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Abstract: Through simulation using knot invariants we suggest that random polygons under
a topological constraint (i.e. random knots) should have novel critical behavior. We recall that
the ﬁlean—square radius of gyration of random knots with /V nodes increases with respect to N
almost as that of the self-avoiding polygons, as was pointed out. by many authors previously.
We find that the two-point correlation function is well approximated by a function close to the
Gaussian one. Furthermore, our preliminary data analysis for N = 1000 also suggest the simialr
result. However, the Gaussian behavior is not consistent with the criticality of the self-avoiding
walk. We thus suggest that random knots should have nontrivial and new crtical behavior.
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1 Introduction

Recently, an important statistical property of ring polymers with fixed topology in a € solvent
has been studied [1, 2, 3, 4, 5, 6, 7, 8, 9]. Under a topological constraint, the average size of ring
polymers with zero or very small excluded volume can be much larger than that of no topological
constraint. We call this phenomenon topological swelling. Hereafter we call random polygons
with fixed knot and zero excluded volume random knots. They corréspond to ring polymers

with fixed topology in a € solvent.

*B-mail: deguchi@phys.ocha.ac.jp

— 131 —

NI | -El'ectronic Library Service



Bussei Kenkyu

Let us consider a random polygon (RP) or self-avoiding polygon (SAP) consisting of NV nodes
and having a fixed knot type K. We define the mean square radius of gyration by

K= ~N— Z Z((Rj — Rp))k . (1)
j=1lk=1

Here the symbol (-) x denotes the ensemble average over all configurations of the RP or SAP
with fixed knot K. We denote by (-}4; the ensemble a\}erage over all configurations under no
topological constraint.

For ring polymers a topological constraint should lead to entropic repulsions among segments,
as was first pointed by des Cloizeaux [1]. Topological swelling was observed in simulation of
random knots: Rgx > Ry if N is large enough such as N = 1000 or 2000 [2, 4, 5, 6, 7).
We also observe topological swelling for SAPs with very small excluded volume [8, 9]. It was
suggested that due to topological entropic repulsions, we should have Ry g o« N”SAW for very
large N, where vgaw is the exponent of self-avoiding walks (SAW) [3, 5, 6, 7].

Let us now consider the end-to-end distance distribution, fete(r), for SAWs. It has the
large-N behavior such as fete(r) o exp(—r%) with § = 1/(1 — vgaw) for r7>> 1 [10]. For the
case of random polygons we introduce the distribution function of distance between two nodes

- [11]. We select the jth and kth nodes out of the N nodes, and consider the distance between
them, r = |r|, with » = R; — Ry where R,, denote the position vectors of the mth node for
m=1,2,...,N. When the two arcs between them have segments » and N —n, respectively, and
n < N —n, we define parameter A by fraction n/N. We denote by fou(r; A, N) the probability
distribution of distance r between the two nodes under no topological constraint. For RPs
under a topological constraint of K, we denote it by fx(r; A, N). The asymptotic behavior of
fr(r; X, N) should play a similar role as that of fee(r). In fact; integrating fu;(r; A, N) over X,

we have the monomer-monomer distribution function, which has the same large N behavior as

fete (T) [12] -

2 Numerical result and the model function

The following formula was proposed for describing the distance distribution fx(r; X, N) under

the topological constraint of a given knot type K [13, 14]:

—3r?
‘ ‘A, N) = Cr(\,N)r?2H05N exp | —— 2
fr(r ) =Ck(AN)r P Nox (V) (2)
where the normalization Cg (A, N) is given by

3+0

3 2 2
N) = .
Ck(\N) '(2N0K2) T (%)
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Figure 1: The probability distribution fx(z;\,N) for A = 1/2 and N = 300 [13, 14]. For
topological conditions, 0, 31, 31431, others and all, the x? per datum are given by 3.19, 1.30,
0.31, 2.85 and 0.17, respectively; the estimates of 6K are given by 0.300 £ 0.004, 0.225 =+ 0.003,
0.169 £ 0.003, —0.164 =+ 0.003 and 0.0007 £ 0.0005, respectively.

The constants 8k and ox are functions of variable z = A(1 — \) as
ox(zN) =z explax 2),  Ox(zN) = bgzPx (3)

The parameters ag, S and bx depend on the knot K and the number of nodes, N.

It has been shown [13, 14] that the distance distribution is consistent with the function (2)
close to the Gaussian for the cases of NV = 100, 300 and 800. Figure 1 is reproduced from Ref.
[14]. Furthermore, as far as our preliminary data analysis is concerned, the distance distribution
is consistent with (2) even for NV = 1000.

3 Conclusion

- We suggest that the distance distribution of random knots should be well approximated by
model function (2) even for N > 1000. Therefore, the critical behavior of random knots should
be different from that of self-avoiding walks. Furthermore, combining the known result that
the mean-square radius of gyration of random knots with N nodes increases with respect to
N almost as that of the self-avoiding polygons, we suggest that the criticality of random knots

should be nontrivial.
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