《小特集》

構造安全性のための確率有限要素法シミュレーション 野 ロ 裕 久*

ABSTRACT The stochastic finite element method, which takes account of uncertainties in the geometry, material properties of a structure or the applied loads, is an essential analysis tool for the numerical simulation to assure the structural safety. In this report, the basis theory of the stochastic finite element method including the first order second moment method and the first order reliability method is briefly introduced and two example problems, the stochastic analysis of a grid spring in a nuclear fuel assembly and the reliability analysis of elasto-plastic dynamic problems are demonstrated.

1. はじめに

近年有限要素法は,計算機の発達にも伴い,構造物 設計の安全性あるいは信頼性評価に実用的に用いられ るようになった.また,小規模なモデルから大規模な モデルまで,線形問題から非線形問題までその応用範 囲は年々拡張されている.しかしながら,有限要素法 自体はあくまで確定的なものであり,あらかじめ定め られた入力データに対応する構造物の応答が求められ るに過ぎない.一方,実際の構造物には必ず各様の不 確からしさが存在する.代表的なものとして,材料定 数に伴う統計的な不確からしさ,板厚など幾何学的な 寸法の製作加工誤差による不確からしさ,外荷重に対 するランダムなあるいは確率過程に基づく不確からし さがあげられる.従って構造安全性に資するために は,このような不確からしさを考慮した解析が不可欠 となる.

確率有限要素法はそのような観点から開発された手 法であり、一般的にモンテカルロ法を用いた手法¹⁾と 摂動法^{2),3)}を用いた手法に大別することが出来る.前 者は、よく知られているように、乱数を用いて入力デ ータの確率分布を再現し構造応答の確率的評価を行う ものであり、後者は期待値まわりのテイラー展開法を 用いた近似的な評価手法である.両者の優劣について は別の機会に譲るものとし、本稿で確率有限要素法と 呼ぶ場合には後者の方を指すものとする.

Simulation for Structual Safety by Stochastic Finite Element Method. By *Hirohisa Noguchi* (Dept. of System Design Engineering, Keio Univ.).

*慶應義塾大学システムデザイン工学科

さて,確率有限要素法の国内における代表的な研究 としては,中桐,久田によるものがあり,線形領域に ついては文献⁴)に基礎から応用まで簡潔にとりまとめ られている.その後,著者を含む久田らの研究グルー プにより,主として摂動法に基づく感度解析手法に関 し非線形領域まで拡張され,非線形確率有限要素法の 基礎として確立された^{5)~7)}.本稿は,久田らの研究成 果を中心に全体を2部に分け,前半では期待値と分散 を求める確率有限要素法について,後半では信頼性指 標を求める確率有限要素法について,それぞれ具体的 な非線形解析例を添えて解説する.

2. 確率有限要素法の基礎⁴⁾

2.1 関数の結合確率密度関数

すでに述べたように、確率有限要素法とは、入力デ ータのゆらぎに対する出力のゆらぎを評価するもので ある.したがって、有限要素法自体を確率変数に対す るひとつの関数とみなすことができる.ここで簡単に 2 確率変数 X_1, X_2 の場合で考えてみよう. $今 Y_1, Y_2$ が、

$$Y_1 = g_1(X_1, X_2)$$
 (1)

$$Y_2 = g_2(X_1, X_2)$$
 (2)

のように X_1, X_2 と関数 g_1, g_2 を通じて1対1対応の 関係にあるものとする. X はヤング率などの物性値, Y は変位や応力など応答値と考えてよい. 例えば図1 に示すように領域 D_X が D_Y に写像される場合, 応答 値が領域 D_Y に含まれる確率は, 確率変数 Y_1, Y_2 の結 合確率密度関数を $f_Y(Y)$ とすれば, 式(3)のように 書くことができる. (以下では, Y は確率変数を, Y はその実現値を表わしている.)

平成8年6月

— 21 —

1

106

図1 関数gによる領域の変換

$$p_{Y_1, Y_2 \in D_Y} = \iint_{D_Y} f_{Y_1 Y_2}(Y_1, Y_2) \, \mathrm{d} Y_1 \, \mathrm{d} Y_2 \tag{3}$$

通常 $f_{Y}(Y)$ は未知関数であるが、これは次のように 求められる. すなわち、1つのYに対してXが唯一 つ定まる場合には、明らかに式(3)の確率は X_1, X_2 の実現値が領域 D_X に含まれる確率と等しい. よって 同様に確率変数 X_1, X_2 の結合確率密度関数を $f_X(X)$ と置くと、

$$p = \iint_{X_1, X_2 \in D_X} f_{X_1 X_2}(X_1, X_2) \, \mathrm{d}X_1 \, \mathrm{d}X_2$$

$$= \iint_{D_Y} f_{X_1 X_2}(X_1, X_2) \, \left| \frac{dX}{dY} \right| \, \mathrm{d}Y_1 \, \mathrm{d}Y_2 \quad (4)$$

を得る.式(4)において|dX/dY|は変数変換における ヤコビアンマトリックスの行列式の値を表わしてい る.したがって,式(3)と式(4)を等値すれば

$$f_{Y_1Y_2}(Y_1, Y_2) = f_{X_1X_2}(X_1, X_2) \left| \frac{dX}{dY} \right|$$
 (5)

となる.ただし,XとYが1対1対応の関係にない 場合や互いに確率変数の数が異なる場合にはもはや式 (5)をそのままでは適用することはできないので注意 を要する.

現実には、1)結合確率密度関数 $f_x(X)$ がデータ 不足で厳密に定義できない、2)簡単な例を除いて、 式(1)、(2)で表わされる関数 g_1, g_2 を陽な形では得 ることはできない(多自由度の有限要素法ではほぼ不 可能)等の理由により式(3)を厳密に積分して確率を 算出することは稀である。そのため本論文で紹介する 確率有限要素法では、次節に示すように、関数 g_1, g_2 を平均値のまわりに摂動展開して応答値の統計的な諸 量を評価する近似的手法を用いる。

2.2 1次, 2次近似法

式(1)を確率変数 $X = \{X_1, X_2, \dots, X_n\}^T$ の関数と して一般的に表わし、さらに期待値 $\bar{\mathbf{x}} = \{\bar{\mathbf{x}}_1, \bar{\mathbf{x}}_2, \dots, \bar{\mathbf{x}}_n\}^T$ のまわりでテイラー展開して2次の項まで考慮 すれば次式を得る.

$$Y_{1} = g_{1}(X_{1}, X_{2}, \dots, X_{n})$$

$$= g_{1}(\bar{X}_{1}, \bar{X}_{2}, \dots, \bar{X}_{n}) + \sum_{i=1}^{n} \left(\frac{\partial g_{1}}{\partial X_{i}}\right)_{\bar{\mathbf{X}}} (X_{i} - \bar{X}_{i})$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} g_{1}}{\partial X_{i} \partial X_{j}}\right)_{\bar{\mathbf{X}}}$$

$$\times (X_{i} - \bar{X}_{i}) (X_{i} - \bar{X}_{i}) + \dots \qquad (6)$$

1 次近似 2 次モーメント法(First-Order Second Moment Method)は,式(6)の1次の項までを考慮して Y₁の期待値 *E*[Y₁] と分散 *Var*[Y₁] を求める方法で ある.結果だけを示すと

$$E[\mathbf{Y}_{1}] = g_{1}(\bar{\mathbf{X}}_{1}, \bar{\mathbf{X}}_{2}, \cdots, \bar{\mathbf{X}}_{n})$$
(7)
$$Var[\mathbf{Y}_{1}] = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial g_{1}}{\partial \mathbf{X}_{i}}\right)_{\bar{\mathbf{X}}} \left(\frac{\partial g_{1}}{\partial \mathbf{X}_{j}}\right)_{\bar{\mathbf{X}}} Cov[\mathbf{X}_{i}, \mathbf{X}_{j}]$$
(8)

 $Cov [X_i, X_j] = E[(X_i - \bar{X}_i)(X_j - \bar{X}_j)]$ (9) となる. なお,式(9)の $Cov [X_i, X_j]$ は共分散と呼 ばれるものである. さらに,式(6)の2次の項まで考 慮する場合は2次近似法と呼ばれ,期待値,分散はそ れぞれ次のようになる.

$$E[\mathbf{Y}_{1}] = g_{1}(\bar{\mathbf{X}}_{1}, \bar{\mathbf{X}}_{2}, \cdots, \bar{\mathbf{X}}_{n}) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial^{2} g_{1}}{\partial \mathbf{X}_{i} \partial \mathbf{X}_{j}} \right)_{\bar{\mathbf{X}}}$$
$$\times Cov [\mathbf{X}_{i}, \mathbf{X}_{j}] \qquad (10)$$

$$\begin{aligned} \operatorname{Var}\left[\operatorname{Y}_{1}\right] &= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\partial g_{1}}{\partial \mathbf{X}_{i}}\right)_{\bar{X}} \left(\frac{\partial g_{1}}{\partial \mathbf{X}_{j}}\right)_{\bar{X}} \operatorname{Cov}\left[\mathbf{X}_{i}, \mathbf{X}_{j}\right] \\ &+ \frac{1}{3} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \left(\frac{\partial g_{1}}{\partial \mathbf{X}_{i}}\right)_{\bar{\mathbf{X}}} \left(\frac{\partial^{2} g_{1}}{\partial \mathbf{X}_{j} \partial \mathbf{X}_{k}}\right)_{\bar{\mathbf{X}}} \\ &\times E\left[\left(\mathbf{X}_{i} - \bar{\mathbf{X}}_{i}\right) \left(\mathbf{X}_{j} - \bar{\mathbf{X}}_{j}\right) \left(\mathbf{X}_{k} - \bar{\mathbf{X}}_{k}\right)\right] \\ &+ \frac{1}{4} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} \left(\frac{\partial^{2} g_{1}}{\partial \mathbf{X}_{i} \partial \mathbf{X}_{j}}\right)_{\bar{\mathbf{X}}} \left(\frac{\partial^{2} g_{1}}{\partial \mathbf{X}_{k} \partial \mathbf{X}_{l}}\right)_{\bar{\mathbf{X}}} \\ &\times \left\{E\left[\left(\mathbf{X}_{i} - \bar{\mathbf{X}}_{i}\right) \left(\mathbf{X}_{j} - \bar{\mathbf{X}}_{j}\right) \left(\mathbf{X}_{k} - \bar{\mathbf{X}}_{k}\right)\right] \\ &\times \left(\mathbf{X}_{l} - \bar{\mathbf{X}}_{l}\right)\right] - \operatorname{Cov}\left[\mathbf{X}_{i}, \mathbf{X}_{j}\right] \operatorname{Cov}\left[\mathbf{X}_{k}, \mathbf{X}_{l}\right]\right\} \end{aligned}$$

$$\tag{11}$$

以上の式より,確率変数の統計量(平均,共分散), 確率変数に対する関数の感度(確率変数による偏微分 値)が既知であれば変位,応力等の応答の統計量が近 似的に評価できることがわかる.前者については入力 データであるが,後者の関数の感度については解析的 に算出すべきものである.摂動法に基づく確率有限要 素法の第一歩はまず確率変数に対する応答の感度を求 めることである.

3. 静的非線形問題における感度解析手 法^{5),6),7)}

一般に,感度解析手法の定式化には(a)直接差分法

— 22 —

(b) non-linear case

図2線形,非線形問題における摂動法の力学的解釈5)

(direct difference method), (b) 直接微分法 (direct differential method), (c) 半解析法 (semi-analytical method) の3種類がある. 直接差分法は再解析 (reanalysis)法とも呼ばれ、感度解析の対象となる基本 系(original system)と確率変数の摂動を考慮した摂 動系 (perturbed system) の両者で有限要素解析を実 際に行ない、応答量の差分から感度を評価するもので ある.この手法は確率変数の数だけ有限要素解析を実 施しなければならないため、特に非線形解析の場合は 効率が悪い.一方,直接微分法,半解析法は確率変数 の摂動に対する不平衡力の摂動量から直接変位の摂動 量を評価するもので、基本系の接線剛性マトリックス の逆行列をそのまま使用でき、また非線形解析の場合 も反復を要しないため、直接差分法に比べ効率よく感 度が求められる.両手法の違いは確率変数の摂動に対 する不平衡力の摂動量を、解析的に評価するか数値的 に評価するによる. ここでは, 一般的な非線形問題に 適用できる半解析手法について解説する.

3.1 感度解析手法の定式化(経路依存性のない場合)

今, 確率変数を b_j (j=1, 2, ..., N) とすると, 時刻 ti での内力 \mathbf{Q}_i は外力 \mathbf{F}_i と釣りあい, 経路依存性のな い場合,同時刻の変位 U_i および b_j の関数とみなせる ため次のように表すことができる.ここで右下添字 iは時刻 ti を参照しているものとする.

$$\mathbf{Q}_{i}(\mathbf{U}_{i}(b_{j}), b_{j}) = \mathbf{F}_{i}$$
 (12)
確率変数 b_{j} の変分 δb_{j} に起因する式(12)の変分をとる
と,

$$\frac{\partial \mathbf{Q}_i}{\partial \mathbf{U}_i} \delta \mathbf{U}_i + \frac{\partial \mathbf{Q}_i}{\partial b_i} \delta b_j = 0 \tag{13}$$

を得る.ここで,簡単のため外力は U_{i} , b_{j} に依らない ものと仮定している. $\partial Q_{i}/\partial U_{i}$ は接線剛性マトリック スKに等しいことから,(13)より

$$\delta \mathbf{U}_i = -\mathbf{K}^{-1} \frac{\partial \mathbf{Q}_i}{\partial b_i} \delta b_j \tag{14}$$

を得る.線形弾性体の場合は単に $\mathbf{Q}_i = \mathbf{K}_L \mathbf{U}_i (\mathbf{K}_L | \mathbf{L} - \mathbf{r})$ であるから、式(14)は

$$\delta \mathbf{U}_{i} = -\mathbf{K}^{-1} \frac{\partial \mathbf{K}_{L}}{\partial b_{i}} \delta b_{j} \mathbf{U}_{i}$$
(15)

とも書ける.式(15)の幾何学的な解釈を図2(a)に示 す.また,非線形問題においても(無限小の)荷重増 分,変位増分の間には,図2(b)に示すように線形関 係が成立する.したがって,図3(b)矢印1で示され る式(14)の($\partial Q_i/\partial b_j$) δb_j を適切に評価することによ り変位感度を求めることができる.

半解析法で $(\partial \mathbf{Q}_i/\partial b_j)\delta b_j$ を評価する場合は,実際 に確率変数の微小な摂動量 Δb_j を与え,時刻 tiにお ける一定変位 \mathbf{U}_i の拘束条件下で不平衡力の摂動量(外 力が確率変数に依存せず一定の場合は内力の摂動量に 等しい) $\Delta \mathbf{R}_i (\approx (\partial \mathbf{Q}_i/\partial b_j)\delta b_j)$,更に式(14)により得 られた $\Delta \mathbf{U}_i (\approx \delta \mathbf{U}_i)$ を近似的に求め,

 $\partial \mathbf{U}/\partial b_{j} = \Delta \mathbf{U}_{i}/\Delta b_{j}$ (16) として変位感度を得る.経路依存性のない非線形問題 (例えば超弾性体など)の場合は、時刻 ti における変 位値のみで内力を求めることができるため、次式に示 すように比較的容易に $(\partial \mathbf{Q}_{i}/\partial b_{j})\delta b_{j}$ を求めることが できる.

$$\frac{\partial \mathbf{Q}_{i}}{\partial b_{j}} \delta b_{j} \approx \mathbf{Q}_{i} (\mathbf{U}_{i}, b_{j} + \mathbf{\Delta} b_{j}) - \mathbf{Q}_{i} (\mathbf{U}_{i}, b_{j})$$
$$\equiv \mathbf{\Delta} \mathbf{R}_{i}$$
(17)

3.2 感度解析手法の定式化(経路依存性のある場合)

弾塑性問題のような経路依存性のある問題に対して は、3.1で述べた方法を直接用いることはできない. これは、a)経路依存性があるため、時刻*ii*での内力 **Q**_iはその時点の変位 **U**_iのみならずその履歴の関数と なる、b)場が不連続に(例えば、弾性状態から塑性

- 23 ----

平成8年6月

108

状態への遷移等)変化する場合がある,の2点の理由 によるものである.

これらの問題点について, a) に関しては, 現時刻 での内力が現ステップだけでなく過去のステップも含 めた変位の関数となっていることに着目し対応するこ とができる.b) に関しては, 半解析法では, 実際に 確率変数の摂動を考慮した系で応力積分を行なって不 平衡力の摂動量を求めるため, 直接微分法の適用が困 難な要因の一つである遷移点における接線剛性の変分 **δK** の存在性については, 解析上何の問題もなく回避 することができる.

このような負荷経路依存性のある非線形問題では,

K $\dot{\mathbf{U}}=\dot{\mathbf{F}}$ (18)で表わされる速度型の平衡方程式を解き、得られた $\dot{\mathbf{U}}$ を \mathbf{F}_i に至る負荷経路に沿って積分することにより \mathbf{U}_i を求めるのが厳密であるが、数値計算の観点からは事実上不可能である。そのため有限要素法では、ある有限な荷重増分 $\Delta \mathbf{F}_k$ に対し、増分形の平衡方程式

$$\Delta \mathbf{Q}_{k} = \Delta \mathbf{F}_{k}$$
 (19)
を満たすような変位増分 $\Delta \mathbf{U}_{k}$ を Newton-Raphson 法
等の反復解析により求め

$$\mathbf{U}_i = \sum_{k=1}^i \Delta \mathbf{U}_k \tag{20}$$

として時刻*ti*での変位を近似的に評価することが多い.

さて、感度解析に際しては、前節と同様に確率変数 を $b_j(j=1, 2, \dots, N)$ とすると、

第i増分における平衡方程式は式(19)に基づき

 $\Delta \mathbf{Q}_{i}(\mathbf{U}_{i}(b_{j}), \mathbf{U}_{i-1}(b_{j}), b_{j}) = \Delta \mathbf{F}_{i}$ (21) と表わすことができる. なお, $\mathbf{U}_{i}(b_{j}), \mathbf{U}_{i-1}(b_{j})$ は各 ステップでの変位ベクトルが b_{j} の関数であることを 意味し, \mathbf{U}_{i} は未知, \mathbf{U}_{i-1} は既知である. また \mathbf{U}_{i-1} か ら \mathbf{U}_{i} に 至る 積分経路は, 先に述べた Newton-Raphson法等の反復解析と $\Delta \mathbf{Q}_{i}^{(j-1)}$ 評価における応力 積分のアルゴリズムによって結果的に定まると解釈さ れる.

ここで,確率変数 b_j の変分 δb_j に起因する式(21)の 変分をとると

$$\frac{\partial \Delta \mathbf{Q}_{i}}{\partial \mathbf{U}_{i}} \delta U_{i} + \frac{\partial \Delta \mathbf{Q}_{i}}{\partial \mathbf{U}_{i-1}} \delta U_{i-1} + \frac{\partial \Delta \mathbf{Q}_{i}}{\partial b_{i}} \delta b_{j} = 0$$
(22)

となる.静的解析で外力が変形や確率変数に依存しない場合、半解析法では、前項と同様に上式左辺第2、3項目は次式により近似的に評価することができる. (ここで、 ΔU_{i-1} は一つ前のステップで評価済であり、既知量であることに注意する.)

$$\begin{aligned} \frac{\partial \Delta \mathbf{Q}_{i}}{\partial \mathbf{U}_{i-1}} \delta \mathbf{U}_{i-1} + \frac{\partial \Delta \mathbf{Q}_{i}}{\partial b_{j}} \delta b_{j} \\ \approx \Delta \mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1} + \mathbf{\Delta} \mathbf{U}_{i-1}, b_{j} + \mathbf{\Delta} b_{j}) \\ -\Delta \mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1}, b_{j}) \\ = \{\mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1} + \mathbf{\Delta} \mathbf{U}_{i-1}, \mathbf{U}_{i-2} + \mathbf{\Delta} \mathbf{U}_{i-2}, \\ \cdots, \mathbf{U}_{1} + \mathbf{\Delta} \mathbf{U}_{1}, b_{j} + \mathbf{\Delta} b_{j}) \\ -\mathbf{Q}_{i-1}(\mathbf{U}_{i-1} + \mathbf{\Delta} \mathbf{U}_{i-1}, \mathbf{U}_{i-2} + \mathbf{\Delta} \mathbf{U}_{i-2}, \\ \cdots, \mathbf{U}_{1} + \mathbf{\Delta} \mathbf{U}_{1}, b_{j} + \mathbf{\Delta} b_{j}) \} \\ -\{\mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1}, \mathbf{U}_{i-2}, \cdots, \mathbf{U}_{1}, b_{j}) \\ -\mathbf{Q}_{i-1}(\mathbf{U}_{i-1}, \mathbf{U}_{i-2}, \cdots, \mathbf{U}_{1}, b_{j}) \} \\ = \mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1} + \mathbf{\Delta} \mathbf{U}_{i-1}, \mathbf{U}_{i-2} + \mathbf{\Delta} \mathbf{U}_{i-2}, \\ \cdots, \mathbf{U}_{1} + \mathbf{\Delta} \mathbf{U}_{1}, b_{j} + \mathbf{\Delta} b_{j}) \\ -\mathbf{Q}_{i}(\mathbf{U}_{i}, \mathbf{U}_{i-1}, \mathbf{U}_{i-2}, \cdots, \mathbf{U}_{1}, b_{j}) \\ \equiv \mathbf{A} \mathbf{R}_{i} \end{aligned}$$
(23)

よって

$$\underbrace{\Delta}_{i} \mathbf{U}_{i} = -\mathbf{K}^{-1} \underline{\Delta} \mathbf{R}_{i} \tag{24}$$

$$\mathbf{K} = \frac{\partial \mathbf{I} \mathbf{Q}}{\partial \mathbf{U}_i} \tag{25}$$

を得,変位感度は式(16)よりに近似的に評価される. なお通常の変位型の有限要素法の場合,変位感度が得 られ次第,順次有限要素法と同様の手順で,ひずみ, 応力,反力の感度が求められる.

原子炉燃料集合体グリッドスプリングの 非線形確率有限要素解析⁸⁾

4.1 解析概要

図3に加圧水型軽水炉の燃料集合体グリッドスプリ ングの一部を示す.各燃料棒は4枚の薄板のスプリン グに挟まれることにより支持される.燃料棒の外径は 長手方向に一様ではなく挿入の過程でスプリング中央 部には後で示す強制変位の履歴が与えられる.スプリ ングはプレス加工により形成されるため板厚には多少 の変動を生じる.この観点から板厚を確率変数とした 非線形(弾塑性,大変形)感度解析及び確率的評価を 行う.

解析は対称性を考慮して図 3(b)の1/4を取り出した モデルについて行う.メッシュ分割を主要寸法と共に 図 4(a)に示す.確率変数としては長手方向に沿った スプリングの板厚, t_1-t_{53} の計53変数をとる.これら の設計値(t_i^P)及び20本の試験片の実測に基づく平衡 値(\bar{t}_i)を図 4(b)に示す.

4.1 感度解析結果

次節で1次近似2次モーメント法による確率的評価 を行うことから、ここでは $t_i = \overline{t_i}$ の板厚分布を持つス プリングを想定し、 $\overline{t_i}(1+\alpha_i)$ とおいて構造応答の α_i

図3 原子炉燃料集合体グリットスプリング

(a) 図 3 (b)の 1/4 モデルとメッシュ分割

に対する感度を求める.履歴中で最大反力を生じる点 に着目し,反力 P と点 M(最大相当応力が生じる場 所,図5参照)での相当応力の各 α;に対する感度を

図6 最大反力学における反力学及び点 M での相当応力 の感度の分布

調べた結果を図6に示す.なお得られた感度の値は直 接差分法による解とよく一致することを確認してい る.

反力の感度は、図6(実線)から断面 i=15及び i=30近傍でピークを持つ特徴的な二峰分布となって いる.この二峰性はスプリング形状における二箇所の 湾曲部に関係していると考えられる.また図5を参照 すると、反力感度の高い断面では塑性変形を生じてい るが、その逆、即ち塑性変形を生じる断面の反力感度 がいつも高い訳ではないことが指摘できる.次に点 Mでの相当応力の感度は、図6(破線)から点Mに 最も近い断面 i=30でのみ鋭い(負の)ピークを持つ 分布となっており、一方、他の断面で発生する多少の 感度値は総て逆符号(正)となっている点が反力感度 分布の傾向と異なるものとして注目される.

4.2 反力と応力の確率的評価

既に触れたように、スプリングはプレス加工により 形成されるため板厚は設計値から不確定性をもって変 動する. 図7は実際に20個の試験片の空間的な板厚分 布の計測値を統計処理した α_i に関する標準偏差の分 布と相関係数マトリックスである. この α_i の統計量 と前節で求めた反力や点Mでの相当応力の感度 $\partial P/$ $\partial \alpha_i, \partial \bar{\sigma}_M / \partial \alpha_i$ から、先に述べた1次近似2次モーメン ト法により Pや $\bar{\sigma}_M$ の分散 Var[P], Var[$\bar{\sigma}_M$] が近似的

平成8年6月

— 25 —

図7 実際値に基づく板厚 (αi) の (a) 標準誤差と (b) 相関係数マトリックス

に評価できる. 図8, 図9はこのような分散をもとに 描いた反力と点 M での相当応力の 3σ 限界図である. 1次近似2次モーメント法による分散解析結果につ いてみると,板厚のばらつきが図7(a)に示される通 り相当小さな範囲に収められているにも拘わらず,反 力の分散は無視できないものとなっていることが図8 によりわかる.これに対し図9から明らかなように, 点 M での相当応力の分散は実用上無視できる程度と なっている.

5. 確率有限要素法による信頼性評価

5.1 評価手法の概要^{4),9)}

最初に performance function (性能関数あるいは状 態関数) Zを,その値が零の時に構造系の限界状態 (limit state) を表すように定義する.

 $Z(\mathbf{X}) = Z(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n) = 0$ (26) ここで $\mathbf{X} = {\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_n}^T$ は構造系に関与する確 率変数である.また通常,関数 Z の値が正の時は構 造系が "安全"状態であること,負の時は "破損"状 態を表しており,式(26)の限界状態式 (limit state equation) は,破損表面 (failure surface) と呼ばれる こともある.一例を示すと,発生する最大応力 σ_{max} が

 $\sigma_{\max} = g(X_1, X_2, \dots, X_{n-1})$ (27) で与えられ、 σ_{\max} がその限界値 $S \equiv X_n を越えたとき$ "破損"を生じるものとすれば、

 $Z(\mathbf{X}) = S - \sigma_{\max} = X_n - g(X_1, X_2, \dots, X_{n-1}) \quad (28)$ のように performance function を定義できる.

次に $X = \{X_1, X_2, \dots, X_n\}$ の結合確率密度関数を f_X (X) = $f_{X_1X_2...X_n}(X_1, X_2, \dots, X_n)$ と置き,積分領域 Dを $Z(X) \le 0$ を満たす n 次元空間における領域とすれば, 構造系の破損確率 P_f および信頼度 R は次式で与えら れる.

$$P_f = \int_D f_{\mathbf{X}}(X) \ dX, \ R = 1 - P_f \tag{29}$$

この破損確率 P_i は、通常 X の結合密度関数 $f_X(X)$ の裾野部すなわち確率密度の低いところのデータを用いて計算されることになるが、現実には、入力データとして裾野部あたりの確率密度が厳密に求められることは稀であるため、X のたかだか 2 次モーメント(共分散)程度から得られる信頼性指標(reliability index)が提案され、実用上の指標としてしばしば用いられている.

FOSM (First-Order Srcond-Moment Method:1次 近似2次モーメント法) によれば信頼性指標は次式に

— 26 ——

図10 FOSM 法における信頼性指標の βの概念⁴⁾

より定義される.

 $\beta = \frac{E[Z]}{\sqrt{Var[Z]}} \tag{30}$

図10に示すように,信頼性指標は,破損を与える原点 (Z=0)からZの期待値までの距離を標準偏差 $\sqrt{Var[Z]}$ で正規化したものに相当する.

さて、ここで信頼性指標の幾何学的な意味を考えて みよう.式(26)の performance function を構成するラ ンダムベクトル X が、期待値0、単位分散を持つ独 立なランダムベクトル $Y = \{Y_1, Y_2, \dots, Y_n\}$ に接線変 換することが可能であれば、式(26)左辺は新たに

 $Z(\mathbf{X}) = G(\mathbf{Y}) = G(Y_1, Y_2, \dots, Y_n)$ (31) のように書ける. Gを $\mathbf{Y} = \mathbf{0}$ で線形展開して1次近似 法により信頼性指標 β を評価すると

$$G(\mathbf{Y}) = G(\mathbf{0}) + \sum_{i} \left[\frac{\partial G}{\partial \mathbf{Y}_{i}} \right]_{\mathbf{Y}=\mathbf{0}} \cdot \mathbf{Y}_{i}$$
(32)

$$\boldsymbol{\beta} = \frac{E \lfloor G(\mathbf{Y}) \rfloor}{\sqrt{Var \left[G(\mathbf{Y}) \right]}} = \frac{G(\mathbf{0})}{\sqrt{\sum_{i} \left(\left[\frac{\partial G}{\partial \mathbf{Y}_{i}} \right]_{\mathbf{Y}=\mathbf{0}} \right)^{2}}}$$
(33)

を得る.式(32)は式(33)で示される厳密な performance function に Y=0で接する超平面を表し,式 (33)の β はその超平面がG=0の平面と交わって作ら れる近似的破損表面に原点から下した垂線の長さを与 えている(図11参照).しかしながらG(Y)がYに 関して非線形である場合には,performance function を Y=0 で平面近似したことによる誤差が生じる.ま た FOSM により得られた β には普遍性がなく,例え ば performance function を

$$Z(\mathbf{X}) = \frac{X_n}{g(X_1, X_2, \cdots, X_{n-1})} - 1$$
(34)

と定義した場合には信頼性指標は β は一般には同じ 値にはならない.

AFOSM 法 (Advanced First-Order Second-Moment Method) は,以上に述べた欠点を改良し,より普遍 性のある信頼性指標を得るための手法である.図12に

平成8年6月

図11 FOSM 法の βの幾何学的意味⁹⁾

図12 AFOSM 法の信頼性指標 β*9)

示すように、FOSM 法と同様に標準化された Y 座標 空間内の厳密な破損表面上において、原点にもっとも 近い点を何らかの反復手法によって探索し、原点から 設計点までの距離 β^* を新たな信頼性指標とする.こ のようにして得られた点は設計点(design point)と も呼ばれる.AFOSM による β^* は、FOSM での performance function の線形展開を、期待値点で行うか わりに設計点で行うことにより評価した β に相当す る.また設計点の座標 Y* に標準化の逆変換を施すこ とにより、X* を求めることが出来る.

以上では、信頼性指標は X の分布形に関係なく定 義されている. もし、何らかの方法で Y が期待値 0、 単位分散を持つ互いに独立な正規確率変数となるよう 変換されるならば、信頼性指標 β* あるいは設計点 X* は次のような意味を持つ. つまり、X* は破損領 域 D における確率密度の最大となる点であり、破損 が起こるとすれば、それは基本確率変数 X が X* と なるとき最も生じやすいことを示している. また、破 損表面を設計点 Y* で破損表面に接する超平面で近似 した場合、近似的破損確率は

 $P_{f} = \boldsymbol{\Phi}(-\boldsymbol{\beta}^{*})$ (35) なる P_{f} の上限値が導かれる.ただし、 $\boldsymbol{\Phi}$ は標準正規 分布関数を表す確率分布関数である.このように、 $\boldsymbol{\beta}^{*}$ を用いることで、式(29)に示した多重積分を行な うことなく容易に破損確率の近似値が評価できる.

— 27 —

このように破損表面の1次展開近似のみによって信 頼性指標等を評価する手法は FORM (Second-Order Reliability Method) と呼ばれる.

4.2 信頼性解析例¹⁰⁾

解析例として動的トラスの信頼性解析を示す.な お、本解析では汎用信頼性解析コード CALREL を使 用して信頼性指標等を求めている. CALREL は前節 で説明した AFOSM 法やモンテカルロ法などに基い て信頼性解析を行なうコードであり、変動するパラメ ータの平均値,標準偏差,分布形等を入力とし,performance function を定義することにより信頼性指標 や破損確率,設計点などが求められる.

解析対象および解析条件を図13に示す.また、入力

データの確率分布としては,要素1,3,7,8の降伏応 力については対数正規分布(変動係数:5%,相関係 数:0.5),全要素の断面積についても対数正規分布 (変動係数:1%,相関係数:0.5%)を仮定している. performance function については、全要素を通して最 大となる応力の絶対値 $\sigma = -\sigma_8$ が許容値Sを越えた とき破損が生じるものと定義している.

図17 設計点での要素8の応力(-σ₈)の時刻歴

$$G = S - \max_{t=0.0 \sim 0.5 [sec]} [\sigma(t)]$$
(36)

図14~図17に解析結果を示す. ここでは, FORM によって求められた信頼性指標をβ」(これは前節で 解説した信頼性指標 β^* に他ならない), SORM によ って求められた信頼性指標をβ2としている.図14は 許容値Sに対して信頼性指標をプロットしたものであ る.次に図15は許容値Sに対してFORMおよび SORM による破損確率 P_{f1} , P_{f2} をプロットしたもので ある.図14,15に示されている通り,FORMと SORM の結果はほとんど一致しており、破損表面は ほとんど線形であることが解る、図16は $\sigma = -\sigma_8 \sigma$ 最大値の確率分布を示している.図17には許容値Sを 変化させたときに求められた設計点での応力の時刻歴 を基本系での応答と併記して示している.

6. おわりに

本稿では、1次近似2次モーメント法に基づく確率

- 28 -

有限要素法について,信頼性評価を含めて解説した. 有限要素法自体が,ブラックボックスとしての役割も 含めて完全に普及したのに対して,それを拡張した確 率有限要素法はまだまだ実用的なものとしては位置づ けられていない.その原因の一つは入力データの確率 的情報の未整備であり,また一つは計算容量の問題で あろう.今後更なる計算環境の発展に伴って,それら の問題が解消し,確率有限要素法が少しでも普及する ことを期待している.

参考文献

- 1) 例えば, K. D. Tocher: The Art of Simulation, MacGraw-Hill, (1968)
- 2) 例えば、T. Hisada and S. Nakagiri: Stochastic Finite Element Method Development For Structural Safety and Reliability, PROC. THIRD INTERNATIONAL CONFER-ENCE ON STRUCTURAL SAFETY AND RELIABILI-TY, 395/402, (1981)
- 3) 例えば, A. Der Kiureghian and J. B. Ke: The Stochastic Element Method in Structural Reliability, PROBABILIS-

TIC ENGINEERING MECHANICS, 3-2, 83/90, (1988)

- 4) 中桐 滋,久田俊明:確率有限要素法入門,培風館, (1985)
- 5) 久田:弾塑性確率有限要素法の基礎式(非線形 FEM の 感度解析),日本機械学会論文集,(A 編),56-524, 286/290,(1990)
- 6) 野口裕久:有限要素法によるシェル構造物の非線形座 屈およびその感度解析手法に関する研究,東京大学, 博士論文,(1993)
- 7) 久田俊明,野口裕久:非線形有限要素法の基礎と応用, 丸善,(1995)
- 陳, 久田, 野口, 森:原子炉燃料支持スプリングの非 線形有限要素感度解析, 日本機械学会論文集, (A編), 59-567, 274/2749, (1993)
- 9)村山修:非線形確率有限要素法による原子炉配管系の構造信頼性解析,東京大学修士論文,(1991)
- 10) T. Hisada, H. Noguchi, O. Murayama and A. Der Kiureghian: Reliability Analysis of Elasto-Plastic Dynamic Problems, PROC. INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING, Springer-Verlag, 161/172, (1991)

- 29 -----

平成8年6月

e - Example and the product of the second second