら の cDNA と マ イク ロ アレ イ上 の プ ロ
ーブ DNA をハ イブリダ イ

ゼ ー
シ ョ ン と呼ばれ る技術を 用 いて 結合さ せ る こ と に よ り、メ ッ セ ン ジ ャ

ー RNA の 量を間接的に 測定す る 。

2．デ
ー

タ の 正規化

　DNA マ イ ク ロ ア レ イ に よ る実験データ は 、画像データ と し て 得られ る た め 、まず、画像処理 を行 い 各遺

伝子に対応する領域の強度を求め る。しか しなが ら、遺伝子によ り強度やそ の分布に大きな違い が あ る た

め、デー
タの 正規化が必要とな る。そ の ために、リフ ァ レ ン ス とな る 状態 のデ ータと観測したデータを比較

し、さ ら に 統計解析な ど を行 うこ と に よ り 正 規化す る と い う 手 法が広 く利用 され て い る。

3．教師なし学習

　通常 、 数十か ら数百程度 の 異なる環境下 で 数千か ら数万個 の 遺伝子 の 発現量 を観測す る。こ れ らの 発現

デー
タの 解析法と し て ク ラ ス タ リ ン グと呼ばれ る 教師な し 学習法 （分類法）が 広 く利用 され て い る が 、そ の

利用法は大 き く二 種類 に 分け られ る。一
つ は遺伝 子発現量 の 違 い によ る 細胞 の 分類 で あ り、も う

一
つ は遺

伝子発現量 の 変化 の 比較に よる遺伝子 の 分類 で ある。前者は数万次元空間におけ る数百点 の 分類に相当し、

後者は 数百次元空間に お け る 数万点の 分類に相当する 。クラス タ リ ン グ手法は 、階層 的クラス タ リ ン グ法

と分割に基づ く ク ラス タ リ ング法に大き く分類され るが 、ど の よ うな クラス タ リ ン グ を 用 いれ ば 良い か は

よ くわか っ て い な い。

4．教師あ り学習

　遺伝子発現デー
タは、がん 細胞の 分類に も利用で き る が 、そ の 際に は学習デー

タ の一部と して あ ら か じ め

分類結果が与え られ る こ とが多 い 。こ の よ うな場合 の 学習は教師あ り学習と呼ばれ る 。教師あ り学習 の 場

合には、学習デ ータに対する エ ラ
ーが最小 と な る仮説を計算する と い っ た戦略が よ く用 い られ るが 、発現

データの 場合には、数千か ら数万次元のデータを扱うため 、過学習を起こ し易い 。高次元 に おける学習 は 重

要な数学的研究課題で あ る。

5．シ ス テ ム 生物学

　遺伝子やタ ン パ ク質など の制御関係や パ ラ メータを明 らか に し、生物の 数理 モデル を作成し 、よ り正 確

な シ ミュ レーシ ョ ン を行 うこ とは今後の 重要な研究課題 で あ り、シ ス テ ム 生物学の 名の もと に研究が進展

しつ つ あ る 。制御 関係や パ ラ メ
ー

タの 推定 の ため にベ イ ジア ン ネ ッ ト ワ
ー

ク など の確率モ デ ルや微分方程

式に基づ く方法が研究され て い る。しか しなが ら、よ り多様なデー
タ に 対する数理モ デル や 推定方式な ど 、

研究すべ き課題は多 い。
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An  introduction to DNA  microarrays  and  some  mathematical
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      77300 Fontailleble'au

Jean-Philippe.Vert@mines.org

   Iii each  living organisrn,  DNA  contains  a  numbcr  of  genes, raiiging  from  several  hun-

dreds fbr siniple  bacteria to several  tens  of  tliousands  for rnainnialians.  Each  gene encodes

a  protein, which  can  be synthesized  when  required  from its blueprint en  the DNA.  In

current  biology, understanding  living systems  means  to a  large extent  deciphering how

genes are  regulated  (i,e., when,  why  arid  how  proteins  are  synthesized),  what  are  the  func-

tions of  the  proteins synthesizec{,  and  how  they  interact with  each  other  and  with  their

environment  to form a  living system.

   A  number  of  technological advances  in the 1ast two decades liave contributecl  to provide
answers  to these  questions.  The  genorne  sequeneing  teclmology  enables  to read  the total

DNA  of  any  orgaiiisrn,  including hunians, and  to detect geries. In order  to characterize

t･IJe functlons of  tliese geiies and  their regulatiolls,  a  recent  technology  is plEiying a  central

role  and  is expected  to bc of  iiicreasing tLse in the coming  years: DNA  microarrays,  which

are  the focus ef  this paper.  DNA  rnicroarrays,  or  DNA  chips,  eiiable  the inonitoring  of

the quantity of  messenger  RNAi  simuita[[ieously  for all the genes of  a  genome  in a  giveii
condition.  It }ias the potential to previde  massive  amounts  of  data about  gene expression,

and  represents  an  invaluable anaLytic  toel to help decipher the rnechanisnis  behind life, at

least at  the gerie expression  level.

   In this iritroductory paper,  we  first review  the DNA  microarray  technology  itself, and

then  present an  overview  of  classical  analysis  performed on  expression  clata, ranging  from

differential analysis  of  single  gencs to unsupervised  clustering  and  supervised  classifica-

tion of  genes or  cells, aiid  to the prediction of  genome-wide  regulatory  systerns.  Rather
tliall focusing on  the relatively  simple  and  classical  statistical  techniques  used  for these

analysis,  our  geal  is her'e to convince  the reader  tliat the DNA  microarray  ･technology is a
breakthrough likely to completely  inodify  our  vision  of  living systems,  aiid  tliat new  for-

rnalisrris and  rnatherriatical  tools iieed  to be developed in order  to be able  to rnanipulate

gene expression  data and  to model  living systems.

1 The  DNA  microarray  technology

The  central  dogrna of  inolecular  bielogy states  that, DNA,  which  carries  the genetic in-

formation of  living cells and  organisms,  is trarismitted  betwee" genarations,  and  that  tlie

information it contains  it expre$sed  when  RNA  molecules  are  synthesized  and  ti'anslated

  
iThe

 interrriediary rno]ecule  betvL,ecn DNA  and  a  pvotein. Whei] a  proteins needs  to bc syrLthesized,

the part or  the  I)NA  which  cont,ains  it,s bLueprint is copied  i"t,o a  RNA  iuolecuLe  (tvansci'iption), and  Lhe

protein  is synt,hesized  by processing  tlLe RNA  (trausLation>.
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into proteins. Proteins are  ubiquitous  moleeules  performing  various  tasks sucli  as  catalyz-

ing chemical  rcactiens,  transmittiiig inforrnation or  participating in strnctural  components

of  the cell. Tlie number  ef  different pr'otcins encoded  in a  genome  varics  from several  hun-
dreds for simplc  bacteria to several  thousands  for the budding yeast, to several  tenth  or

hundreds of  tliousands for the human  genome,  Wliile many  genes, i.e., parts of  t,he DNA
whicli  contain  the inforination for the expression  and  the str"cture  of  a  pretein, have been
identified thanks to the  sequencing  of  a  iiuinber  of  niedel  organisins,  the question of  how
these hundreds of  thousands of  protcins enable  a  huinan to live is still far from being
understood.  [[b help answering  this vast  question, being able  to ineasure  the quantity of

all proteins iri real  tiine ili a  living cell  would  be useful.  [l]his reinaills  iinpossible with  the

current  technologies, but DNA  rnicroarrays  provide a  useful  alternative,  This teclinology
is a  tool to observe  when  and  where  genes are. expresse,d,  and  represeiits  the first analyti-
cal tool to nLonitor  siniply  and  on  a  large scale  tlie RNA  content  of  a  cell, also  called  the
      '
tl'anscml)tollle.

   Array teclmologies  encompass  a  wide  elass  of  teciinologies which  monitor  tlie combi-

natorial  interaction of  a  set of  moleculc,;s,  such  as  DNA,  RNA  fragments or  proteins, with
a  predetermined Iibrary of  inolecular  prebes, DNA  rnicroarrays,  or  DNA  chips,  are  a  par-
ticular tilass of  arrays  whicl}  measure  the quantity of  messenger  RNA  present in a  living
cell. Roughly  speaking,  a  DNA  chip  is made  of  a  siiiall surface,  usttally  made  of  glass or

nylon  membrane,  oii  which  a large number  of  known  DNA  molecules,  callcd  probes,  are

attached.  The  surfa £ e is usually  divided as  a  grid into hundreds or  thousands of  cells, and

each  cell contains  a large number  of  replications  of  a  unique  probe,

   Historically, DNA  cliips are  descendaiit ef  the Southern blot, t･cehnique developed by
Ed  Soutlierinnore than  25 years ago  [Sou751. This first array  was  based on  tlie observation

that labeled nucleic  acid  fragments (e.g., single-strtuided  DNA  fragmerits) could  be used  te

detect complementary  sequences  attachecl  on  a  solid  support･ by hybridization. Hybridiza-
tion refers  to  the fact that  two  complernentary  single-stranded  nucleic  acid  molecules  nat-

urally  form  a  double-helix maintained  by hydrogen  bonds between complementary  bases.
A  Southern BIot experiments  consists  in fixing a  iarge number  of  sing]e-stranded  DNA
fi'agment extracted  from a eell en  a support,  and  trying te hybridize a  radioactive  genetic
probe, i.e., a  known  single-stranded  DNA  sequence,  to all DNA  fragments fixed on  the
support.,  Fbilowipg hybridization, an  X-ray picture of  the support  lrighlights the  frag-
rnents  which  hybridized with  the  probe,  whiclt  indicate that they contain  a  sub-sequence

complementary  to the genetic probe, -

   DNA  chips  rely  on  tlie same  principle of  hybridization of  nucleic  acid  molecules  fixed
on  a  support  by labeled probed. The Fnain differences are  that the  fixed nucleic  acids  are

designed by the  experimenter.(e.g.,  to matcli  knowt] genes of  an  organism),  and  that  their

number  caii  reach  s.evera}  t･cnth or  hundreds of  tliousands. More  precisely, starting  fbrm a
living cell,  all  the messeiige,r  RNA  are  extracted,  copied  into complementary  DNA  strands

and  labeled with  a  srnall  fluorescent chemical.  The  result  is put in contact  with  a  DNA
chip,  on  top of  whicli  a  large number  of  known DNA  probes  have been attached.  After
some  time, when  all molecules  have cn,nougli time to visit all cells in the chip,  t/hose siiigle-

stranded  solution  cDNA  which  find a  complementary  DNA  pr'obe llaturally  hybridize to

it to form a  double-stranded DNA.  After washing  the  solution,  only  the molecu}es  which

hybridized rernain  on  the chip  (see Figure 1). It is tlien possible to nieasure  the  quantity of
iiybridized material  o"  each  ecll by detectiiig the quantity  of  fluorescent niaterial  in each
cell. This gives an  estiniation  of  the quantity of  niessenger  RNA  in the  initial living cell
for all genes correspelldiitg  to the probes  sinrulttzrieously.  As an  exainple,  it is nowadays

possible to buy chips  with  probcs corvespondirig  to all  gencs of  th¢  budding yetist, the fiy

-
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or  1iumans, or  cheaper  chips  more  specialized  with  only  those human  genes known  to p}ay
a  role  ill a  certain  diseases like cancer.
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Figure 1: A  DNA  chip  is made  of  a  support  where  known probes are  attached,  VVrhen a
solution  containing  RNA  or  cDNA  extracted  froni a  cell  and  labeled is in contact  with  the

DNA  cliip, complementary  strands  1rybridized and  can  be recognized  by checking  which

probes form a  labeled double-strand

   Two  mainstrearn  strategies  can  be fbllowed to manufacture  DNA  chips.  One  eption

is to individually synthesize  each  probe  directly on  the surface,  i,e,, to adcl  the  right

nucleotides  one  by one  incrementally  iri order  to get the  correct  DNA  sequences  attached  at

the  right  positioii on  the surface,  This eption  is fbr instance used  in the photolithographic
method  developed by Fodor [FRP+911 and  commercialized  by Afl}rmetrix, Inc. It can  be
used  t-o syntliesize  prebes of  up  to 20-30  nuc]eotides,  and  is based on  an  eMcient  method  for

high density spatial  synthcsls  of  oligollucleotides, A  secolld option  is to first pre-synthesize
the oligonucleotides  {}f interest (e.g., using  the  PCR  techriology), and  t･hen t･o fix thein on

the cliip. This technology  enables  the use ef longer oligonucleot,ides (usually 100-5000
bases long), and  has beeu popularized by the Patrick O, Brown  laboratory at  Stanford
University who  provides a  methodology  to manufacture  affbrdable  arrays  [SSDB95]. This
option  has been very  popular ainollg  academic  research  laboratories,

   The  result  of  an  hybridization experiment  by DNA  chip  is usually  an  image which

reflects  tlie quantity  of  hybridized inaterial  in each  cell  by the color  or  intensity of  each

spot.  Various image analysis  techniques  enable  to automatically  isolate eacli  cell on  thc
image, and  estimate  the quantity  of  hybridized material.  The  result  is therefore a  series

of  niimbers  which  show  a  global picture of  the transcriptome of  a  cell at a  given instant.

   Thc  transcriptorne, i,e., the  quantity  of  var'ious  messenger  RNA  in a  cell,  contains  a

lot･ of  information about'  tlie state  or  the origin  of  a  cell. While (almost) all cells  of  a

liuman have the same  DNA  material,  tlie transcriptomes of  a  skin  cell and  of  a  neural

cell are  likely to be very  different, because each  ceU  expresses  t,1ie genes from  DNA  to

RNA,  and  then to proteins, only  for the proteins  it needs,  As a  result,  observing  the
trallscriptoine of  a  cel}  gives a  }ot of  information about  the origin  and  function of  the cell.

For a  given cell type, the transcriptome  is also  likely to vary  over  time. R)r example,  most

cells  somet/imes  grow  and  sometimes  divide into two  children  cells, The proteins required
during these difierent stages  are  obviously  diffOrent, and  the transcriptome refiects  these
differences at  the cxpressiou  level, An  ether  interesting applieation  of  DNA  chips  is to
observe  diseases at  the  transcriptome  level. For instance, many  cancers  seem  to have very
typi{'al signatures  at  the  trallscriptome  level, and  can  be observed  or  predicted with  DNA
chips,  Fillally, DNA  chips  are  a revohitionar'y  arialytical  tool to understand  the behavior
of  living e,ells in terins of  gene  expression  and  regulation.  By  carefiilly  designing a  series  of

experiinents  whe.re  cells are  subinitted  to various  experiinental  collditions  and  performiiig
DNA  chip  experiineni,s  at/ eacli  stage,  onei can  observe  the variations  of  gene expression

-
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between experirneiits  and  infer unknown  regulation  mechanisms  or  gene functions. Tliis
is certairily  one  of  the most  exciting  applications  of  DNA  chips  in the coming  years,

   In terms  of  applications,  DNA  microarrabrs  have tremendous  potential iii the drug
discovery process, iiL particular  to identify new  drug targets such  as  genes  over-expressed

in a  given disease, or  to observe  the reactien  of  an  organism  to a  given therapy; in disease
diagnosis, as  many  diseases are  likely to be observable  at  a  very  early  stage  through

gene profiling experiments,  in wliich  case  thcy can  often  be bctter treated l)y traditional
rnedicine  than  if they were  discevered later; as  a  tool to help decide which  di'ug is the
more  appropriate  for a  given patient, as  rnany  drugs are  known  to work  only  on  a  $mall

population, which  might  1)e characterized  at  tlie transeriptome  level; finally, in inany  areas

of  l)iology, in particular in systems  biology which  eonsists  in considering  a  cell as  a  complex

systern  of  interacting elernent･s.

2 Data  normalization  and  single  gene  analysis

The  result  of  a gene profiling experiment  is an  image, wliich  can  be translated  into a

series  of  numbers  by various  irnage processing methods,  Typically, these  iiumbers  are  the

average  intensity of  tlie images on  eaeh  cell, which  is an  increasing function of  the quantity
of  hybridized material  on  tlie cell. In order  to transform this riumbers  into estimates  of

the  actual  quaiitity of  RNA,  a  calibration  has te be carried  out,  as  the relation  between
hybridization is net  linear. For some  chips,  one  can  hybridize the RNA  of  two  cells in

different conditions  sirnultaneously  on  the  same  chip,  with  two  different colors  as  labels,
In that  case  one  gets a  single  spot  for eacli  probe, characterized  by a  color  arid  an  intensity, .

Here again,  the relationships  l)etweeii quantities er  RNA  liybridized from each  ccll,  t,he

color  aiid  the intensity of  the spot  are  not  linear. The  calibration  is tisually  performed
with  statistical  tools for regression  and  result  in au  hopefully unbiased  estimate  o{' t,he the

quaiitity of  hybridized RNA,  or  sometimes  of  the ratio  of  hybridized RNA  between two

cells.

   The  first dtrect use  of  these estimates  is to check  which  genes have a  yery  different
expression  level between two  conditioris,  such  as  cells  extracted  froiri a  metastatic  versus

non-metastatic  derivatives or  a  tumor  cell line. Typical applications  consist  in selecting

a  small  set  of  genes observed  to by particularly over  or  under-expressed  in one  of  the

conditions,  in order  to further arialyze  them  usi"g  conventional  methods.  The  revolution

in biological research  is that with  the  microarray  technology,  one  get an  objective  and

unbiased  view  of all genes in the same  time, and  is free to further analyze  genes which

never  drew  the attention  of  the medical  community  before.

3  Non-supervisedclustering

XNrhile single  gene analysis  is by far the  first use  of  inicroarrays  in biornedical research
nowadays,  the availability  of  the  expression  levels for a  Iarge number  of  genes simult,ane-
oitsly  suggests  that a  lot can  be learnecl about  the  relationships  between genes or bet･ween
cells.  Mathematically speaking,  a  gene profiling experiment  characterizes  a tissue sample

or a set  of  cells by a  point in a  high-dimensional vector  space  (typically, with  1,OOO -

100,OOO dirnensions). By  observing  the points for a  number  of  gene profiling experiments,

such  as  multiple  time peints from multiple  cell lines treated indepencleritly with  multiple

growt･h factors, oiie can  ol)serve  various  correlations  or  similar'itics  among  genes and  amoiig

saniples,

-  134 
-



Bussei Kenkyu

NII-Electronic Library Service

BusseiKenkyu

Ftt"gdikbOffiaiig#J.F51

   A  striking  result  of  the first pul)lished gene profiling experiments  was  that  very  often,

inany  genes seern  to fo11ow siinilar  patterlls of  expression  between various  conditions,  i.e.,

many  subsets  of  genes form 
Ctclusters"

 wlien  represented  by vectors  where  each  coordinate

is the gene expression  in one  experiment,  Biologically, one  say  that  the genes are  co-

expressed,  i.e., they  are  expressed  and  inhibited in the same  time, This plie"omenon is

well-known  for exainple  in prokaryotes, where  it is comrnoii  to have several  genes forming

operens  and  being co-regulated.  Even  though  operons  don't exist  in eukaryotes,  siich  as

huinans, it turns  out  tliat, apparent  co-regulation  is striking  iiunany  cases.  Fbllowing this

obser'vation,  a  llatural  analysis  to start  understanding  the i'elationsliips  between genes
is te cluster  theiri in groups with  siinilar  expression  profiIcs. Sirnilarly, when  a  n"niber

of gene profiling experiment  are  perforrne.d, and  wl}en  each  experiinent  is seen  as  a  high-

diniensional vector  of  gene expressions,  one  caii study  the relative  posit,ions of  these vectors

alld  look fbr clust,ers  which  would  correspond  to sainples  with  siinilai'  transcriptoines.

   Clustering is useful  as  a  visualization  toel, and  to quickly detect experimental  artifacts,

cltLsses of  cells  (sticli as  diffk]rent types  of cancer),  or  farnilies of  related  genes  (as co-

regulated  genes often  participate  to comrnon  biologieal processes), Clustering is performed
almost  systematically  before any  further analysis,  because it can  help gettii']g a  global

vision  of  the data available.

   Any  introduct･ory beek  on  data mining  describes various  families of  elusterillg  algo-

rithms,  so  we  refer  the  interested reader  to such  references  for more  details about  the

algorithms,  Roughly speaking,  a  clustering  algorithiii  involves a  distance measure  for the

objects  to be clustered,  which  can  be for instance the Euclidean distallce between vectors

in our  case.  [I]hen a  distance between  sets  of  points inust  be dcfined; t,hree elassical  yari-

ants  include  the  single,  average  or  complete  linkage rnethods,  whcre  tlie, distallce between

two  sets  of  object,s  !s respectively  defined  as the iniriimurn,  tlie ayerage  ov  tlie inaxirrnmi

distance betweeii tlie points of  each  set･s. Froin  these 1)asic ingredients, a  nuinber  of  t･ech-

niques  cxist  to  obtain  groups of  simllar  points, some  called  hierarchical methods  providing

a  hierarchy of  clusters  (fron) singletons  to the whole  set),  other  called  partitionillg inethods

providing  only  a  set ic groups, where  k: is pre-defined by the user,  A  classical  hierarchical

rnethod  is for instance thc  hierarchical clustcriiig  inethod,  wliicli starts  frorri tlie set of  all

singletons,  and  then  iteratively merge  the  t/wo closest  elusters  together  in order  to get a

hierarehy of  clusters  whjch  can  be represented  as  a  dendogram.  A  classical  example  of  par-

titionin'g ,method is the  k-means  clustering  algerithm,  whicli  iteratively choses  a  predefined

number  of  centroids  in the space  of  objects,  assigiis  each  object  te the closest･ centroid,

adjust  centroids  as  the  centers  of  each  obtained  clusters,  and  iterates until  convergence  of

the centroids.

   Although clustering  provides an  appealing  tool te quickly detect structures  ill the data,

it has also pitfalls which  are  vevy  often  not  known or  mlsunderstood  by practitioners, First,

as  the methods  shertly  described above  suggest,  a  clustering  algoritliin  always  output  a

clustering  of  the points, whetlier  or  not  a  t/rue underlying  structnre  exists,  Second, there is

a  lot of  arbitrary  in the choice  of  the method,  ef  the distance between  I)oints, and  results

can  difft)r a  lot betweeir different choices.  Third, if several  natural  cluster  structures  exist

arno"g  peints (e.g., cells  can  come  fi'orn inalelfernale,  sanelsick  organisins,  and  be st,udied

by different researchers),  it is not  clear  what  structure  will  be detected by a  clustering  algo-

rithm.  This is particularly probleinatic  when  few points are  cLustered  in large dirnension,

whicli  is often  the case  when  samples  are  clustered  from microarray  data. Finally, wliile

it is obvious  niathernatically  speaking  tliat gene  clustering  and  tissue chistc-ll'ing belong to

the saine  class  of  problenis and  can  be tackled  "Jith  the saine  t,eehlliques, there is however

one  dift'erellce which  iitLs alniost  never  been pointed out:  as  the. nunibe]'  of  experiinellts  is
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usually  orders  of  rnagnitude  srnallei'  than the nuinber  of genes (e.g., 10e experirnents  for
10,OOO genes), clustering  genes means  clustering  many  points in a  low-dimensional vector

space,  while  clustering  tissues means  clustering  few points  iri a  high-dimensional space.  It
is then far from beiiig obvious  whicli  clustering  rnethods  are  relevant  in which  case.

4Supervised  classification

While clustering  refers  to tlie ana}ysis  of  tlie positions  of  tlie points iii a soinetiines  high-
diniensionai space,  and  to the discovery of  possible hiddcn structiires  in the set  of  points

(niore preciscly, a  set of  clusters  ()r a  hievarcliy of  clusters),  different need  arise  when  one

wants  to use  inicroarrtiys  to discriininate between two  or  rnore  known classes,  such  as  two
types Qf  cancers  for tissue sarriples  or  funct･ioiial classes  tbr genes. In that case,  a  nuniber  of

exainples  with  a  known ciass  are  given, and  the goal of  the analysis  is te learn fi'oin these
exainples  a  rule  or  funetion to pi'edict the class  of  any  future exaniples,  A  straightforward

exaniple  of  classification  probleni is the  developrnellt of  a  diagnosis tool for a  type of

cancer  from microarray  nieasurements:  given the measurements  for 50 patients  with  a

given cancer,  and  50 healthy patients, one  need  t･o find a  rule  which  will  be able  to predict
whether  a  new  patient has a cancer  or  not  froin a  simple  gene  profiling experirnent.

   This task  is called  (supervised) classification,  as  opposed  to (unsupervised) cluster-

ing. In simple  cases,  cltistcring  might  bc enough  to discover that  tiiere are  clcarly  two
separate  groups of  points, which  might  correspond  to two  classes  one  would  likc to learn.
However, in most  situations,  chtstering  algerithms  are  likely to discover clusters  whicli  do
not  correspond  exactly  to the Sepai'ation into classes  oiie is interested in, and  supervised

clttssification  wili  work  bettei' (see a  toy exarnple  in Figure 2).
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Figure  2: Difference between clustering  and  classification.  On  the left, only  the positions
of  tlie points are  giveii, and  a  nat･u'ral  separation  of  the points in two  clusters  can  be found
by clustering  atgoritlinis.  On  tlie riglit,  each  poiiit has an  Eissociated  labcl (black or  wliite).

The  goal of  classification  is to detect a  discriJnination rule  between  each  class  of  points,

   Supervised classification  has beeii an  iinportant research  topic in the inachine  learning,
artificial  intelligence and  statist,ical cornniunities  during the last clecades,  and  a  iinpressive
list of  inethods  liave been developed, Rather than  listing all n)ethods,  we  liinit ourselves

in this contributiori  to a  rapid  overview  of  vai'ious  issues is supervised  classification,  and

invite tlie interested reader  to consult  more  specific  textbooks  [Vap98, HTFOI],  Roughly
speaking,  an  algorithTn  for supervised  ciassification  observes  a  set of  points together  with

their cltmsses,  ancl  then picks a  fttnctioii which  inaps  aiiy  pussible object  iiito a  class,  If we
note  `Y  tlie space  of  objects,  A  tlie finite set of  classes,  tl}en such  an  alg()ritlnn  is defined
by a  set  of  funct,ions 7t c  X"4 ainollg  wliicli  tlie algerithin  can  ehose.,  and  a  inapping
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(.V × .4)"  -} 7t (for any  n  }l O) whicli  indicates wlrich  function in 7t is picked by the

algorithin  after  seeing  n  objects  and  their classes.  A  convenient  framework to study  and

design learning algorithms  is.to suppose  that observations  are  independent realizations  of

a  random  variable  with  distribution P  on  .U  x  v4,  and  that future data to be classified  are

also  realizations  of  the same  randern  variable.  Under  these  hypotheses the performarice of

a  any  classifier  g E 7t can  be quantified by its probability of  inistake  R(g) =:  P(g(X) iE Y),
also  called  it･s risk, and  tlie goal of  a  learning algorithm  is to ch6se  a  function g with  a

risk  as  small  as  possible. However  J' is unknown  a  prieri, and  is only  khown  through

the  observation  of  the n  points  saiupled  independently aceording  to it. In particular,
even  thougli the risk  R(g) of  a  function g E  7t i$ unknewn,  one  can  irieasure  its cnipirical

couiiterpart  defined by R,.p(g) =  ", EI]i=i 1(K  l g(Xi)). The  main  motivation  behind the

ernpirical  risk  is t,hat, by the elassical  Iaw of  large nnnibers,  for any  g E 7t, the eiiipirical

risk  R,,,,,p(g) converges  alniost  surely  to the risk  R(g). As a  rasult,  for a  given set  of

n  observations,  it seeins  natural  for a  learning algorithni  to  chose  one  of  the  functions

g E  H  which  minimizes  the  observable  empirical  risk. Tliis very  general approach  is called

empiTtcal  risk  minimizatiort  (ERM), and  is implemented  under  various  forms in many

learning algoritlims.

   The  ERM  principle, however, is not  suMcient  to ensure  that one  has a  good  learning

algorithm.  Suppose for example  that the class  of  functions 7t is very  large, perhaps  equal

to XA.  Then  one  cari alwEi"rs find a  function g E  7t with  very  small  empirical  risk, which

niight  not  generalize well  to unseen  dat･a (take for instance the function g(x) =  y if x
has been observed  with  the class  y, O otherwise),  In tliis case,  one  talk about  ove71fitting,

which  refers  to the fact that tlie algorithrn  fits too  inuch  the  observed  data, The  first

znain  contribution  to the theoretical analysis  of  this issue was  tlie work  of  Vapnik  and

Chervonerikis in the 1970's, wliicli  observed  that  even  though  tlie law of large number's

ensures  that Re,.p(g) 
"-'

 }S' R(g) for each  g c 7t individually  wlien  the  number  of  observations

tends to infinEty, it is not  always  true that R,.p(g) 
"-'S'

 R(g) whcre  g is chosen  in 7t by

the ERM  principlc. The  reasori  is that  this is only  trne  if one  can  ensure  a  sort  of  law
of  large numbers  unifermly  over  the set 7t, and  Viipnik and  Chervonenkis gave precise
conditions  for this law to hold. Intuitively, tlie conditions  are  expressed  in terms of  a

measure  of  thq size  of  the set  7t (called the VC  diinension), and  there is an  equivalence

between consistcilcy  of  the ERM  principle (i,e,, R..p(g) 
a-'

 >S' R(g)) and  finiteness of,the  VC

dimension of  7t. Consequences  of  these  results  had  huge influence in the design of  learning
algorithms  in the Iast two  decades: indeed, they show  that a  good  algorithm  must  not

only  find functions with  small  empirical  risk,  but also  control  the  complexity  of  the class

of functions 7t it can  pick. Finding a  trade-off between these two  constraints  has been a･
major  research  topic in statistical  learning theory  recently.  

'

   The  goal of  this overview  of  the theory  behind supervised  classification  was  to convince

the reader  that  iti is not  sucli  an  easy  task, aiid  that  QverfittiRg  in particulELr is a  dangerous

phenomenon  which  often  occurs  when  one  tries to develop a cemplex  learning algorithm

to 
"mirriic"

 nature,  for instance, In particular, supervised  classification  for objccts  in a
high-dirnensional vector  space,  such  as  tissue samples  characterized  by tens of  theusands

of  gene expressions,  turns  out  to be a  very  diMcult task  in theory, particularly when  a

small  number  of  samples  are  available.  Theory  would  certainly  consider  making  a  good
diag.nosis tool froni the ol>servat･ion  of  the gene expressions  of  100 patients, for instance,

an  impossil)le task. However, this is typically a  situation  encountered  iii DNA  microarray

analysis,  so  tools and  theor,v, need  to 1)e developed in this eontext.  A  general question
inotivated  by gene expressioiL  data, which  is likely to require  new  inathen)atlcs  and  to

inotivate  inuch  research  in n)acliine, learning and  inttt,hernatieal  st,atistics in the coining
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years, is therefbre the fo11ewing: how  to learn and  to perform statistical  estimation  wheii

the nurriber  of  points available  is niuch  srnaller  than  the diine"sion of  the space  they live
ill?

5 Systemsbiology

At a  higher level ef  at)straction,  a  major  direction of biomedical researcli  in tlie coming
deeades is likely to concern  the niodeling,  understanding  and  sirnulatiori  of  biological sys-

tems  involving a  large number  of  elementary  parts interacting together. The  set  of  genes
and  of  cherriical conipoiinds  in a  cell constitutes  a  nat,ural  basis to model  life by mod-
eling  interactiens aniong  t･hese eleinent･s,  including gene regulation,  catalysis  of  chemical

reactions  by enzyines,  info-nation transinissioll, physical interactions etc.,.

   Iri order  to develop a  satisfrLctory  and  useful  rnodel  of  such  biological systeins,  one

needs  a  theoretical fr'ainework to ropresent  matheinatically  the biologicaL phenon]ena  to
be rriodeled,  and  experiniental  data to ealibrate  and  confirni  candiclate  inodels.  VgJith
t･he development of  the  DNA  rriicroarray  technQlogy and  other  recent  high-throughput
technologies, experimental  data seem  to be preceding the development of  satisfactory

mathematical  frameworks to incorporate them.  The  development  of  such  a  framework
represents,  to my  opinion,  one  of  the greatest challenges  of  biology in tlie post,-genomics
era,  which  can  only  be tackled with  the participatien  of  mathematicians  coming  from
different disciplines, and  which  is likely to boost the research  in new  areas  of  mat,hematics.

   The  task is ill-posed and  probably dificult. A  number  of  biological evidences  suggest

various  relat,ionships  among  basic biological objects:  genes have evolved  from  common

ancastors  during evolution;  we  know  several  exarriples  of  typical gene expT'ession  regulation

mechanisms;  the  3D structure  of  all inolecules  is known to play a  crucial  role  in biological
process, alniost  always  based on  plrysical interactions betweeii inolecules;  global interaction
or  regulatioinietworks  are  known to be very  complex  but seem  to have typical topological
structures;  large biological systems  seem  to be very  stable  and  resistant-  to variations  in
the  environment  (except during such  events  as  death or  development of  a  canccr),  but
individual inolecules  are  son'}etin]es  very  sensitive  to tiny variations  (c.g,, the functiori of  a

protein  cari  charige  completely  when  one  out  of  several  thousands axnino  acids  is rnodified);
etc.  Tliis list'of biological evidences  is far from being complete,  but･ highlights the diversity
of  observations  and  evidences  available  today.  A  satisfactory  mathematical  frarnework for
systems  biology should  be able  to inelude these evidences,  and  many  others,

   With microarrays,  massive  data sets  of  gene expression  levels can  easily  be generated.
By  submitting  a  cell to various  experimental  conditions,  ene  can  observe  the evolution

of the  expressiori  of  all  genes simultaneously,  alld  observe  correlations  among  genes or
typical patterns of  expressien.  [[b incorporate  these  data into a  mathematical  model,  the

simplest  formalism is to consider  the  set of  g'enes as  a  finite set g, and  a  gene profiling
experiment  as  a  vector  v  E  RG, DNA  microarrays  enable  to study  the  evolution  of  v  along

clifferent  experiments,  and  to study  the properties of  the trajcctories of  v. Much  research

lias been carried  out  in thc recent  years with  this goal. On  the one  hand, several  groiips
have proposed to rnodel  the  evolution  of  the transcriptome as  a  dynainic system,  satisfying

an  evolution  eqnation  of  the form:

                               dv

                               Tt 
=
 A(v(t)).

ViLrious levels of  coinplexities  have been  iiive.stigated for such  rnodels  [BBOI], ranging  froin
boolean networks  where  v  is a  vectoi'  of  binary nunibers  (each gene is considercd  expr'essed
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or'inhibited)  and  time  is discretized, to continuous-time  systetris  for real-valued  vecters

such  as  S-systems, defined by tlie following evolution  equation:

dd"tt
 =  2  7},k ll vjgzJk - 2  ul,k fi vlti)k +  4(t),

      k j k j

Fbr each  forinalism, parameters of  the  evolution  equation  must  be inferred from  the ob-

servation  of  gene expression  prefiles on  diffk]rent experiments,  Similar to problems  which

arise  in supervised  classification,  the task is diMctdt in theory  when  not  enoiigli  data are

available.  Choosing coiiiplex  mociel  is likely t/o enable  a  better approxiination  of  a  
`'true"

dynarriie syst･ein  underlying  gene expression  evolution  (for exainple,  S-syst,eins have uni-

versal  approxiniation  properties, while  boulean inodels  are  obviously  too restricted  to

represent  a  satisfactory  model  of  gene expression  evolutioii).  However, le.arning parame-

ters in S-systems is much  more  diMcult than  in a  boolean model  settiiig,  and  overfitting

is niore  likely to occur.  Wliile much  research  has been  devoted to these riiodels,  only

limited success  has been obtained,  niainly  for stnall  inodels  of  the best studied  regiilatory

switches  in baeteria. As  biological evidences  suggest  tlLat the actual  regulation  of  a  single

gene often  involves a  considerable  number  of  other  genes, such  as  transcription  factors, as

we}1  as  many  other  variables  not/  observable,  it seems  that the "`true"
 model  itself is pret,ty

cornplex,  and  one  can  be skeptical  about  the capacity  of  the dynamic  system  approach  to

uricover  the  
L`true"

 regulation  inechanism  in the short  term.

   An  other  school  ef  thoughts  worth  rneiitioning  is t,he probabilistic approach,  which

makes  no  dynamic  system  Iiypotlicsis but focuses on  tlie characterization  of  the  repartition

of  experirnents  iii the high-ciiinensional vcctor  space.  In tliat case,  the inathernatieal

franiework is still  based on  the  discrete set  of  genes  g, but the. regulation  process is

rnodeled  by a  probability measure  on  RA.  With  the (dangereus) hypothesis that  various

gene profiling experiments  are  independent･ realization  of  a  random  variable  in RA, one  can

try to estimate  this distribution. In particular, this is a  way  to detect correlations  between

several  coordinates,  i.e. , bctween tlie expression  of  several  genes. This approach  has been

implemented  recently  with  Bacyesian graphical models  [FLNPOO], which  enable  to factorize

a  I)robability distribution for a  hlgh-dimensional variable  through  low-order eorrelations.

Learning a  graphical modgl  frorn expression  data result$  in a  graph where  genes are  the

nodes,  and  where  cliques  indicate the low-order correlations  involved in the  distribution

learned. This has proved  to be useful  to detect regulatory  relationships  between genes,
but also  faces the formidable challenge  of  learning a  distribution in high dimension for a

very  limited number  of  observations,  Moreover, transforming correlations  into causation

is a  diMcult challenge  faced by ahy  probabilistic approach,

   These  two exainples,  the dynamic systerri  and  the probabilistic approaches,  are  just
two illustrations of  reeent  developments in mat･hematical  iriodeling  of  biological sy, stems.

As data available  in these caseS  come  from microarray  data, the forinaiisin ttnderlying  this

approaches  is simply  t,o consider  tlie genes as  a  finite set, and  the expression  profiles as

vectors.  However, this approach  is clearly  limited te the analysis  of the transcriptome, and

is subject  to many  refinements  in the future to incorporate more  biological evidences  as

well  as  other  types of  data (such as  metabolic  pat･hway maps,  structural  or  sequential  in-

formation etc...), As interesting examples  of  difft]rent approaches  to maiiipulate  biolegical

objects,  one  can  cite  for exairiple  the use  ofoperators  algebra  [KatOl] or  the developme"t

of  inductive inforrnatics using  the ETS  model  for structural  representation  [GGKOOI. Even

though  far fvoni bebig inature,  these  atteinpts  are  very  proinising and  sugge.st  that  iin-

portant developirients are  going  to result  froin the confrontat,ion  of post-geiioinics bloLogy

and  inathernfttics  in the  conilng  year, for the  benefits of  both disciplines.
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6Conclusion

The DNA  micrearray  technology,  together  with  several  other  high-threughput technolo-
gies, is deeply affbeting  the outlook  of biological research,  It'can provide a  view  of  the
transcriptome  and  its evolution,  and  represents  an  invaluable tool which  is modifying  our
view of  biological systcms  as  well  as  the way  biological problems are  approached,  While
the first applications  of  tliis teclmology currently  mainly  foctis on  detection of  over-  or

undcr-expressed  genes in various  conditions,  and  on  further analysis  of  this genes  using

traditional tools, deq,per understanding  of  the set  of  geiies and  their' relationships  are  be-
ing

 obtained  througli unsupervised  clustering,  supervised  classification  or  inodeling  of  gene
regulatory  systems.  These re,search  divections, however, require  new  mathematical  tools,
likely to be niore  alld  inore  iinportant in inany  scientific  fields where  high-througliput data
generatiori techriologies are  ernevging.  Perforrning data rnining  or  statistical  inference in
very  large diinension rernains  theoi'et･ically dificult, but has to be perforrried. This issue
is

 currently  a  inajor  driving force iii several  fields related  to learning theory, including
rnachine  learning and  matliematical  statistics.

   As  an  apalytical  tool to observe  the  transcriptome, DNA  chips  have fostered the  devel-
opment  of  methods  to deciplier the gene  regulation  mechanisms.  However  these  methods

have still  Iimited successcs,  and  suggest  that the transcriptome  is only  one  projeetiori of
a  much  more  eomplex  object,  a  living organism.  There are  today  no  satisfactory  fbrmal-
isrn to describe, manipulate  or  simulated  such  living systems,  and  which  co"ld  serve  as

natural  formalisms to  integrate not  only  gene expression  data but also  all sorts  of  data
about･  genes, metabolisrns,  interactions, reactions  to environinent  etc... The  development
of  such  formalisms is likely to be a  sine  gua non  condition  to achieve  the  prbmises of

post-genoinics, which  is likcly to becoine a  discipline at  the frontier uf  traditional biology,
computer  science  and  mathematics.
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