

電力システムの動的解析技術─データから 非線形ダイナミクスを理解する

薄 良彦*

Dynamic Analysis Technology of Electric Power Systems—Exploring Nonlinear Dynamics from Data

Yoshihiko Susuki*

Key words: Power System, Analysis, Data, Energy Management

1. はじめに

近年. エネルギー管理システムの研究開発が積極的 に進められている^{1,2,3)}. そこではエネルギー需給に関 わる理論と基盤技術の確立を目指して、電力・エネル ギー工学,システム制御工学,通信工学,コンピュー タ科学,応用数学・物理などの複数の学問領域を横断 した研究課題が検討されている. そのような課題の中 で、本会誌に関連する課題の一つとして、進展の著し いセンシング技術や情報通信技術により得られたエネ ルギーシステムに関わるデータを管理技術に生かすた めの方法論の確立がある.これは、シミュレーション より得られた大量データから対象とする大規模複雑系 の物理現象について知見を抽出することに対応し、サ イエンスの観点のみならずエンジニアリングの観点か らも重要性が指摘されている4.また、応用数学や非 線形動力学の観点からも、シミュレーションや実験に より得られた大量データを扱うための新しい理論の必 要性が指摘されている^{5,6)}. これらはビッグデータを対 象としたデータ中心科学^{7,8)}として近年注目を集めて いる

上記を踏まえて,本解説の目的は,エネルギー管理 の重要な対象である電力システムを題材として,シ ミュレーションや実験により得られた時系列データよ りダイナミクスを如何に理解するかについて議論する 点にある.上記の目的は本会誌の対象であるシミュ レーション技術においても重要と考えられ,シミュ レーション技術の将来展開に何らかの示唆を与えるも のと期待される.

本解説では、電力システムにおける動的特性のデー タに基づく解析技術を筆者らの結果⁹を中心に紹介す る. 電力システムの解析技術は古くから研究開発が進 められ、幅広い知見と技術が実際のシステム運用に供 されてきた10,11). 従来の研究開発の多くは数式に基づ くものであり、システムのダイナミクスを記述する数 理モデル(微分方程式や微分代数方程式)を活用した ものである、このような数理モデルに基づく手法は未 来に向けて引き続き重要である一方、数理モデルに基 づかない手法も従来より研究されている¹²⁾.特に、最 近は後者のアプローチに注目が集まっており、その理 由として広域電力システムの時系列データが計測技術 の発展により入手可能になっている点^{13,14)}や.再生可 能エネルギーの大量導入を背景としてダイナミクスを 記述する決定論的な数理モデルの導出が困難になって いる点などが挙げられる.本解説では、陽に数理モデ ルを用いることなく時系列データから電力システムの 動的特性とその背後にある力学を解析する技術につい て概観する.本解説の数学的ツールは非線形力学系の クープマン作用素とクープマンモード^{15,16,17)}であり、 時系列データの背後にある数理モデルに基づいてデー タの解析を行うことを可能にする.

^{*} 京都大学大学院工学研究科電気工学専攻 Department of Electrical Engineering, Kyoto University

186

非線形力学系のクープマン作用素と クープマンモード

本節では、本解説の中心的な数学的ツールである非 線形力学系のクープマン作用素とそのスペクトル解析 に基づくクープマンモード(Koopman Mode; KM)を 概説する.本節の内容は文献^{15,16)}に基づいており、同 様のレビューが文献⁹⁾にもある.

2.1 クープマン作用素

最初に,非線形力学系に対してクープマン作用素を 導入する.データに基づく解析技術では一般に一定間 隔で不連続に観測された時系列を対象とするため,本 解説では以下で記述される離散時間系を考える.

$$\boldsymbol{x}_{k+1} = \boldsymbol{T}(\boldsymbol{x}_k), \quad \boldsymbol{x} \in \mathbb{X}$$
(1)

ここで、k = 0, 1, 2, ...は離散時間を表すインデック ス、xは状態変数、X は有限次元の状態空間、 $T: X \rightarrow$ X は非線形の写像である。今、**観測量**と呼ぶ状態空間 X から実数 R への関数 $f: X \rightarrow \mathbb{R}$ を導入する。このfは本解説の対象である時系列データの数理モデルとな り、データに基づく解析技術を考える上でデータと数 理モデルを結びつける概念として重要となる。なお、 観測量fはシステム制御分野では出力方程式と呼ばれ るものに相当し、実際

$$\boldsymbol{x}_{k+1} = \boldsymbol{T}(\boldsymbol{x}_k), \quad y_k = f(\boldsymbol{x}_k) \tag{2}$$

と書けば、fがスカラー出力 $y \in \mathbb{R}$ を与える関数であることがわかる.ここで、観測量fから新しい関数を作る写像(作用素) \mathcal{U} を

$$(\mathcal{U}f)(\mathbf{x}) := f(\mathbf{T}(\mathbf{x})) \tag{3}$$

と定義すると、式(1)の写像 **T**の下での観測量の時 間発展 *f*(**x**_{*k*}) は

$$f(\mathbf{x}_k) = f(T(\mathbf{x}_{k-1})) = (\mathcal{U}f)(\mathbf{x}_{k-1}) =$$

$$(\mathcal{U}^2 f)(\mathbf{x}_{k-2}) = \cdots = (\mathcal{U}^k f)(\mathbf{x}_0)$$
(4)

と書ける. この*U*は**クープマン作用素**^[8,19] と呼ばれ, 写像*T*の下での観測量*f*の時間発展を表している. 元 の力学系(1)が有限次元で非線形であるのに対して, *U*は(関数を関数に移すという性質から)無限次元で あるものの線形であり,非線形力学系の表すダイナミ クスの情報を完全に保持した線形作用素となっている.

続いて、線形作用素 U のスペクトルに着目する. 一般の線形作用素に対してスペクトル的諸性質を論じ ることは容易ではない.ここでは元の力学系(1)の ダイナミクスが測度保存であるとする. 例えば, ハミ ルトン系などの保存系が記述するダイナミクスや散逸 系のアトラクタ上の漸近ダイナミクスなどがこの場合 に該当する. この場合, **U**はユニタリー作用素とな りスペクトルの解析が可能であり, **U**のスペクトル 表現として

$$\mathcal{U} = \mathcal{U}_{s} + \mathcal{U}_{r}, \ \mathcal{U}_{s} = \sum_{j=1}^{\infty} \lambda_{j} \mathcal{P}_{j},$$

$$\mathcal{U}_{r} = \int_{0}^{2\pi} \exp(i\theta) dE(\theta)$$
(5)

が得られる(i は虚数単位)¹⁵⁾. $\lambda_j \in \mathbb{C}$ は *j* 番目の \mathcal{U} の 固有値であり,ある関数 $\varphi_j : \mathbb{X} \to \mathbb{R}$ に対して ($\mathcal{U}\varphi_j$) (\mathbf{x}) = $\lambda_j \varphi_j(\mathbf{x})$ を満たし、 \mathcal{U} のユニタリー性より $|\lambda_j| = 1$ である. \mathcal{P}_j は λ_j に対応する射影作用素であり、 $dE(\theta)$ は連続なスペクトル測度である. 今、 $\mathcal{U}_s f$ の成す空間 に対して $\mathcal{U}_r f$ の成す空間は直交補空間となる事実よ り、観測量の時間発展 $f(\mathbf{x}_k)$ は

$$f(\mathbf{x}_k) = \mathcal{U}^k f(\mathbf{x}_0) = \sum_{j=1}^{\infty} \lambda_j^k (\mathcal{P}_j f)(\mathbf{x}_0) + \left(\int_0^{2\pi} \exp(ik\theta) dE(\theta) \right) f(\mathbf{x}_0)$$
(6)

と書ける¹⁵⁾. これは, 非線形力学系(1)の表すダイ ナミクスが右辺第1項に相当する周期的・概周期的要 素と右辺第2項に相当する非周期的要素に分解できる ことを示しており, 非線形ダイナミクスのモード分解 を与えるものである. この分解はダイナミクスがエル ゴード的^{20,21)}であれば初期条件 x₀に依存しない¹.

2.2 クープマンモード

前小節の式(6)をベクトル値を取る観測量 $f(x) := [f_1(x), ..., f_p(x)]^{\intercal} : \mathbb{X} \to \mathbb{R}^p (\intercal はベクトルの転置を表$ す)に対して拡張すると以下を得る.

$$\boldsymbol{f}(\boldsymbol{x}_{k}) = \sum_{j=1}^{\infty} \lambda_{j}^{k} \begin{bmatrix} (\mathcal{P}_{j}f_{1})(\boldsymbol{x}_{0}) \\ \vdots \\ (\mathcal{P}_{j}f_{p})(\boldsymbol{x}_{0}) \end{bmatrix} + \begin{bmatrix} (\mathcal{U}_{r}^{k}f_{1})(\boldsymbol{x}_{0}) \\ \vdots \\ (\mathcal{U}_{r}^{k}f_{p})(\boldsymbol{x}_{0}) \end{bmatrix}$$
(7)

ここで、上式の右辺第 1 項の係数ベクトルを $V_j^f(\mathbf{x}_0) :=$ $[(\mathcal{P}_j f_1)(\mathbf{x}_0), \dots, (\mathcal{P}_j f_p)(\mathbf{x}_0)]^{\mathsf{T}} \in \mathbb{C}^p$ と置き、右辺第 2 項が 無視できる場合、

---- 30 -----

¹ 状態空間全体でダイナミクスがエルゴード的である必要はなく、その部分空間上でダイナミクスがエルゴード的であればよい(例えばアトラクタ).なお、ダイナミクスがエルゴード的な部分空間への状態空間の分割はエルゴード分割(ergodic partition)²¹⁾と呼ばれる。

$$\boldsymbol{f}(\boldsymbol{x}_k) = \sum_{j=1}^{\infty} \lambda_j^k \boldsymbol{V}_j^f(\boldsymbol{x}_0) \tag{8}$$

を得る¹⁶⁾.上記の \mathcal{U}_{r} の項が無視できる場合は、ダイナ ミクスがリミットサイクルや概周期振動等の場合に相 当する.式(8)は、周期的・概周期的な非線形ダイ ナミクスに対する単一周波数の振動モードへの分解に 相当し、 λ_{j} が各振動モードの周波数に関係し、 $V_{j}^{f}(\mathbf{x}_{0})$ が各振動モードの観測量 $f(\mathbf{x}_{k})$ の各成分への寄与を表 すモードベクトルである.このモードベクトルは **クープマンモード**(Koopman Mode; KM)と呼ばれる¹⁶⁾.

2.3 算出方法

本解説の目的であるデータに基づく解析手法として は、クープマン作用素の固有値や KM を元の力学系(1) を知ることなく観測量(データセット)から算出した い.データセットより固有値や KM を算出する方法と しては、射影操作 (\mathcal{P}_{jf})(x)に関する公式⁽⁵⁾ や Arnoldi アルゴリズム¹⁶⁾を用いる算出方法が提案されている. 後者の方法は、直接数値シミュレーションにより得ら れた流体ダイナミクスの解析¹⁶⁾、電力システムにおけ る動揺ダイナミクスの解析⁹⁾ や建物内における熱ダイ ナミクスの解析²²⁾等に用いられてきた. Arnoldi アル ゴリズムでは、固有値 λ_{j} は経験的 Ritz 値 $\tilde{\lambda}_{j}$ として、 KM V_{j} は経験的 Ritz ベクトル \tilde{V}_{j} として求められる. なお、本方法は流体力学分野で独立に提案された Dynamic Mode Decomposition²³⁾ と同一であることが知ら れている.

本解説では Arnoldi アルゴリズムについて以下で説 明する. 一定間隔観測で得られたN個のベクトル値デー タセット { $f_0, f_1, \ldots, f_{N-1}$ } に対して,経験的 Ritz 値 $\tilde{\lambda}_j$ 及び経験的 Ritz ベクトル \tilde{V}_j を以下により算出する.

 (i) データセットから N-1 個の定数 c_j(j = 0,..., N-2)を以下を満たすように求める.

$$\mathbf{r} = \mathbf{f}_{N-1} - \sum_{j=0}^{N-2} c_j \mathbf{f}_j, \ \mathbf{r} \perp \text{span}\{\mathbf{f}_0, \mathbf{f}_1, \dots, \mathbf{f}_{N-2}\}$$
 (9)

(ii) c_i を用いてコンパニオン行列Cを定義する.

$$\mathbf{C} := \begin{bmatrix} 0 & 0 & \cdots & 0 & c_0 \\ 1 & 0 & \cdots & 0 & c_1 \\ 0 & 1 & \cdots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & c_{N-2} \end{bmatrix}$$
(10)

(iii) 行列 C O N-1 個の固有値 $\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{N-1}$ を求める.

(iv) $\tilde{\lambda}_j$ を用いてファンデルモンド行列Tを定義する.

$$\mathbf{T} := \begin{bmatrix} 1 & \tilde{\lambda}_{1} & \tilde{\lambda}_{1}^{2} & \cdots & \tilde{\lambda}_{1}^{N-2} \\ 1 & \tilde{\lambda}_{2} & \tilde{\lambda}_{2}^{2} & \cdots & \tilde{\lambda}_{2}^{N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \tilde{\lambda}_{N-1} & \tilde{\lambda}_{N-1}^{2} & \cdots & \tilde{\lambda}_{N-1}^{N-2} \end{bmatrix}$$
(11)

(v) 行列V := $[f_0 f_1 \cdots f_{N-2}] \mathbf{T}^{-1} \sigma_j$ 番目の列ベクト ルを $\tilde{\mathbf{V}}_i$ と表す.

以上より, $\tilde{\lambda}_j$ が相異なる場合,与えられたデータセット $\{f_0, f_1, \dots, f_{N-1}\}$ に対する以下の分解が得られる¹⁶⁾:

$$\begin{aligned} f_{k} &= \sum_{j=1}^{N-1} \tilde{\lambda}_{j}^{k} \tilde{V}_{j}, & k = 0, 1, \dots, N-2 \\ f_{N-1} &= \sum_{j=1}^{N-1} \tilde{\lambda}_{j}^{N-1} \tilde{V}_{j} + r \end{aligned}$$
 (12)

上式と式 (8) と比較すると,経験的 Ritz 値 $\tilde{\lambda}_j$ 及びベクトル \tilde{V}_j がそれぞれクープマン作用素の固有値 λ_j 及び KM V_j に対応することがわかる.

本解説では、上記のようにデータをクープマン作用 素の固有構造に基づいて解析する手法をクープマン モード解析 (Koopman Mode Analysis) と呼ぶ. ここで クープマンモード解析について数点補足していく.ま ず、データから得られる式(12)は有限級数であり、 有限個のデータセットから有限個の経験的 Ritz 値及び ベクトルが得られたことになる.一方理論に基づく式 (8) は無限級数であり、有限級数に伴う KM の近似妥 当性は文献¹⁶⁾において部分的に議論されている.また, 上記得られた経験的 Ritz 値の絶対値は厳密には1とな らず、上記理論には合わない. これはデータの有限性 や時系列に過渡状態が含まれることに起因している. 文献^{16,9,17)}では過渡状態を含む時系列に対するクープ マンモード解析が検討されている². 過渡状態を含ん だデータであっても、散逸の効果が小さい場合やデー タ長が時定数と比較して短い場合などは前小節までの 理論を踏まえた議論が可能であり、3節の電力システ ムへの適用はこの一例となっている.以上より、本解 説では経験的 Ritz 値及びベクトルをクープマン作用素 の固有値及び KM と区別せず呼ぶことにする.

3. コヒーレント発電機群の同定

本節では、クープマンモード解析を電力システム解 析に適用した一例として、広域電力システムにおける コヒーレント発電機群の同定⁹について紹介する.

--- 31 ----

 ² 例えば、観測量 fの各要素 f, が span {φ₁, φ₂,...} に属しているならば、ダイナミクスの測度保存性を仮定しなくても、式(8)と同様の無限級数展開を導くことができる.

3.1 問題背景

西日本 60 Hz 系統のような広域交流システムでは、 多数の交流発電機が同期して、即ち同じ回転数で運転 されている^{10,11)}.電力システムは常に大小の擾乱(自 然現象,負荷変動,機器故障など)を受けることから、 発電機の回転数は一定ではなく常に変動しており, 動揺と呼ばれる.多数の発電機に対して動揺の時系列 を見ていくと、送電ネットワークのトポロジーや物理 的特性(送電線のインピーダンスなど)や発電機の物 理的特性(慣性や減衰など)に起因して、いくつかの 発電機が同じ傾向の動揺を示す場合がある、このよう な同傾向の動揺を示す発電機はコヒーレント (coherent) であるという. コヒーレント発電機群の同定は数 理モデルの等価縮約²⁴⁾ や安定性の解析²⁵⁾ などの観点 から重要であり、従来より研究されてきた. 紙面の性 格及び制約より既存結果を紹介することは叶わないた め、興味のある読者は文献⁹⁾ 中の参考文献リストを参 照されたい.

3.2 クープマンモードにおけるコヒーレンシ

最初に、KMにおけるコヒーレンシの概念を導入す る^{9,26)}. クープマン作用素の固有値の虚部が非零とな る場合、これに対応する KM は振動的な応答を表し、 本節の問題であるコヒーレント発電機群の同定の手掛 かりとなる. 今,振動的な *j* 番目の KM \tilde{V}_j (以下では KM{*j*}と表す)と固有値 $\tilde{\lambda}_j = |\tilde{\lambda}_j|\exp(i2\pi v_j)$ 及びそれ らの複素共役{ \tilde{V}_j }°, $\tilde{\lambda}_j^c = |\tilde{\lambda}_j|\exp(-i2\pi v_j)$ を考える (c は 複素共役を表す). ここで上記複素共役の KM と固有 値を *j*+1番目とラベル付けすると、KM{*j*,*j*+1}の単 ーモード応答*f*^(*i,j*+1)が以下で定義される.

$$f_{k}^{(j,j+1)} := \tilde{\lambda}_{j}^{k} \tilde{V}_{j} + (\tilde{\lambda}_{j}^{c})^{k} \{\tilde{V}_{j}\}^{c} =$$

$$2|\bar{\lambda}_{j}|^{k} \begin{bmatrix} A_{j,1} \cos(2\pi k v_{j} + \alpha_{j1}) \\ \vdots \\ A_{j,n} \cos(2\pi k v_{j} + \alpha_{jn}) \end{bmatrix}$$

$$(13)$$

ここで、 A_{ji} は \hat{V}_{j} の i 番目要素の絶対値 [[\hat{V}_{j}]_i] であり、 α_{ji} は \hat{V}_{j} の i 番目要素の偏角 Arg([\hat{V}_{j}]_i) である。今、 KM の要素のインデックスの部分集合 I \subseteq {1,2,..., p} が以下の条件を満たす場合、II は KM {j, j + 1} に関し て ($\epsilon_{1}, \epsilon_{2}$)-**コヒーレント** であるという: すべての k、 $l \in I$ に対して、 $|A_{jk} - A_{ji}| < \epsilon_{1}$ かつ $|\alpha_{jk} - \alpha_{ji}| < \epsilon_{2}$.以下 の検討では、添字 k, l は発電機のインデックスとなり、 I は KM {j, j + 1} に関して類似の動揺波形を示す発電 機群を表す.

3.3 発電機動揺の非線形時系列データ

本小節では、クープマンモード解析によるコヒーレ

ント発電機群同定を検討する New England 39 母線系統 モデル(図1)の動揺時系列を紹介する.この系統モ デルは、10機の発電機(図中の円で囲まれた数字)、 39 母線3(図中で数字を添えた太線),及び送電線(図 中の細線)等から構成されている(モデルの詳細は文 献²⁷⁾を参照). 図2に発電機2-10の動揺時系列のシミュ レーション例を示す.これは動揺方程式^{10,11)}と呼ばれ る常微分方程式をある初期条件に対して求解した結果 である、シミュレーションの詳細は文献⁹⁾を参照され たい. 図2で用いている変数ωiは回転角周波数偏差と 呼ばれ、定常回転角周波数からの偏差を表したもので ある. 図の時系列は初期時刻において発電機8に大き な擾乱が加わった場合のシミュレーションであり、全 ての発電機の回転角周波数が時間的に振動している様 子がわかる、時系列のスペクトル解析を行うと、ピー クを取る支配的な周波数はシミュレーションに用いた 動揺方程式の線形化により求まる固有周波数と異なっ ており,非線形時系列としての取り扱いを必要とする.

3.4 同定結果

続いて、図2の非線形時系列に対してクープマン作 用素の固有値 $\tilde{\lambda}_i$ 及び KM \tilde{V}_i を算出することにより、 コヒーレント発電機群の同定を行う.時系列のサンプ リング周期 T は 1/(50 Hz) = 0.02 s、サンプリング数 N は 1001 である.図3 に算出した固有値 $\tilde{\lambda}_i$ の複素平面 上における分布を示す.各点の色は対応する KM \tilde{V}_i の大きさ $\|\tilde{V}_i\|$ を表しており、白色から赤色に従って 値が大きくなる.なお、Arnoldi アルゴリズムで現れ

図1 New England 39 母線系統モデル²⁷⁾. 10 機の発電機(円で囲まれた数字), 39 母線(数字を添えた太線),送電線(細線)等から構成される.

```
— 32 —
```

³ 送電線と変電設備を接続し、電力システムの要の役目をす る部分のこと。

図2 New England 母線系統モデルにおける発電機 2-10 の動揺時系列⁹⁾. 各発電機の基準角周波数からの偏差 ω_lの時間変化を示している.発電機 8 に大きな擾乱が加わった場合のシミュレーションであり,当該及 び近くにある発電機 10 の動揺が大きくなっている.

図3 図2の動揺時系列に対するクープマン作用素の固有値 $\tilde{\lambda}_{j}$ の算出結果⁹⁾. 各点の色は固有値に対応する KM の大 きさ $|\tilde{V}_{j}|$ を表しており,白色から赤色に従って $|\tilde{V}_{j}|$ は大 きくなる.全ての固有値が単位円近くに分布している.

る \mathbf{r} の大きさは 10^{-12} と十分小さかった.図3よりほ とんどの $\tilde{\lambda}_j$ が単位円付近に分布している.これらの $\tilde{\lambda}_j$ の中で図2の動揺時系列に支配的な KM は拡大率 $|\tilde{\lambda}_j|$ が大きくかつ $\|\tilde{V}_j\|$ が大きい KM である.**表**1に拡大 率の大きな KM を選び示す.ここで,表中において $\|\tilde{V}_j\|$ が大きな KM{13,14}, {15,16}, {17,18} に着目す る.こちらの KM の周波数は時系列スペクトル解析に より求まるピーク周波数とよく一致している.KM {1, 2}, {3,4} も $\|\tilde{V}_j\|$ が大きいが振動周波数が KM {13,14}, {15,16} に近いため以下では考えない.図4に KM \tilde{V}_j (j = 13, 15, 17)の要素と振幅成分 A_{ji} (i = 10, 2, 3, ..., 9) 及び初期位相成分 α_{ii} の算出結果を示す.まず,

表1 図2の動揺時系列に対するクープマン作用素の固有値 $\tilde{\lambda}_i$ 及びクープマンモード \tilde{V}_i の算出結果⁹⁰. 拡大率 $|\tilde{\lambda}_j|$ が大 きいものから並べてあり、 $|\tilde{\lambda}_j|$ が大きくかつ $||\tilde{V}_j||$ が大き い KM が図2の動揺時系列において支配的となる.

インデックス	拡大率	偏角 [rad]	周波数 [Hz]	ノルム
$\{j, j+1\}$	$ \tilde{\lambda}_j $	$\operatorname{Im}[\operatorname{In}\tilde{\lambda}_j]$	$ \text{Im}[\text{In}\tilde{\lambda}_j] /(2\pi T)$	$\ ilde{m{V}}_j\ $
{1,2}	0.9986	± 0.1701	1.3533	3.0021
{3,4}	0.9986	±0.1438	1.1447	2.3930
{5,6}	0.9985	± 0.1009	0.8028	0.7039
{7,8}	0.9985	± 0.1300	1.0343	0.9753
{9,10}	0.9984	± 0.0931	0.7405	0.4507
{11,12}	0.9984	± 0.1130	0.8990	0.8162
{13,14}	0.9983	±0.1643	1.3078	6.6147
{15,16}	0.9983	± 0.1378	1.0962	7.1941
{17,18}	0.9983	± 0.0468	0.3727	2.1006
{19,20}	0.9982	±0.1836	1.4612	1.2238

KM{13}では振幅成分 $A_{13,i}$ が発電機8及び10で大きく, このKMは故障条件に起因した発電機2機の大動揺を 表している.次に,KM{15,16},{17,18}はコヒーレ ント発電機群を表していることを見ていく.KM{15} では、 $A_{15,i}$ が発電機2,3,6,7,9で近い値を取り,初期 位相成分 $\alpha_{15,i}$ も近い値を取る.この結果を可視化する ために、 $A_{15,i}$ 及び $\alpha_{15,i}$ の分布を描いたものを図5に示 す.発電機2,3,6,7,9のKM{15}に対するプロット× が座標(1.2,3 π /4)の近くに確認される.このように、 発電機群 I_{15,16}={2,3,6,7,9}はKM{15,16}(動揺周 波数1.0962 Hz)に関してコヒーレントであることが わかる.同様に、図4及び図5より、KM{17,18}で

は*A*_{17,i} 及び*α*_{17,i} が発電機 8 を除いて近い値を取っており,発電機群 I_{17,18}= {10, 2, 3, 4, 5, 6, 7, 8, 9} は KM {17, 18} (動揺周波数 0.3727 Hz) に関してコヒーレントであることがわかる.以上より,2つの動揺周波数を有するコヒーレント発電機群 I_(15,16) ∩ I_(17,18) = {2,3,6,7,

9) を同定できた. 図2に戻ると上記発電機群が類似の 時間波形を示していることがわかる⁴. このように, 発電機動揺の非線形時系列データからコヒーレント発 電機群をその動揺周波数を含めて同定できる. 本手法 は,数理モデルを用いずに実測時系列から精度良くコ ヒーレント発電機群の同定が可能であり,多数の発電 機を有する広域システムに対しても適用可能である.

4. 議 論

3節ではクープマンモード解析を電力システムにお けるコヒーレント発電機群の同定問題に適用した.本 節では、電力システムにおける他の適用事例、ダイナ ミクスの制御の可能性、エネルギー管理システムの設 計への展開を議論する.

クープマンモード解析はデータの背後にある非線形 力学系(数理モデル)に基づく手法である.このため, データが表すダイナミクスの背後にある力学的情報を データより抽出することが可能である.例えば,式

⁴ 発電機9についてはもう1つのKMの影響により少し大きい振幅で動揺している。

(6)の無限級数展開は非線形ダイナミクスを無限個の 振動の和として見なすものであり、ハミルトン力学で 知られる作用・角変数を無限個抽出したものと見なせ る.実際この観点から主要なKMに対して作用・角変 数を導入することで、非線形動揺方程式のモデル低次 元化を行い、動揺不安定化を予測する手法が報告され ている²⁸⁾.また、クープマン作用素の固有値が数理モ デルの情報を保持したものであることから、電力潮流 データからクープマン作用素の固有値を算出すること により、数理モデルを用いることなく電力システムの 安定性解析を行う手法が提案されている²⁹⁾.

さらに、クープマンモード解析により電力システム の解析だけでなく制御についても検討できる.3節で 述べたコヒーレント発電機群の同定は故障発生時にお ける動揺の周波数や空間分布の情報を与えるので、こ れに基づいて動揺励起を抑制する制御装置をシステム の非線形性を考慮し設計できる.また、広域停電に至 る波及的故障の回避においてもコヒーレント発電機群 の情報は有効であり、故障波及を抑制し電力システム 全体の崩壊を回避するための Controlled Islanding と呼 ばれる制御手法の検討にクープマンモード解析が適用 されている³⁰⁾.

最後に、 クープマンモード解析とエネルギー管理シ ステムの設計との接点について述べる.本小特集の テーマであるエネルギー管理では, 安定的な需給調整 の実現を目的として、気象条件、経済性やセキュリ ティ、環境負荷、消費者の快適性等を考慮に入れたエ ネルギー管理システムの設計が求められている. この 設計では、本解説で扱った物理ダイナミクスの時系列 データだけではなく、電力価格や消費者行動などの社 会・経済的観点のデータも解析の対象となり、そこか ら如何にエネルギー管理に必要な情報を抽出するかが 重要となる. クープマンモード解析はデータのみに基 づく手法であるため、このような異種のデータセット に対しても適用可能である.本解析は物理ダイナミク スや社会ダイナミクスのインタラクションを設計する ための知見を提供できる可能性があり、異種データ セットへの適用は今後の重要な課題である.

5. おわりに

本解説では、データに基づく電力システムの動的解 析技術について紹介した.クープマンモード解析と呼 ぶ比較的新しいデータ解析技術を中心として、データ から大規模システムの非線形ダイナミクスとその背後 にある力学を如何に理解するかについて将来の方向性 を含めて議論した.本解説で述べた研究開発は力学系 理論,電力システム工学,数値計算などの融合した課 題であり,電力システム分野以外においても同種の方 法論が有効であると期待される.本解説がエネルギー 管理システムのみならず幅広い研究開発分野の読者に 有益な情報提供となれば幸いである.

謝 辞

本解説の機会を与えて頂きました藤田政之先生, 足立修一先生に御礼申し上げます.3節で紹介した研 究は Igor Mezic 先生と共同で遂行したものであり,先 生に厚く御礼申し上げます.また,本解説の原稿を通 読し有益なコメントを多数頂戴しました伊藤博先生, 中尾裕也先生,渡邊政幸先生,加嶋健司先生,高橋亮 先生,河辺賢一先生の各位に感謝致します.本研究の 一部は,情報通信研究機構・委託研究及び JST-CREST の支援を受けたものです.

参考文献

- 特集・エネルギーの情報化~IT による電力マネージメント~,情報処理, 51-8, 923/985 (2010)
- 2)特集号・エネルギーシステムの新展開—ICT による消費情報の収集と利用、システム/制御/情報、55-6、215/258 (2011)
- 3) 特集・グリーンイノベーションと制御理論, 計測と制御, 51-1.8/86 (2012)
- 4) 特集号・システムデザインのための応用マルチスケール シミュレーション、システム/ 制御/情報、56-12、603/633 (2012)
- C. K. R. T. Jones: Whither applied nonlinear dynamics?, in "Mathematics Unlimited-2001 and Beyond," edited by B. Engquist and W. Schmid, 631/645, Springer (2001)
- 6) I. Mezić: Personal Communication (2008)
- 7) K. M. Tolle, D. S. W. Tansley, and A. J. G. Hey: The fourth paradiam: Data-intensive scientic discovery, Proc. IEEE, 99-8, 1334/1337 (2011)
- 8) 特集号・データ中心科学の発展, システム/制御/情報, 57-4, 135/178 (2013)
- 9) Y. Susuki and I. Mezić: Nonlinear Koopman modes and coherency identication of coupled swing dynamics, IEEE Trans. Power Syst., 26-4, 1894/1904 (2011) (also, correction, this journal, 26-4, 2584 (2011))
- 10) 大澤編著:電力システム工学,オーム社(2001)
- J. Machowski, J. W. Bialek, and J. R. Bumby: Power System Dynamics and Stability, John Wiley & Sons (1997)
- 12) 例えば, D. R. Ostojić: Spectral monitoring of power system dynamic performances, IEEE Trans. Power Syst., 8-2, 445/451 (1993)
- A. G. Phadke: Synchronized phasor measurement in power systems, IEEE Comput. Appl. Power, 6-2, 10/15 (1993)
- 14) 三谷:位相同期計測を用いたスマート電力監視技術,電学 論 B, 130-9, 791/794 (2010)

192

- I. Mezić: Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dyn., 41, 309/325 (2005)
- 16) C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson: Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115/127 (2009)
- 17) I. Mezić: Analysis of fluid flows via spectral properties of Koopman operator, Annu. Rev. Fluid Mech., 45, 357/378 (2013)
- B. O. Koopman: Hamiltonian systems and transformations in Hilbert space, Proc. Natl. Acad. Sci. USA, 17-5, 315/318 (1931)
- 19) A. Lasota and M. C. Mackey: Chaos, Fractals, and Noise-Stochastic Aspects of Dynamics, Springer-Verlag (1994)
- 20) アーノルド,アベズ(吉田訳):古典力学のエルゴード問題, 吉岡書店(1972)
- 21) K. Peterson: Ergodic Theory, Cambridge University Press (1983)
- 22) B. Eisenhower, T. Maile, M. Fischer, and I. Mezić: Decomposing building system data for model validation and analysis using the Koopman operator, in "Proc. IBPSA Simbuild Confer-

ence," 434/441, New York City, USA (2010)

- 23) P. J. Schmid: Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., **656**, 5/28 (2010)
- 24) Y. Ohsawa and M. Hayashi: Construction of power system transient stability equivalents using the Lyapunov function, Int. J. Electronics, 50-4, 273/288 (1981)
- 25) 薄:電力システム解析への力学系アプローチ,計測と制御, 51-1,37/42 (2012)
- M. Budišić, R. Mohr, and I. Mezić: Applied Koopmanism, CHAOS, 22, 047510 (2012)
- 27) M. A. Pai: Energy Function Analysis for Power System Stability, Kluwer Academic Pub. (1989)
- 28) Y. Susuki and I. Mezić: Nonlinear Koopman modes and a precursor to power system swing instabilities, IEEE Trans. Power Syst., 27-3, 1182/1191 (2012)
- 29) Y. Susuki and I. Mezić: Nonlinear Koopman modes and power system stability assessment without models, IEEE Trans. Power Syst. (2013) (in review)
- 30) F. Raak, Y. Susuki, T. Hikihara, and H. R. Chamorro: Investigation of power grid islanding based on nonlinear Koopman modes, 信学技報, **113**-116, NLP2013-40, 75/80 (2013)