210 水圧鉄管の現地自動溶接施工法(第1報) - 傾斜管の周溶接 -

峰久節治 渋谷義秋

日立造船(株) 技術研究所

中島宏幸

〇村上俊三

1. 緒言

水圧鉄管の現地周継手の自動溶接施工法を開発した。本報告では,45°傾斜管の周継手を対象にした溶接条件の検討結果について述べる。

2. 実験方法

溶接実験は、SM41Aの鋼板で板厚30mm,直径4m,長さ2.6mの模型管を45°傾斜させて実験用架台に固定し、内側から上進溶接法で行った。溶接方法は電流変化方式の自動MIG溶接法である。溶接ワイヤは、ワイヤ径1.2mm 中の軟鋼用MIG溶接用ワイヤを用いた。シールドガスは、Ar(85%)-CO2(15%)の混合ガスを用い、裏当材は板厚6mmの軟鋼材を用いた。

3. 実験結果

3. 1 基本溶接条件

溶接条件は、溶接姿勢の変化に対応して調整する必要がある。この溶接姿勢の変化に対応した溶接条件の調整は、高電流時間(TH)と低電流時間(TL)の時間比(TL/TH)(以下タイミング比という)、および溶接速度の2因子のみで行うことができる。

(1) タイミング比

(2) 溶接速度

本溶接法は電流変化方式のMIG溶接であるため、溶接速度はビード

図 1 各 姿 勢 に お け る 適 正 タイ ミ ン グ 比 の 範 囲

外観のみでなく, 内部の溶込み形状からも制限される。 図 2 は平板ビード・オン・ プレート溶接で求めた上向姿勢での溶接速度と溶込み形状の関係を示す。 溶接速度 は、低速側では溶融金属の垂れ落ちから、高速側では溶込み深さの不足から制限される。 図中の適正溶接速度範囲は、溶込み深さ dを1mm以上確保するとして求めたものである。オシレートをすると適正溶接速度範囲は低速側に広がるけれども、高速側での溶込み深さはストレート溶接の場合より小さくなる。

(3) 積層法

最終パスの溶接は、オシレート法では天及び地の位置でアンダーカットが発生するため、ストレート法にする必要がある。

3. 2 模型管への適用結果

実物大の45°傾斜模型管へ本溶接法を適用した結果,全姿勢において品質は良好であることが確認できた。溶接条件を表1に示し、ビード外観及び横断面マクロ組織の一例を図4に示す。

表 1 溶接条件

	積層法	電流 (A)	電圧 (V)	パス	時期	91377	滚水	91577	-1:30 速度 (⁽¹⁷⁾ /min)	2/22/2	0:00 建度 (min)
ストレート+オシレート	30 18/40 30 13/1 30 13/1 1/2 1/40 50/4/2	280 (出 80 (ப)	24 ~28 量 14 ~(L)	1	Hd L Hu	1.0 Q.7 -	17	0.7 1.0	14	0.5 1.0 -	12
				2 5 5	Hd L Hu	0.7 1.0 0.7	8 5 13	0.5 1.2 0.5	7 \$ 11	0.4 1.2 0.4	6 5 10
				6 - 8	Hd L Hu	0.5 1.0 -	10 \$ 16	05 1.2 -	10 { 16	0.4 1.2 -	10 \$ 16

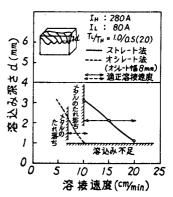


図2. 溶接速度と溶込み深さの関係

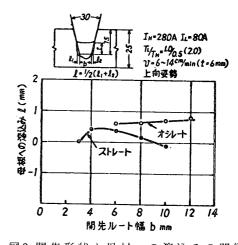


図3. 開先形状と母材への溶込みの関係

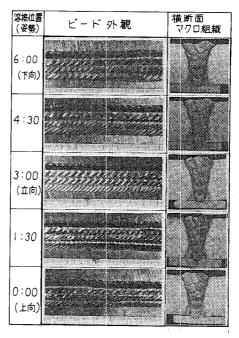


図 4 ビード外観及び横断面マクロ 組織