
Bussei Kenkyu

NII-Electronic Library Service

BusseiKenkyu

ry7 }?s-mtzloe?:  2oo4-Uve  2t i)'-'i 

',
 ut -1

Dynamic  van  der Waals  Theory

       A  Phase Field Model of  FIuids

Kyoto Univ.Akira  Onuki

  In usual  theeries  ef  phase  transitions,  the  fluctllations of  the temperature  T  are  assnrned  to be  small

and  are  neglected,  However, there can  be situations  in which  phase transitions occur  in inhornogeneous

T. Fbr exampie,  wetting  properties near  the gas-liquid critical  point are  very  sensitive  to applied  heat

flux and  boiling processes  remain  largely unexplored  IA. Onuki, Phase f}ztnsition Dynamics  (Cambridge,
2002)]. [Ib treat snch  problems  we  propese  to start  with  a  coarse-grained  entropy  rather  than  a  Ginzburg-

Landaii free energy.  For one-component  fluicls, let an  entropy  functional S  be determined by the local

number  density n  =  n(r,t)  and'the  loeal internal energy  density e  =  e(r,t)  as

                             s=fdr  [ns-gcEvnt2] (1)

We  assume  that s  =  s(n,e)  is the  entropy  per particle defined as  a  function of  n  and  e.  The  gradient

term  represents  a  decrense of  the entropy  due to inhomogeneity  of  n.  We  introduce the lecal temperature

U' ..  U'(n,e) by

                                    li
                                   T=  8,S (2)
                                                        '

where  n  is fixed in the derivative. R)r the  special  fbrm  of  Eq.1 we  simply  obtain  11T =  n(Os/Oe).,

Maximization of  S under  a  fixed total particle number  fdrn and  a fixed total energy  fdre leads to
the equilibriurn  conditions  U' =eonst.  ancl  hf[IT :: 6S/6n =const.  As first clerived by van  der Waals, the

equilibrium  interface density profile n  =  n(x)  is determined by h =  pt(n,1') -  CTd2nldx2  ==const.  [J.S.
Rowlinson,  J. Stat. Phys. 20, 197 (1979)], In the van  der Waals theory  s  =  s(n,e)  is given by

                      s=kBln[(eln+cvon)d/2(11ven-1}]+const,  (3)

where  vn  and  E are  positive constants  representing  the molecu!ar  volume  and  the magnitude  of  the

attractive  potential, respectively,  and  d is the  space  dimensionality,

  The  reversible  part of  the stress  tensor reads

                    rrij =  pcki+CT  [V,nV,n- (nV2n+IVni2!2) i,j] (4)

where  p =  n(pt  +  sl')  
-

 e  is the van  der Waals pressure. The  mass  density p =  mn  obeys  the eontinnity

equation.  The  momentum  density J  =  pv and  the energy  density obey  apprepriate  dynamic equations
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FIG. 1: Migratio" of  a  gas droplet towards  the  heateci boundary  {bottom) in zero  gravity,

               ETTTI =b.e"
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FIG.  2: The  velocity  field (left) aiid  the  ternperature  (right) iii the  nearly  steady  state  at  t ==  80000 in Fig.1. There
is a  velocity  compoiieiit  through the interfa£ e. The lateiit heat tranport rnakes  VT  vaiiish  inside the droplet.

including the gradient part of the stress tensor, The  entropy  productien  rate  dSfdt within  the fluid is

non-negativedefinite  if there is no  heat flow from outside.

  We  give a numerical  solution  of  our  phase field model  imposing  a  wetting  bounclary condition  on  all

the boundaries. At t !!  we  plaeed a  gas droplet nt  the  eenter  of the cell in eqllilibrium  at  V: ==  O.875VL.

The  bottom  boundary  was  then  increased by a  constant  AT  =  O.054[Tl, for t >  O, while  the  top  boundary

wns  held at  the initial temperature.  There  is no  gravity, while  we  use  
"bottom"

 ancl  
"top7'.

 Fig.1 shows
     'droplet

 migration toward  the bottom, caused  by  a  Marangoni  effect.  See a  first report/  N, O. Ybung

et  al,, J. Fluid Mech,  6, 350 (1959) (where bubbles and  liquid were  different fiuids and  there was  no

first-order transition at  the interface). Fig,2 displays the velecity  and  the temperature  in the steady

state. It is a new  finding that  the  velocity  component  through  the interface is nonvanishing,  leading to

latent heat transport.  Because it is highly eMcient,  a  fiat temperature  or  no  temperature  gradient

appeErs  inside the  droplet. In the  steady  state  the gas droplet apparently  wets  the bottom partially, while

a  very  thin liquid layer is sandwiched  between the  bottom  boundary and  the  droplet. We  can  define an

apparent  contact  angle  e.ff, which  is a  decreasing function of  Al'. Garrabos et al. observed  in space  that

gas spreads  on  a  heated  wall  initially wetted  by  liquid and  exhibits  an  apparent  contact  angle  even  lnn'ger

than  T12  [Phys. Rev, E 64, 051602 (2001)J. With  further increasing Al' the  heated  wall  is completely

covered  by gas, eventually  leacling to fiIm boiling in gravity.
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