ウェハレベルパッケージング技術を用いた静電 2 軸 MEMS 光スキャナ

Wafer-Level Packaging of Two-Dimensional Optical MEMS Scanner by Anodic Bonding

授賞機関:社団法人 高温学会

賞名・年月: Mate2009 技術開発論文賞(2009 年 1 月)

受賞者: 微細プロセス開発センター 河野 清彦 橘 宏明

制御技術応用研究所 上田 英喜

要旨: MEMS 技術を用いた独自の絶縁分離技術と真空封 止技術の開発により超小型光スキャナを実現した。

これにより、従来は困難であった大きな垂直・水平共 振周波数比(従来比 2.5 倍)を有する 2 軸光走査(高精細 QVGA 相当) と広角光走査(投射距離 1 m, 50型)の両 立が可能な高い性能を実現している。

この技術は超小型デバイスによる高精細画像表示への応 用が可能である。

今回の受賞は、この先駆的な業績が認められたものであ

静電霧化技術を用いた家庭用冷凍冷蔵庫「ナノイー野菜室」

Freshness-Preserving Refrigerator Compartment Using Electrostatic Atomization

授賞機関:社団法人 日本冷凍空調学会

賞名・年月:第36回 日本冷凍空調学会技術賞

(2009年5月)

受賞者:電器 R & D センター 町 昌治

パナソニック(株)ホームアプライアンス社

上田 啓裕, 上迫 豊志, 豆本 壽章, 上野 孝浩

要旨:冷蔵庫に保存される食品のなかで、生鮮野菜や果物 の廃棄がもっとも多く、野菜室の保鮮性能向上が求められ ている。そこで、静電霧化技術により発生させた当社独自 の「nanoe (ナノイー)」を野菜室に放出することで、低温 障害抑制やエチレンガス分解による生鮮野菜や果物の鮮度 保持、抗菌性向上、栄養素増加などを実現している。

従来「nanoe (ナノイー)」は、ペルチェ素子を利用し、 空気中の水蒸気を電極に結露させて高電圧を掛けることで 発生させていた。今回「nanoe (ナノイー)」発生装置を 冷蔵庫に搭載するにあたり、庫内冷却に伴う冷風を利用す ることでペルチェレス機構としている。

今回の受賞は、「nanoe (ナノイー)」の冷蔵庫への応用 による新しい冷蔵保存技術への寄与が高く評価されたもの である。

ナノシリコン電子源を用いた放電レス発光デバイス

Direct Excitation of Xenon by Ballistic Electrons Emitted from Nanocrystalline Silicon Planar Cathode and Vacuum-Ultraviolet Light Emission

授賞機関: The 15th International Display Workshops **賞名・年月**: IDW' 08 Best Paper Award(2008 年 12 月) **受賞者**: 先行技術開発研究所 櫟原 勉, 幡井 崇

東京農工大学 越田 信義

要旨: 当社では、独自のナノシリコンを用いた弾道電子面 放出型電子源の開発を進めている。この電子源は、放出電 子のエネルギーが平均数電子ボルトにも達し、大気圧中で も動作するといった特徴を有している。

一方、環境への意識の高まりから、蛍光灯の水銀レス化 が望まれている。しかし、高効率化、高輝度化、低電圧化 等の課題も多く、広く普及するまでには至っていない。

今回、本電子源の特徴を活かして、キセノンガスに高エ ネルギー電子を照射して直接励起させることを試み、世界 で初めて放電レスで真空紫外光を発生させることに成功す るとともに、蛍光体を用いて可視発光も確認した。これら は水銀レスでありながら、原理的には従来の蛍光灯の1.5 倍の発光効率が得られる可能性を示唆している。

今回の受賞は、環境に優しい新規平面光源の創出につな がる研究として高く評価されたものである。