343 電子ビーム溶接によるMS1マグネシウム合金重ね継手の 強度に及ぼす溶接条件の影響

日本大学 〇朝比奈 敏勝

日本大学 時末 光

Effect of welding conditions on mechanical properties of electron beam welded MS1 magnesium alloy lap joints

by Toshikatsu ASAHINA and Hiroshi TOKISUE

1. 緒 言

近年,情報機器などの小型化・軽量化に伴い,軽量かつ電磁波シールド性に優れるなどの特徴を 持つマグネシウム合金が,これらの機器の素材として有望視されている.著者らはマグネシウム合 金薄板のスポット溶接およびウエルドボンド継手の諸性質を検討した結果,溶接条件の範囲が狭く, また,加圧力が大きい条件では接合部に割れの発生が認められ,さらに電極寿命が短くなるなどの 問題点があることを報告した^{1),2)}.

本研究では、電子ビーム溶接によってMS1マグネシウム合金薄板の重ね溶接を行い、得られた継 手の機械的性質に及ぼす溶接条件の影響を検討した.

2. 供試材および実験方法

Table 1 Chemical compositions and mechanical properties of base metal.

Material	Chemical compositions (mass%)								Tensile	Elongation	Hardness
	AI	Zn	Mn	Fe	Ni	Cu	Si	Mg	(MPa)	(%)	(HK0.1)
MS1	2.87	0.79	0.40	0.003	0.002	0.002	0.008	bal.	253	16.0	76.9

供試材は、MS1マグネシウム 合金板(AZ31相当合金、板厚 :0.6mm)を20×75(mm)に切断 し,溶接直前に溶接部を研磨 後,脱脂洗浄して用いた.供 試材の化学組成および機械的 性質をTable 1 に示す. Table 2 Welding conditions.

Accelerating voltage	ge	(kV)	150	
Bean current		(mA)	1~3	
Active beam para	neter		0.4 ~ 1.6	
Welding time		(S)	0.5 ~ 14	
	Width	(X,Y)	(200,200)	
Beam oscillation	Frequen	cy (Hz)	50	

溶接には高電圧型電子ビーム溶接機(6kW)を使用した.溶接チャンバーの初期真空度は3.0×10⁻³Paとし, Table 2 に示す溶接条件により,電子ビームを円偏向させることで溶接範囲を拡大した.また,溶加材は使用しなかった.得られた継手の外観観察,組織観察および引張せん断試験をいずれも室温で行った.

3. 実験結果および考察

Fig.1に得られた継手の外観を示す.表側,裏側に僅かに凹みが観察され,円形の溶接部の周囲には電子ビー 溶接学会全国大会講演概要 第67集(2000-9)

Fig. 1 Surface appearance of welded joint. (Beam current : 1mA, Welding time : 9s, a_b : 0.4)

NII-Electronic Library Service

Fig. 2 Macro and microstructures of welded joint. (Beam current : 1mA, Welding time : 9s, ab : 0.4)

ムを円偏向させたことによる楕円形の熱影響部が 認められた.この熱影響部は溶接時間が長い条件 の継手に明瞭であり,高電流,短時間の条件では 観察されなかった.また,溶接時間6s以下では十 分な溶込みが得られず,14s以上では溶け落ちが発 生した.

Fig. 2に継手横断面の巨視的および微視的組織を 示す. ビーム電流1mA, 溶接時間9s, ab値0.4の条 件では,裏面まで十分に溶け込んでいることが確 認され,溶接時間8s以下では溶込みが少なくなる 傾向にあった. 溶接部中央の最も薄い部分の厚さ は0.37mmであり,母材の約1/3であった. 溶接部の 厚さの減少は溶接時間11s以上で顕著であった. 母 材の組織は結晶粒が比較的大きく,結晶粒界も明 瞭であったが,溶融凝固部では結晶粒は微細とな るが結晶粒界が明瞭でない. 溶接部の体積の減少 は,溶接後に電子ビーム溶接機のチャンバー内部

Fig. 3 Relation between welding time and tensile shear load. (Beam current : 1mA, ab : 0.4)

が著しく汚染されていたことからMgが蒸発したためと考える.しかし,スポット溶接継手に生じた 割れ,ウエルドボンド継手に発生したブローホールのような欠陥は,溶接時間(7~13s)の条件 で溶接した継手には観察されなかった.

Fig.3に引張せん断試験結果を示す.溶接時間10sの継手が引張せん断荷重は最高値(970 N)を示した.スポット溶接によるAZ31マグネシウム合金継手の引張せん断荷重は1160N¹⁾であり,電子ビーム溶接による重ね継手の引張せん断荷重はスポット溶接継手の83.6%であった.この強度低下はMgの蒸発による溶接部の厚さの減少によるものと考える.また,試験片の破断形状はいずれもプラグ破断であり溶融凝固部で破断した.

参考文献

- 1)加藤数良,朝比奈敏勝,時末 光: AZ31マグネシウム合金のスポット溶接性に及ぼす溶接条件の 影響,軽金属学会第89回秋季大会講演概要, (1997), 305.
- 2)朝比奈敏勝,加藤数良,時末 光:AZ31マグネシウム合金/1050アルミニウム合金ウェルドボン ド継手の諸性質,溶接学会全国大会講演概要第65集,(1999),558.