278

《製品開発とシミュレーション》

ノートブック PC 筐体外側の熱設計

中村聡伸*・清岡史利*

1. はじめに

熱設計は,実装密度の高いノートブック型PCのシス テム設計において,最も重要な課題の一つとして取り 組まれてきた. 特に CPU やビデオチップの消費電力 は,データ処理性能の向上と共に増加の一途をたどり, ノートフック型PCの熱設計技術の開発は、まさにCPU をはじめとする筐体内部の電子素子の冷却を中心に進 められてきた.しかしながら、これらの電子素子の設 計温度限界は、寿命を考慮しても80℃-100℃であるの に対し、筐体外側温度の限界値は、通常40-50℃とかな り低い. ノートブックPCは、長時間膝の上で使用され ることもあるため,直接人の肌が接触する筐体の底面 が,低温やけどを引き起こす可能性があるからである. また、一般的なノートブック型 PC では、キーボード が、筐体上面に取り付けれられているが、常に手を置 くキーボード上の温度も, 使用感の点で同程度の温度 に設定することが望ましいとされている.したがって, 電子素子から筐体外側までの放熱経路を設計すること, 熱設計の重要性が高まってきている. CPU やビデオ チップなどの電子素子周辺の温度設計が,ファンの大 きさなどの単一のパラメータを変えることにより簡単 に制御できるのに対して、 筐体外側の温度分布にかか わる設計のパラメーターは、筐体サイズやルーバー位 置,全体のレイアウトなど多岐にわたり,それぞれが 有機的に影響する. これらのパラメーターは、一度決 定されば、設計変更が容易でない場合が多い. した がって、設計の初期の段階では、シミュレーションが 非常に有効な設計手段となっている.

本稿では、実際のノートブックPCの熱設計に使われたシミュレーションの例を紹介する.

2. シミュレーションのプロセス

シミュレーションツールとして、Flotherm Ver. 3.2

Thermal Design for Outside Covers of Notebook PC By Fusanobu Nakamura and Fumitoshi Kivooka (IBM Japan, Ltd)
*日木アイ・ビー・エム(株) [本会賛助会員]

(Flometrics co)を使用する.

- 1) 簡素化した形状モデルを入力する(図1)
- 2) それぞれの構成要素の物性値を入力. 境界条件を 設定する(**図2**)
- 3) 解析を行い設計モデルにフィードバックをして, 再度シミュレーションを行う.

境界条件は、各筐体外壁面と外界との熱の交換の状態を入力する。変数は、筐体の大きさや、形状、周囲の環境により著しく異なるので、実験により求める。

図3にその一例を示す. 筐体内部に発熱体を1個だけ

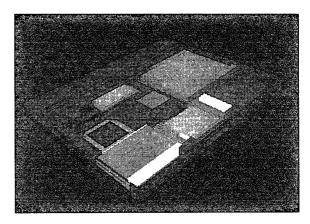


図1 解析に使用したノートフック PC の 3D モテル

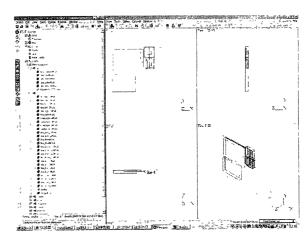


図2 3Dモテルの各要素に物性値を入力する

シミュレーション 第22巻第4号

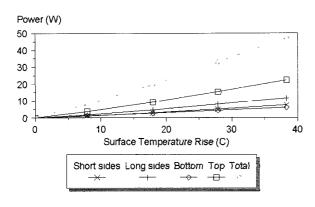


図3 計算に使用したノートブック PC の 3D モデル

配置したモデルの筐体外側表面の温度を示す.このようなデータを使用して,精度の高い境界条件を得ることができる.

温度を解析する部分は、次CPUやビデオチップをは じめとする電子素子はもちろん、ベースカバー、キー ボード、パームレストなどユーザーが触る可能性のあ る部分について行われる. ユーザーのひざの上で長時 間使用されることのあるノートブック PC では、特に ベースカバー外側の温度は、重要視されるため、ベー スカバー底面外側の温度は、注意深く解析する. この 部分の温度は、この筐体が置かれるテーブルごと解析 モデルとして取り扱う.

3. シミュレーションの実際

解析の結果, **図4**の示すように, ベースカバー外側の中央右側付近に高温度領域があることが判明した. 実際のノートブック PC の温度分布は, **図5**のようになり, 解析が実際をシミュレートしていることを良く示している.

実際には、1度目の解析の結果に基づき、温度を分散させたり、遮断するなどのトライを何度も行って、 筐体内部の温度やカバー外側の温度が十分低くなるような設計を選択する。特にこの段階では、サーマルインシュレーションシートを置くなどのコストのかかる設計手段でなく、ベースカバーとマザーボードとの距離を離したり、空気の取り入れ口を増やすなど、製品

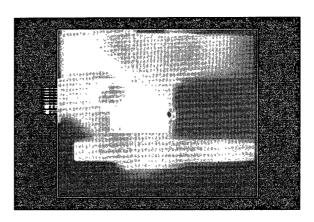


図4 解析によるノートブック PC の底面の温度分布

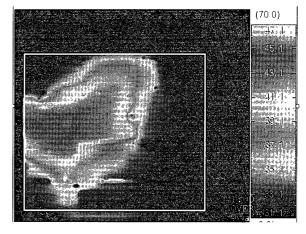


図5 ノートブック PC の底面の実際の温度分布

の基本スペックにかかわるような設計対策を選択する.

4. 結 言

ノートブック PC の設計におけるシミュレーション の適用例を紹介した.

铭 態

縣担当には論文製作にあたり,ご指導をいただきま した.

参 考 文 献

1) 総合技術センター 編集者 石塚 勝, 横野泰之, 佐々木富 也, 水上浩:電子機器の小型化・高速化に対応した熱対 策と熱シミュレーション技術