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Abstract-  in game  theoretical  approaches  to multi-agent  systems,  a  payoff matrix  is often  given  a  priori and

used  by  agents  in action  selection,  By  coiitrast,  in this paper  we  approach  the  problem  of  decision making  by

use  of  the  concept  of  cognitive  distance, which  is a  notion  of  the  difilculty of  ari  action  peTceived  subjectively  by

the agent,  As opposed  to ordinary  physical  distance, cogniti"e  distance depends on  the situation  and  skills  of  the

ageiit,  ultimately  representing  the  perceived  diMculty in performing  an  action  given  the current  state.  We  show

how  an  agent  can  learn its cognitive  distance parameters  by estimating  and  obseTving  the  outcomes  of  its actions.
This  learning  aigorithm  is then  applied  to two-plabrer garne  scenarios,
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1Introduction

  Eirvironmental uncertainty  in multi-agent  domains
can  be considered  as being of  three different forms:
a)  the transitions in the domain  itself might  be  non-

deterministic; b) agents  might  not  know  the actions  of

other  agents;  c)  agents  might  not  know  the outcomes  of

their own  actions  [1].
  In this work,  we  investigate the case  when  the agents

have limited physical capabilities,  which  causes  limited

preeislon in their actions.  We  consider  the scenario  of

two  agents  placying a  simplified  tennis  game  where  the

actions  have uncertain  outcomes,  These uncertainties

orlginate  from  the  limited physical capabilities  of  the

agents.  Because there is more  than  one  agent  and  more

than  one  state,  this game  is neither  a  Markov  Decision
Process (MDP), nor  a  matrix  game;  therefore we  use

the framework of  Markov  games  (also called  stochastic

games),  as  described in [2, 3],

  The  perceived distance has an  impertarrt function in
decision making  and  action  selection.  It is assumed  that

every  action  has a  target, which  may  or  may  not  have
a  physical meaning  depending  on  the nature  of  the do-

main.  In sports,  in particular, the target of  an  action

often  is a  physical location, such  as  in passing the bal]
to a  teammate  in soccer,  basketbal1, and  countless  other

sports,  or  as  in hitting the bal1 to the service  box  in a
tennis serve.  In basketball, although  the  dificulty of  a

shot  cleamly  increases with  basket-player distance, this
is not  the only  factor that infiuences the dificulty. Fbr

exarnple,  different players  have different skills  and  will

perform  differently even  at  identical shot  distance; and

shooting  during training is very  different from shoot-
ing during an  actual  match,  when  the players are  under

eonsiderable  pressure.

  The  total effect  of  these factors on  an  action's  out-

come  can  be thought  of  as  the pereeived action  diMculty.

We  call the perceived action  diMculty cqgnitive  distance
[4]. Figure 1 illustrates the difft]rence between physical
distance and  cognitive  distance in a  scenario  where  the

agents  are  directed. Suppose that  the  task  is to pass a

bal1 to the other  agent,  In most  sports  where  this situa-

tion might  occur,  the passing skill  of  the pla"rer depends
on  the relative  angle  of the direction the player is fac-
ing and  the pass direction. In soccer,  for example,  the
majority  of passes are  done  in the  direction the  plaorer
is facing, or  at  a  small  angle  from it. Because players
are  bound  by  physical constraints  [4], it is much  harder
to pass  the ball backward  than  forward. Since the  agent

Agent A near
-

AgentB
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Fig.1 Cognitive distamce, as  opposed  to physical dis-

   tance, depends on  the situation

cannot  directly sense  its own  skills  and  physical con-

straints,  it must  use  the difference between predicted
ayerage  action  outcome  amd  actual  action  outcomes  to

assess  its cognitive  distance [4].
  We  focus on  two  questions  related  to uncertainty in
action  outcomes:  hffw to learn the action-outcome  rela-

tionship, and  how  to perform  action  selection  given this

relationship,  Our objective  is to construct  a  framework
of  action  selection  in twoplayer  games  using  cognitive

distance to express  the action-outcome  map.

  This paper  is organized  as  foIlows. In Section 2, we  de-
scribe  the tennis game  model  used  and  define cognitive
distance. Section 3 describes how  strategic  behavior is

generated in this gaine using  the cognitive  distance. In
Section 4, we  describe how  an  unknown  skill  parameter
can  be learned by the player  and  show  how  wrong  beliefs

of  the value  ofthis  parameter  infiuence performance.  In
Section 5, we  present simulation  results  using  the  ten-

nis  game  model,  Finally, Section 6 contains  concluding

remarks  on  this  work,
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2 Model

  A  model  shcrwing  that professional tennis  players per-
form similar  to  the  mixed  strategy  equilibrium  is given
in [51, In that work,  it is assumed  that every  point in a

tennis  match  is played as  a  2 × 2 normal-form  game,  by
focusing on  the actions  chosen  by server  and  recqiver.

The  play after  the serve  is not  modeled,  and  instead

a reduced  form  representation  of  it is used  to give the

expected  payoffsi.
  By  contrast,  in this work  we  attempt  to model  the ac-

tion selection  process during the  eniire  play, from  serve

until  a  player scores.  We  consider  two agents  playing

a  tennis-like two-dimensional  game  (figure 4). By  two-

dimensional  we  mean  that the ball altitude is ignored
for receiving  purposes.  Players serye  alternately  to any

region  on  the opponent  side.  The  score  of  a  player is in-
cremented  by one  when  it wins  the current  point game.
The  score  is simply  incremental, meaning  that there are

no  games and  no  sets. The  players have three behanr-
iors: target selection  and  hitting, moving  after hitting

and  irrtercepting the ball to  receive  (figure 2).

 Opponent
time  aveileble

 fimeavailable

1langetSelectien

Move  efter  hitung

Balllnterception

where  a.  =  av  =  a  is the standard  deviationi. The

higher the a,  the less the probability that  the ball will

go where  intended. In other  words,  a  represents  the

1ack of  precision of  the  player. We  assume  it depends
on  the time  arrailable  t. to prepare  for hitting and  on

the hitting speed  vh.  Intuitively, the longer the time
available  to hit t. and  the slower  the hitting speed  vh,

the smaller  the  deviation, and  therefore the rnore  precise
the hit outcome  is.
  The  hitting precision also  depends on  parameters rep-
resenting  the skill of the player, as  shown  in eq,(2),

The  hitting skill  parameter  ao  is the minimum  devia-

tion achlevable  by  the  player in optimal  conditions;  the

smaller  the ao,  the more  precise the  player is overall.

The  parameters  t.. and  t.. in eq,(3)  control  the shape

of  the sigmQid  function CI'(t.), which  dictates how  the

hitting precision changes  with  t.; tac represents  how

much  t. is necessary  for the hit precision to be aver-

age,  and  t.. represents  how  abruptly  the hitting pTeci-
sion  changes  with  t.. Likewise, vh. and  vh.  in eq.(4)

corrtrol  the  shape  of  the sigmoid  function V(vh), with

vh.  representing  the hitting speed  at  which  precision is
aNerage,  and  vh.  representing  how  abruptly  the  hitting

precision changes  with  vh. Figure 3 shows  scatter  plots
of  hit outcomes  for diffk]reirt t..

                a=  T(t.)(iffl v(vh)) (2)

             T(t")= 1+exp(1- !`uQg,-.: ) 
(3)

            V(Vh)=1+exp(1.y"in=!kg.h: ) 
(4)

Fig.2 Block  diagrarn of  the  behavior generation  algo-

   rithm  using  cognitive  distance in the  tennis  garne

  We  assume  that four factors influence the probability
that a  hit action  is successfu1:  agent  skM,  hit target,
hit strength,  and  the time  available  for preparing to hit

(see figure 6 for a  list of  the most  importamt  symbols

and  their meanings),  Player skM  is assumed  invariable

during play. Hit target and  hit strength  ave  chosen  by
the hitting player and  constitute  the hitting action.  The

last faetor, time  available  to hit, is defined as  the time

during which  the  player was  still before hitting. It is

used  in action  selection  to encode  both the fact that the

agent tries to hit the ball to places out  of  reach  of  its

opponent,  and  the fact that the agent  positions itself in
order  to have  as  much  time  to prepare to hit as  possible,

  We  assume  that the players have  limited precision
when  hitting the ball. This  is denoted  by  a  bivariate

normal  distribution of the landing point of the ball giyen
hit target  Rr(t) =  (ttm,tty):

PCifT (X,Y) =1exp  (- ((X- Px)2
2Ta.ay 2aZ+  

(Y
 E.pa,ty)2))(1)

e; !:

           xCm]  '"Cm)

       (a) ta=O,4  (b) ta=O･8

Fig.3  Scatter plot of  100e hits with  target

   (=,y) =  (o,o),                             skil  ao  =  O,4,                global  hitting

   and  hitting speed  vh  =  12

  Let llEt(t), llr(t) and  IIR(t) denote the positions of

hitting player, hit target and  receiving  player, respec-

tively, at  time  t, A  hitting action  (1tff, Ilr,vh) is charac-
terized by hit origin  RH, hit target Ri･ and  hit speed  vh.

The  actual  outcome  of the hit is drawn from  the prob-
ability distribution funetion described in eq.(1).  Note
that, by the definitions above,  the hit outcome  does not

depend  on  the  hit origin  JIH, which  is assurned  for the

sake  of  simplicity.

  A  hit action  is successful  if the ball bounces  inside the

opposite  side  of  the court  (figure 4), Success, here, does

  
iWe

 assume  that the random  variables  x  and  y are  uncorrelated

and  have the same  standard  deviation.
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not  mean  scoring  a  point, or  even  sending  the ball to a

desired target, but rather  hitting the ball to any  valid

position on  the side  of  the opponent,  In other  werds,

success  is the opposite  of foult, Let gT  (t., vh) denote the
success  prebability of  hitting the  balko  target Rv with

speed  vh,  given that  the player had  time  available  t. to

prepare  the hit. Likewise, let fo(ta,vh) =  1u  gT(ta,vh)

denote  the fault probability, The  success  probability gT
can  be ealculated  by integrating pcifT(x, y) over  the re-

gion S of the halficourt of the opponent  as  in eq.(5).
This  is done by  numerically  approximating  the cumula-

tive  bivariate distribution.

gT(ta,vh) ==  f pc(fT dx
           JxES

(5)

We  define the cognitive  distance DT  of  the hit action  as

                                  '                                 '
       DT  (ta, Vh)  !! h- (ta, Vh)  ==  1 '  gT  (ta, Vh)  (6)                         '

i.e., the cognitive  distance of  a  hit action  equals  its fault
probability. This agrees  with  the  concept  that  cegnitive

distance expresses  the diMculty in accomplishing  an  ac-

tion,

S

Fig.4  The  fault probability  is calculated  by  integrat-

   ing  the  cumulative  bivariate distribution over  the

   region  S. Darker areas  are  more  likely outcomes.

  The  cognitive  distance, or  fault probability, of  a  hit
aetion  can  be  considered  the immediate  cost  associated

with  performing  the action,  It is an  immediate cost  be-
cause  it is the probability that the player might  commit

a  fault. However,  it is different from  the emf)ected cost,

whiCh  we  define as  the probability of  losing the point
game,  because even  if the hit is successful,  the player
might  still lose the point game. In order  to estimate  the
expected  cost  associated  with  a  hit action,  the  plaNer
must  calculate  the receive  fault probability of  the oppo-

nent  given that  his own  hit was  successfu1,  This  would

require  knowing  the  opponent  skill  parameters  ao,  tac,

tas, vhc  and  vhs  (see figure 6 for the list of  symbols),  as

well  as  how  much  time the opponent  will  have  to prepare
for receiying  the ball,
  The  time  available  is defined as  the slack  time  the

player has to prepare for receiving  the  ball, Intuitively,

the larger the slack,  the more  accurate  and  powerfu1  the
reception  ean  be. Therefore, the hitting player  should

choose  a  target such  as  to minimize  both the immediate
cost  and  the time  available  to the opponent  for･recep-
tion.

3 Strategic Behavior  Generation

3.1 Ballinterception

  In this model  the only  randomness  lies in the actual
hit outcomes.  Once  the  bal1 is hit, its trajectory  is ex-

actly  determined and  has a  flxed speed  until  it is hit
again  by  the  other  player. Therefore, if the receiving

player  can  observe  the incoming  ball direction at  all

times and  with  no  noise,  it ean  determine the optimal

position Ilk from  which  to  receive.

  The optimal  reeeiving  position llii can  be calculated
by assuming  that  the  receiver  approaches  the ball with  a

constant  bearing angle  [6] <Figure 5), The time-optimal
trajectory  for interception is given by

             ip =  arcsin  (VB 
v/r"

 
X3)

 (7)

where  vR  and  vB  are  the receiver  and  ball velocity,  re-

spectively,  If the receiver  is too slow  (vR <  vB  sillrs)

there is no  solution  to eq.(7)  and  the ball cannot  be
intercepted, If vR  >  vB  sinl3,  then  there are  two  solu-

tions to eq, 7 but only  one  of these makes  the receiver

approach  the  ball.

  The  angle  ip.i. that requires  the minimum  speed  and

still  allows interception is found by  letting vR  =  vmin  =

vB  sinfi. The  angle  ip.i. requires  the Ieast speed  from

the receiver  compared  to any  other  angle.  Therefore, if
the receiving  player moves  according  to ip,.i. with  its

maximum  speed  and  stops  when  it gets to  llA, it will

have maximized  the time  available  t. to prepare for the
hit.

3.2
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Fig.5 Timeoptimal  target interception

  Thetaneously
 has

a  smal1to

 minimize  the

get  wi

Hit  target  selection

 hitting player must  choose  a  tamget  that simul-

       a  small  fault probability  fo and  imposes

  t. on  the opponent.  A  player that attempts

         fault probability when  choosing  a  tar-

11 alwabrs hit to the center  (which, incidentally, is
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what  many  unexperienced  human  players tend to do),
On  the other  hand, a  player that attempts  to minimize
the  imposed  ta on  the opponent  will  always  try to hit
to the corner  furthest away  from the opponent.  Neither
of  these two  extremes  are  good  playing strategies:  the
former tends to miss  chances  to settle  the point, and  the
lat]ter tends  to miss  too many  hits, Clearly, a  balance
must  exist,

  Let IT denote the cost  associated  with  hitting the bal1
to target Rr, We  define

IT(ta, fii) =  
'rT

 +  (1 -  
"r)fr

            ta -  Minta
r=MaXta

 
-

 Mlnta

(8)(9)

where  T  is the normalized  time  available  t. for reception
imposed  on  the opponent  and  h. is the  fault probability
when  hitting to target Rr, as defined in eq.(6), Here, 7
represents  how  much  the agent  is willing  to risk.  The
two  extremes  mentioned  eamlier  are ty =  O (minimum
risk,  always  hit to  the center),  and  7 v  1 (maximum
risk,  always hit to the corners),  A balanced  strategy  is
obtained  by using  an  intermediate vaJue  for or.
  The  hit target Rl selected  is the one  that minimizes

the eost:

              RI 
=

 
argttn

 
lT

 (t., fo) (10)

3.3 Moving  after  hitting

  In the interval between hitting the ball and  the op-

ponent  receiving  it, where  should  the player move  to?
In real  tennis it is common  to see professional players
running  to the center  of  the baseline after  hitting, This
is irituitive to understand  as  they  do not  kncrw where
the opponent  will  hit next.  However,  the players also'
go  up  to net,  and  do  not  alwa"rs  stay  near  the center,

This is not  an  easy  matter,  for the best position depends
not  only  on  the skills  of  both  players,  but also  on  their
strategies.

  In this work,  we  adopt a solution  that is suboptimal

but still  allows  for realistic game  play, Let A  denote  the

player  who  just hit and  B  the player who  is receMng.  If
B  chooses  the reception  point IZE such  as  to maximize
its t. , as  described in Section 3.1, then A  knows the bal1
will  be received  from  IIE the moment  it' observes  the
outcome  of  its hit. Let RD(t) denote the  destiny chosen
by A. It can  search  for the  best IZ[) by calculating  the
t. imposed on  itself, considering  that  B  will hit from
llil and  try to minimize  the  t. imposed on  A, All A
has to do, then, is choose  ll6 such  that the  minimum

t. imposed on  itself is maximized;  this is known as  the
maximin  strategy  [71.

SymbolMeaning [[Ype
taVhaotaetasVhcVhsIIEf(t)Rr(t)Rl

 (t)RR(t)Il;i(t)llD(t)llb(t)P.(t)VR(t)VB(t)gTfoDTipptT7172

time available  to prepare  hit
hitting speed

player  hitting skill
characteristic ta

slope  of  T(t.)
characteristic  vlt

slepe  of  V(vh)
hit position
hit target  positien
optimal  target position
receiver  pasition
optimal  receiving  position
player destiny after  hitting
optimal  destiny after  hittting
ball position
receiver  speed

ball speed
hit success  probability
hit fault probability
cognitive  distance
interception angle
amgle  between player-ball  line
and  balI trajectory
hit costrisk

 strategy  of  player 1

risk  strategy  of  player 2

variablevariableparameter

parameter
parameter

parameter
parameter
variablevariablevariablevariablevariablevariablevariablevariablevariablevariablevariablevaTiablevariablevariablevariable

yariablepararneter

pararneter

4 Cognitive distance learning

  In order  to calculate  the cognitive  distance DT  used

in hit target selection,  the player must  kncrw its skill

parameters  ao,  tac, tas, vh.  and  vhs. An  algorithm  fbr
learning a  cognitive  distance parameter using  Q-learning
[8] was  described in [4]. It consists  in assessing  Q-values
for differerit values  of  the parameter  by  observing  actual

Fig.6 Symbol  list

outcomes  of  the action.  First, it selects  a  target  and  a

value  of  the cognitive  distance parameter and  derives
the error  between estimated  success  probability and  the

actual  average  success  probability over  IV outcomes  of

the action.  A  reward  value  derived from  the error  is
then used  to update  the Q-value of  the currently  used

value  of  the parameter. The  target is then  updated  and

the process repeated  until the Q-values converge.

  We  used  the algorithm  described in [4] with  a  minor

simplification;  namely,  we  used  random  instead of di-
rected  target selection.  Although there is more  than  one

skill parameter,  we  only  considered  the scenario  where

ta. is unknown  and  the other  parameters  ame  known.
Figure 7 describes the Q-leaTning algorithm  used.  A
typical  run  of  the algorithm  is shown  in figure 8.

  The  importance of  having a  correct  belief of  the  pat
rameter  tac can  be  seen  in figure 9. Both players had
exactly  the same  skill  parameters  and  used  the same

strategy  (7i =  'ni  =  O,3), but whereas  player  1 used  the
actual  value  of  t.. when  estimating  fault probability,
player 2 used  a  belief of  the value  of  t... Fbr small  val-

ues  of  t.. belief, the winning  ratio  of  player 1 is higher,
because player 2 is underestimating  its fauk probabil-
ity and  therefore performing risky  hits, i.e., targeting
the borders even  when  the fault prebability is high. Fbr
belief t.. =  O.8, player 2 is only  slightly  underestimat-

ing its fault probability and  performs  as  well  as  player 1.
Fbr larger values  of  t..  belief, ineluding the correct  value

tac =  1.0, the winning  ratio  is also  elose  to  50%, Overes-
timating the fault probability in this situation  does not
incur in reduced  performance  for player 2, since  both

players are  using  a  risk-avoiding  strategy,
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Fig.7 Q-learning aigorithm  forlearning skill  parameter  tac
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Fig.9 Winning  ratio  of  player 1 for different player  2

   beliefs of  tac. Simulation conditions  are  tac ==  1.0,

   71 =  72 =  O･3, ao  =  O,2.

1,O

e,s

8 
O.6i.ll

 o.4

O,2

o,Oosoo  looo  lsoe 2eeo 2soe  3ooo 3soo 4ooo

              Step

Fig.8  Error of  learned parameter  t.., Each  time step

   consists  in randomly  selecting  a  target and  per-
forming N  =  25 hits.
a  =  e,1, tac =  1.0.Simulation

 conditions  are

5 SimulationResults

  We  conducted  a  series  of  simulations  to verify  the vee

lidity of  the action  selection  algorithms and  the  rele-

vance  of  cognitive  distance in strategic  behavior  gener-
ation.  All results  were  obtained  by  running  the sim-

ulation  until  1000  points were  scored,  Players served
alternately in order  to average  out  serve  advantages (or
disadvantages). Hitting speed  was  fixed at vh  =  12 and
both players had the same  hitting skill  ao, Figure 10
shows  a  snapshet  of  the  simulation.

  In the  first simulation  (figure 11), plaorer 1 used  a

fixed strategy  of  7i =  O.3 while  player 2 used  the en-

tire range  of  strategies,  from risk-avoiding  (or2 =  O,O) to
risk-seeking  (72 ==  1.0).

  Fbr skilled  players (ao =  O.2), the  winning  ratios  were

close  to 50%; when  cr2 >  7i, player  1 scored  somewhat

more  frequently.

Fig.le Snapshot of  the  simulation

  Fbr ffverage  players (ao =  O.4), player  1 clearly beat
player 2 when  72 >  rri, meaning  that more  aggressive

strategies  lead to too many  faults when  the uncertainty
in hit outcomes  is moderate.

  Fbr unskilled  players (ao =  O.8), the situation  above

repeats,  except  that  the winning  margin  is not  so  wide.

This  reduced  winning  ratio  for player 1 compared  to the

ao  ==  O.4 case  can  be explained  by noting  that, since
both players are  unskilled,  they  are  committing  many

faults already,  and  a  more  risky  strategy  has a reduced

effect  on  the winning  ratio.

  In the second  simulation  (figure 12), ,the skill  of  the

players was  fixed at  ao  =  O,2, and  the winning  ratio  for
player 1 was  obtained  for different pairs of  strategies.

  A  very  conservative  strategy  (7i =  O.O) lost to slightly
more  aggressive  strategies  (72 =  e.1, cr2 =  O,2), but had

an  edge  over  very  aggressive  ones  ('rt] >  O.5).

  When  slightly  aggressive  (7i =  O,3), player 1 obtained
a  winning  ratio  of  at least 50%,  usually  higher, for any
strategy  emplqyed  by the  opponent.  This indicates that

7 ==  O,3 is a  dominating  strategy.

  When  using  a  very  risky  strategy  (7i ==  1.0), player
1 is cleaJrly at a  disadvantage, especially  when  the  op-

ponent  is only  slightly  aggressive  (72 =  O.1,'y) =  O.2).
When  player 2 also  emplcys  a  risky  strategy,  however,

the winning  ratio  is close  to 50%.

  These  results  show  that there is a  balance between
safe  strategies  and  risky  strategies,  The  1argest expected

paoroff can  only  be obtained  by correctly  assessing  the
fault probability, which  requires  knowing  the skill  pa-
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Fig.11 Winning  ratio  of  player  1 in function of  h  for

   different vulues  of  uo,7i  =  O.3.

can  be used  for hit target selection  and  that a  trade off
is needed  between trying to score  a  point and  trying not

to commit  a  fault.
  The  next  steps  on  our  research  agenda  include ex-

tending the learning algorithm  to multiple  parameters.
While we  have only  done experiments  of  skill  parameter
learhing with  one  unknown  parameter, there it nothing
in principle that precludes the use  of  the  same  alge

rithm  for learning multiple  unknown  parameters.  An-
other  aspect  that  was  not  approached  in this work  was

leamning the ski11  parameter  dnring play, The algorithm

described requires  selecting  a  target and  averaging  the

outcomes  of N  hits in succession,  which  is not  possible
during play, The  reason  is that, in its present form, the

Q-leamning algorithm  only  stores  the Q-values and  the

outcomes  of  the last batch of  hit trials, Learning  during

play, however, would  require  storing  past targets  and

their  respective  conditions,  ta and  vh.
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6 Conclusion

  We  have discussed how  the problem of action  selection

in a  two-plabrer game  with  uncertain  action  outcomes

can  be formalized in a framework using  cognitive  dis-
tanee, Uncertainty in the actions  of  embedded  agents

arises  because the  agents  are  limited by physical con-

straints.  In this context,  cognitive  distance is a  measure

of  the diMculty in aceomplishing  an  action  given the
current  situation.  By using  the cognitive  distance an

agent  ca:i assess, given the eurrent  situation,  how  likely
its actions  are  to succeed,  and  perform  action  selection

based  en  this  success  probability.

  The approach  has been tested in simulation  of  a

tennis-like game.  We  described how  cognitive  distance
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