

## 1 はじめに

自然現象や工業機器で生じるさまざまな量の時間的または空間的変動は,時刻 t または空間座標 x (2 次元では (x,y), 3 次元では (x,y,z))の関数 f として表される. 多くの現象には始めと終わりがあり,したがってこの関数は,その値がある有限の区間の外では 0 である,言い換えればコンパクトなサポートをもつ. さらに,区間内でもその値が無限に大きくなることはない. このような関数を一般に信号と呼ぶが,数学的には2 乗可積分関数である.

関数 f の変数を x とし,仮に時間と呼ぶこと にする (実際は空間座標であることもある).フー リエ変換によって、2 乗可積分関数 f はまた周波 数領域でも表現される.これに対して元の f(x)を時間領域における表現という.周波数領域にお ける表現は信号の周期性を探るのに適しており、 周期的な信号はさまざまな応用において非常によ く現れるから、フーリエ解析は信号解析の最も一 般的な手法となっている.

しかし信号はすべて周期的であるとは限らない. 実際の信号は周期的な信号やカオス的な信号が部 分的に入り交じっている.また,おおむね周期的 であっても,信号には始めと終わりがあってその 前後では0であることが多い.人の話し声はそ の代表で,子音の冒頭はカオス的で,それに続く 音あるいは母音は周期的であり,一定の時間で終 了する.すべて周波数領域でとらえるフーリエ変 換は,こうした複雑な信号の表現には適さない.

このような例からわかるように,信号は周期 的な部分を時間的な推移のなかでとらえるのが適 切である.信号を時間領域と周波数領域の両面か ら同時に表現する方法を時間周波数解析という. ウェーヴレットはフーリエ変換に代わる信号処 理および信号解析の手法で,時間周波数解析を 最も自然な形で実現する [1-7].本稿では,この ウェーヴレットの基礎を詳しく紹介し,ひとつ の応用例を示す.

### 2 信号の基本単位

2 乗可積分関数の空間を  $L^2(\mathbf{R})$  と書く. 信号 は一般にその値が 0 の周りを行ったり来たりす る  $L^2(\mathbf{R})$  関数で,部分的には周期的であること が多い.したがって,信号は時間軸と周波数軸 が張る平面 (信号平面)上に一定の領域を占める (図 2 参照).言い換えれば,信号はこの平面上 の小さな領域を連ねたものとして表現することが できる.このとき信号の占める領域には最小の単 位がある.

信号 f(x) の時間幅  $\Delta_f$  を次のように定義する.

$$\Delta_f = \frac{1}{\|f\|} \sqrt{\int_{-\infty}^{\infty} (x - \tilde{x})^2 |f(x)|^2 \mathrm{d}x} \qquad (1)$$

ここで  $\tilde{x} = \int_{-\infty}^{\infty} x |f(x)|^2 dx / ||f||^2$ , および  $||f||^2 = \int_{-\infty}^{\infty} |f(x)|^2 dx$  である. 同様にフーリ 工変換  $\hat{f}(\omega)$  の周波数幅  $\Delta_{\hat{f}}$  も, この式で  $f \in \hat{f}$  に,  $x \in \omega$  に置き換えて得られる. これらの 量は, 不確定性と呼ばれる次の不等式を満たす.

$$\Delta_f \Delta_{\hat{f}} \ge \frac{1}{2} \tag{2}$$

 $\Delta_f$  は幅といっても f(x) のほぼ中心  $\tilde{x}$  の片側 の幅であるから,信号 f(x) の時間的広がりは  $2\Delta_f$  となる.同様に,周波数的広がりは  $2\Delta_f$  で あるから, $2\Delta_f 2\Delta_f \ge 2$  が成り立つ.言い換え

れば,任意の信号は信号平面上の面積 2 以下の 領域にはなり得ない.

# 3 ウェーヴレット変換

実数  $\mathbf{R}$  上の関数 f のフーリエ変換  $\hat{f}$  は  $\mathbf{R}$  上の関数

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} f(x) \mathrm{d}x$$
 (3)

であるが、これは $e^{i\omega x}$ を積分核とした積分変換である. 逆変換は

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega x} d\omega \qquad (4)$$

で与えられる.

ウェーヴレット変換  $(W_{\psi}f)(b,a)$  も同様で, マザー関数と呼ばれる関数  $\psi$  をトランスレー ト (平行移動) し,スケール (拡大・縮小) した  $\psi((x-b)/a)$  の複素共役を積分核とする積分変 換である.

$$(W_{\psi}f)(b,a) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{|a|}} \overline{\psi\left(\frac{x-b}{a}\right)} f(x) \,\mathrm{d}x$$
(5)

ただし,これはトランスレーションとスケールの パラメータ  $(b, a) \in \mathbf{R}^2$ ,  $a \neq 0$ ,の2変数関数 である.逆変換は

$$f(x) = \frac{1}{C_{\psi}} \int \int_{\mathbf{R}^2} (W_{\psi}f)(b,a)$$
$$\frac{1}{\sqrt{|a|}} \psi\left(\frac{x-b}{a}\right) \frac{\mathrm{d}a\mathrm{d}b}{a^2} \qquad (6)$$

で与えられる.ここで、右辺が定義できるために は次のアドミッシブル条件が満たされなければな らない.

$$C_{\psi} = \int_{-\infty}^{\infty} \frac{|\hat{\psi}(\omega)|^2}{|\omega|} \,\mathrm{d}\omega < \infty \tag{7}$$

一般的なアドミッシブル条件 (7)の代わりに, ふつう次の条件式が使われる.

$$\int_{-\infty}^{\infty} \psi(x) \, \mathrm{d}x = 0 \tag{8}$$

この式は  $\psi(x)$  が振動的であることを意味する (図 1, 3, 4 参照). ウェーヴレット変換 (5)の 積分核において  $\psi$  のトランスレートが意味を持 つためには,  $\psi$  が局在化されていることが望ま しい. 振動的で波 (wave) のようであること, ま た局在化されていて小さい (let) ことから $\psi$  は ウェーヴレット (wavelet) と呼ばれる.

応用にはよく離散化されたフーリエ変換が使われる. 周波数  $\omega \in \mathbf{R}$  を整数値  $n \in \mathbf{Z}$  に限定して離散化される. 逆変換は (4) の代わりに

$$f(x) = \sum_{n \in \mathbf{Z}} c_n e^{inx} \tag{9}$$

で与えられ,これは区間  $[0, 2\pi)$  で定義された関数  $(L^2[0, 2\pi)$  関数) を周期関数として拡張した 関数を表す.フーリエ変換は (3) の代わりに

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) \,\mathrm{d}x \qquad (10)$$

で与えられる. 逆変換 (9) は  $f \in L^2[0, 2\pi)$  の フーリエ級数とも呼ばれるが, これは f の  $e^{inx}$ による展開である. ここで重要なことは, 関数  $\{e^{inx}\}_{n\in\mathbb{Z}}, \text{ が } L^2[0, 2\pi)$  の直交基底を成すこと で, そのため  $c_n$  は基底関数  $e^{inx}$  と関数 f の内 積 (10) によって与えられるのである.

ウェーヴレットも同様に離散化される. ふつう パラメータ  $(b,a) \in \mathbf{R}^2$  が,  $(b,a) = (2^{-j}k, 2^{-j})$ ,  $(j,k) \in \mathbf{Z}^2$ , のように離散化される. ウェーヴレッ ト変換  $(W_{\psi}f)(2^{-j}k, 2^{-j})$  は  $d_k^{(j)}$  と書かれ, 変 換と逆変換を与える式はそれぞれ以下のように なる.

$$f(x) = \sum_{j} \sum_{k} d_{k}^{(j)} \psi(2^{j}x - k)$$
  

$$d_{k}^{(j)} = 2^{j} \int_{-\infty}^{\infty} \overline{\psi(2^{j}x - k)} f(x) dx$$
(11)

これ以降は実関数を扱うこととし、複素共役  $\overline{\psi}$  は 単に  $\psi$  と書く. この式は  $f \in L^2(\mathbf{R})$  の  $\psi(2^jx - k)$  による展開式と見ることができる. しかし、マ ザー関数  $\psi$  がアドミッシブル条件を満たすとい うだけでは  $\{\psi(2^jx - k)\}_{k \in \mathbb{Z}}$  が  $L^2(\mathbf{R})$  の直交 基底となることは保証されない.

アドミッシブル条件 (7) を満たす関数は明ら かに無限個存在するから,いろいろなウェーヴ レットを考えることができる.しかし,直交基底 を作るウェーヴレットはたくさんは知られていな い. 直交規定を成す ψ を作る一般的な処方がな いからである.一般に知られている直交ウェーヴ レットは多重解像度解析という性質を利用して構 成される.次の節では,最も簡単なマザー関数で ある Haar の基底を使って多重解像度解析を説 明する.

## 4 多重解像度解析

Haar のスケーリング関数は次のように定義される (図 1 参照).

$$\phi_H(x) = \begin{cases} 1, & 0 \le x < 1, \\ 0, & 
atrial h$$

関数  $f \in L^2(\mathbf{R})$  を次のような階段関数  $f_j, j \in \mathbf{Z}$ , で近似することができる.

$$f_j(x) = \sum_{k \in \mathbf{Z}} c_k^{(j)} \phi_H(2^j x - k)$$
(13)

ここで係数  $c_k^{(j)}$  を

$$c_k^{(j)} = 2^j \int_{-\infty}^{\infty} \phi_H(2^j x - k) f(x) \,\mathrm{d}x \qquad (14)$$

とすれば,  $f_j$  は解像度  $2^j$ , またはレベル j における f の近似となる.



図 1. Haar の関数

レベル *j* において  $\{\phi_H(2^j x - k)\}_{k \in \mathbb{Z}},$ の張る 空間を  $V_j$  とする. 定義 (12) から明らかに, 異 なる *k* をもつ  $\phi_H(2^j x - k)$  は直交する. つまり  $\{\phi_H(2^j x - k)\}$  は  $V_j$  の直交基底を成し, 上の (13) は  $f_j \in V_j$  の直交基底による展開である.

レベル j の関数  $f_j(x)$  が与えられたとき,こ れから 1 つ下のレベル j-1 の関数  $f_{j-1}(x)$  を 求めるのは簡単である. $f_j(x)$  の階段を 2 段ず つ組にして平均値をとれば、段数が半分になった $f_{i-1}(x)$ が得られる.

$$c_{k}^{(j-1)} = \frac{1}{2}(c_{2k}^{(j)} + c_{2k+1}^{(j)})$$
(15)

解像度が半分になって失われた部分を $g_{j-1} = f_j - f_{j-1}$ とし、

$$f_j(x) = f_{j-1}(x) + g_{j-1}(x)$$
 (16)

と書いておく.いま,

$$d_{k}^{(j-1)} = \frac{1}{2}(c_{2k}^{(j)} - c_{2k+1}^{(j)})$$
(17)

と置き, Haar のウェーヴレットを次のように定 義する (図 1 参照).

$$\psi_H(x) = \phi_H(2x) - \phi_H(2x - 1)$$
(18)

すると,  $g_i(x)$  は次のように表される.

$$g_j(x) = \sum_{k \in \mathbf{Z}} d_k^{(j)} \psi_H(2^j x - k)$$
(19)

 $\{\psi_H(2^j x - k)\}_{k \in \mathbb{Z}},$ の張る空間を $W_j$ とする. 定義 (12), (18) から明らかに, 異なる kをもつ  $\psi_H(2^j x - k)$ は互いに直交する. つまり $\{\psi_H(2^j x - k)\}$ は $W_j$ の直交基底を成す. 式 (16) は

$$V_j = V_{j-1} \oplus W_{j-1} \tag{20}$$

であることを意味する.これを $V_{j-1} \subset V_j$ と見て,この関係を再帰的に構成すれば

$$\ldots \subset V_{j-1} \subset V_j \subset V_{j+1} \subset \ldots$$
 (21)

を得る.この階層構造をスケーリング関数  $\phi_H$  に よって生成される多重解像度解析という.

また (20) を右辺に再帰的に代入し,  $j \to \infty$ のとき  $f_j(x) \to f(x) \in L^2(\mathbf{R})$  であることに注 意すれば,

$$L^{2}(\mathbf{R}) = \ldots \oplus W_{j-1} \oplus W_{j} \oplus W_{j+1} \oplus \ldots (22)$$

となる. これは (11) が f の直交基底による展 開であることを意味する.

 $\psi(x)$ の時間幅を  $\Delta_{\psi}$  とし,  $\hat{\psi}(x)$ の周波数幅 を  $\Delta_{\hat{\psi}}$  とする.  $\psi(2^{j}x)$ の幅は  $2^{-j}\Delta_{\psi}$  で,  $\hat{\psi}$ の 周波数幅は  $2^{j}\Delta_{\hat{\psi}}$  となる. したがって,  $\psi$  が信 号平面上に占める面積はレベル j によらず一定 である.  $2\Delta_{\psi}2\Delta_{\hat{\psi}} \simeq 2$  となるような  $\psi$  をうま く選べば, 展開式 (11) は信号 f を最も最小の 単位で表現したものとなる (図 2 参照). こうし てウェーヴレット展開は自然な形で時間周波数解 析を実現するのである.



図 2. 信号平面上のウェーヴレットの表現

5 トゥー・スケール関係

一般に,トゥー・スケール関係といわれる関 係式

$$\phi(x) = \sum_{k \in \mathbf{Z}} p_k \,\phi(2x - k) \tag{23}$$

を満たす関数  $\phi$  をスケーリング関数という.数 列 { $p_k$ } が有限であれば  $\phi$  のサポートはコンパク トである.この関係式 (23) は  $V_0 \subset V_1$  を表す. スケーリング関数によってウェーヴレット  $\psi$  は

$$\psi(x) = \sum_{k \in \mathbf{Z}} q_k \, \phi(2x - k) \tag{24}$$

と定義される ((18) は一例). これは  $W_0 \subset V_1$ を表す.  $V_0 \geq W_0$  が互いに直交であれば  $V_1 = V_0 \oplus W_0$  となる. 上の式で  $x \in 2^{j_x}$  に置き換え れば一般の場合 (20) となる. こうして, スケー リング関数  $\phi$  による多重解像度解析 (21) が生 成される. 異なる k をもつ  $\phi(x - k)$  が互いに 直交すれば,  $\{\phi(2^{j_x} - k)\}$  は  $V_j$  の直交基底,  $\{\psi(2^{j_x} - k)\}$  は  $W_j$  の直交基底を成し, (11) は f の直交基底による展開となる.

多重解像度解析を基礎とするウェーヴレット 構成法では、まず (23) を満たすスケーリング関 数を見出し、これからウェーヴレットを作る.最 も簡単なものは Haar のスケーリング関数 (12) で、これは次のトゥー・スケール関係を満たす.

$$\phi_H(x) = \phi_H(2x) + \phi_H(2x-1)$$

しかしこれは不連続な関数で扱い難く,連続な関 数でウェーヴレットを構成することが望ましい. 実際,1988 年に Daubechies によって連続な直 交ウェーヴレットが作られてから,ウェーヴレッ トは急速な発展を見る [8].

## 6 直交ウェーヴレット

Daubechies の直交ウェーヴレットの構成法で は、まず (23), (24) における数列  $\{p_k\} \geq \{q_k\}$ を決定する.  $L^2(\mathbf{R})$  における関数  $f \geq g$ の内 積を

$$\langle f|g \rangle = \int_{-\infty}^{\infty} f(x) g(x) \,\mathrm{d}x$$

とする. これが 0 であれば  $f \ge g$  は互いに直 交である.  $\phi \ge \psi$  に以下の正規直交条件を課す.

これらに (23), (24) を代入することにより, 直 交条件を  $\{p_k\}$  と  $\{q_k\}$  について書き換えること ができる.

$$\sum_{k} p_k q_{k+2m} = 0, \quad m \in \mathbf{Z}, \qquad (26)$$

$$\sum_{k} p_{k} p_{k+2m} = 0, \quad m \neq 0$$
 (27)

また (23), (24) を積分することにより

$$\sum_{k} p_k = 2, \quad \sum_{k} q_k = 0 \tag{28}$$

を得る. ふつう (26) の 1 つの解

$$q_k = (-1)^k p_{1-k} \tag{29}$$

が使われる.

Daubechies はさらに初めの N-1 次までの モーメントが 0 になるという条件

$$\int_{-\infty}^{\infty} x^{l} \psi(x) \, \mathrm{d}x = 0, \quad l = 0, 1, \dots, N - 1,$$
(30)

を課せば, 2N 個の 0 でない  $p_k$  が決まること を示した. この条件は  $q_k$  について

$$\sum_{k} k^{l} q_{k} = 0, \quad l = 0, 1, \dots, N - 1, \quad (31)$$

となる.

N = 1の場合の解は  $p_0 = p_1 = 1$ で,これは Haarの関数を与える.N = 2の場合の解は

である. N = 3 の場合もここに示した方法で { $p_k$ } を求めることができるが、大きい N につ いては解くべき代数方程式の次数が増え、厳密解 は得られない. 一般には { $p_k$ } はトゥー・スケー ル関係のフーリエ変換を使う別の方法で求められ るが、詳しくは文献 [1,2,7] を参照されたい.

直交規格化の条件 (25) は  $\|\phi\|^2 = 1$  を意味す るが, これから  $\int \phi(x) dx = 1$  であることが導 かれる. さらにこれは  $\sum_n \phi(n) = 1$  と同等であ ることを示すことができる. 一方, (23) におい て  $x = n \in \mathbb{Z}$  と置くと,  $\phi(n), n \in \mathbb{Z}$ , につい ての固有方程式となる. これらを解けば整数点に おける  $\phi(n)$  の値が決まる. (23), (24) において x = n/2 と置けば, 右辺は整数点の  $\phi$  の値だけ で決まるから,  $\phi(n/2), \psi(n/2)$  が決まる. これ を繰り返せば  $\phi(2^{-j}x), \psi(2^{-j}x)$  の値が求めら れる. 連続性の証明は別に与える必要があるが, とりあえずこうしてスケーリング関数とウェーヴ レットが求められる.

図 3 に Daubechies の関数の例を示す.上 が N = 2,下が N = 5の場合であるが,Nが大きいほど滑らかになり,サポートは大きく なる.  $supp \phi = [0, 2N - 1]$ および  $supp \psi = [1 - N, N]$ である.  $stc \phi \in C^{\mu(N)}$ で,大きい N については  $\mu(N) \approx 0.2075N$  となることが 示される.



1995

図 3. Daubechies の関数

# 7 分解・再構成アルゴリズム

関数  $f_j \in V_j$  が (13) のように与えられたと き,これを (16) のように分解することができる. それには  $c_k^{(j)}$  から  $c_k^{(j-1)}$  と  $d_k^{(j-1)}$  を求めれば よい.

 $V_1 = V_0 \oplus W_0$  であるから

$$2 \phi(2x - l) = \sum_{k \in \mathbf{Z}} [g_{2k-l}\phi(x - k) + g_{2k-l}\psi(x - k)],$$

 $l \in \mathbb{Z}$ , と書ける.  $\{g_k\}$ ,  $\{h_k\}$  は  $\{p_k\}$  から求 められる数列で, 0 でない要素の個数はそれぞれ 2N である. この関係式を上の式 (13) に適用し, その結果を  $f_{j-1} + g_{j-1}$  と見ることによって

$$c_{k}^{(j-1)} = \frac{1}{2} \sum_{l} g_{2k-l} c_{l}^{(j)},$$
  
$$d_{k}^{(j-1)} = \frac{1}{2} \sum_{l} h_{2k-l} c_{l}^{(j)}$$
(33)

を得る ((15), (17) は一例). これは分解アルゴ リズムであるが,数列の離散的な畳み込みで,一 方の要素の個数はわずか 2N 個であるから,高 速で実行できる.

また,(16)の右辺から左辺を再構成するアルゴ リズムも求められる.それには右辺を(13),(19) のように書いておき,これに(23),(24)を代 入する.こうして

$$c_{k}^{(j)} = \sum_{l} \left[ p_{k-2l} c_{l}^{(j-1)} + q_{k-2l} d_{l}^{(j-1)} \right] \quad (34)$$

を得る.これも離散的な畳込みで,高速に実行で きるアルゴリズムである.

# 8 スプライン・ウェーヴレット

m 階のカーディナル B スプライン  $N_m$  は, m=1のとき  $N_1 = \phi_H$  として

$$N_m(x) = \int_{-\infty}^{\infty} N_{m-1}(x-y) N_1(y) dy, \quad (35)$$

 $m \in \mathbb{Z}$ , によって定義される. これはサポート [0,*m*] を持ち, m - 1 次の多項式を *m* 個, 整 数点で滑らかにつないだもので  $N_m \in C^{m-2}$  で ある.  $N_m$  は 0 でない  $p_k$  を

$$p_k = \frac{1}{2^{m-1}} \binom{m}{k}, \quad 0 \le k \le m$$

としてトゥー・スケール関係 (23) を満たし、し たがってこれをスケーリング関数と見なすことが できる. しかし異なる整数 k をもつ  $N_m(x-k)$ は互いに直交しない. Chui と Wang は  $N_m$  に 直交するウェーヴレット  $\psi_m$  を構成した [9]. 数 列 { $q_k$ } の 0 でない要素は  $q_k$ ,  $0 \le k \le 3m-2$ で,

$$q_{k} = \frac{(-1)^{k}}{2^{m-1}} \sum_{l=0}^{m} {m \choose l} N_{2m}(k+1-l)$$

のようになり、 $\psi_m$  は (24) から得られる.  $N_m$ と  $\psi_m$  は直交関係 (25) を満たさないために、内 積によって f の  $\psi_m$  による展開係数を求めるこ とができない. このため一般には扱いにくいと考 えられているが、むしろ利点も多い. スプライン はもともと離散データの補間関数としてよく使わ れており、実際、データ列  $\{\theta_k\}_{k\in\mathbb{Z}}$  から  $\{c_k^{(0)}\}$ を求める高速の補間アルゴリズムを簡単に得るこ とができる. これを使えば内積の計算は不要であ る. また、直交ウェーヴレットと違って、任意 の x の値について簡単に  $N_m$  や  $\psi_m$  の値を求め ることができる. まだ広く応用されていないが、 スプライン・ウェーヴレットは有望である [10].

図 4 に B スプラインとそれに対応するウェー ヴレットを, m = 2 と m = 4 について示す.



図 4. スプライン・ウェーヴレット.

### 9 フィルタバンク

ウェーヴレットは信号の時間周波数解析を可能 にする.つまり,信号平面上の最小単位の範囲で, 時間と周波数を同時に特定することができる.し かも,多重解像度解析という性質は,信号をいっ ぺんに成分に分解せず,解像度を1レベルずつ 下げて分解することを可能にする.こうした特徴 を生かすことによって,ウェーヴレットは効果 的な応用ができる.

応用の方法は、ウェーヴレット解析をディジ タル・フィルタとして扱うか、関数の近似として 扱うかの 2 つに大別される.

第 1 の方法では,データ列  $\{\theta_k\}, k \in \mathbb{Z}, \varepsilon$ (13) における係数  $\{c_k^{(0)}\}$  と見なす.これに分解 アルゴリズム (33) を適用して得られた  $\{c_k^{(-1)}\}$ と  $\{d_k^{(-1)}\}$  はそれぞれ元のデータの低周波成分と 高周波成分である.つまり  $\{g_k\}$  と  $\{h_k\}$  はロー パス・フィルタ (LPF) とハイパス・フィルタ (HPF) として働く.これを見るために  $\{g_k\}$  か ら多項式

$$G(z) = rac{1}{2}\sum_{m k}g_{m k}z^{m k}$$

を定義する  $(G(z^{-1})$  は *z* 変換といわれ る). H(z), P(z), Q(z) も同様に定義される.  $|G(e^{-i\omega})| \ge |H(e^{-i\omega})| \ge 0 \le \omega \le \pi$  の範囲で プロットすれば LPF と HPF の周波数特性が 得られる. 図 5 に Daubechies の関数の N = 2(左) と N = 5 (右) についてこれを示す. N が 大きいほど遮断特性がよい.



図 5. Daubechies 関数によるフィルタの周波数特性.



図 6. QMF.

分解アルゴリズム (33) は LPF G(z) と HPF H(z) を組み合わせたフィルタバンクの動作に対応しており、それぞれデータと  $\{g_k\}$  または  $\{h_k\}$ の離散的な畳み込みを行った後、2:1 のダウンサンプリングを行う. 図 6 の左側はこれを図式的に表したものである. 再構成アルゴリズム (34) は、データ  $\{c_k^{(-1)}\}$  と  $\{d_k^{(-1)}\}$  を 1:2 にアップサンプリングして、これを同様なフィルタバンクを通して合成信号を得る. 図 6 の右側はこれを図式的に表す. このような分解・再構成を行うフィルタバンクをクァドレチャーミラー・フィルタ (QMF) という. 上に定義した G(z) などは式

$$P(z)G(z) + Q(z)H(z) = 1 P(z)G(-z) + Q(z)H(-z) = 0$$

を満たすが、これは分解・再構成されて信号が元 に戻ることを保証する.言い換えれば、ウェーヴ レット解析は、時間周波数解析を実現しかつ完全 再構成可能な QMF を実現するのである.

音声信号や画像の圧縮に使われる方法として最 近注目されている方法にサブバンド符号化がある. これには QMF の低周波側の出力にまた QMF をカスケード接続して,図7のような構成のフィ ルタバンクを使う.このフィルタバンクの動作 は,関数  $f_j$  を (16)のように分解し,これを再 帰的に繰り返すことに対応する.こうしてウェー ヴレットは音声信号や画像圧縮に直接的な関わり をもつ [11].信号処理の基礎については文献 [12] を参照されたい.



図 7. サブバンド分解のフィルタバンク.

大きい N の Daubechies の関数では、対応するフィルタ H(z) の低域遮断特性がよく、データの不連続性に鋭敏に反応する。一見滑らかに見えるデータ列に潜む不連続を検出した例を図 8 に示す。図の左側のデータ列  $\{c_k^{(0)}\}$  は m = 4の B スプライン  $N_4 \in C^3$ をサンプルしたもので、元の関数の 3 次の導関数に現れる不連続点がウェーヴレットによって検出された。

不連続点の検出にはデータの高周波成分だけを 取り出して,その位置を検出すればよく,それに は必ずしも多重解像度解析は必要ない.したがっ て,遮断特性のよい HPF を構成できるウェー ヴレット ψ を任意に選ぶことができ,対応する スケーリング関数はなくてもよい.この手法は部 材の内部に潜む亀裂の検出などに応用されている [13,14].



図 8. ウェーヴレットによる不連続の検出.

## 10 関数の補間と近似

もう 1 つの方法では, データ列  $\{\theta_k\}$  を  $f_0(k) = \theta_k$ のように補間する近似関数  $f_0(x)$  を (13)の形で決める.スプライン・ウェーヴレッ トでは,  $\{\theta_k\}$ から係数  $\{c_k^{(0)}\}$ を効率のよいアル ゴリズムで求めることができる [10].これに分 解・再構成のアルゴリズム (33),(34)を適用し, 係数  $\{d_k^{(-1)}\}$ から得られる  $g_{-1}(x)$ が元の信号 の振動成分を表し,  $\{c_k^{(-1)}\}$ から得られる  $f_{-1}(x)$ が平滑化された信号を表す.この方法では信号は 連続関数として扱われる.したがって平滑化され た信号  $f_{-1}(x)$ の導関数を求めるなどの応用がで きる.

簡単な応用例として、図9に示すような周期

性のないデータ列からノイズを取り除くことを考 える.離散フーリエ変換(左下)ではデータとノ イズの区別は付きにくい.実際,フーリエ変換の ある閾値より小さい値を切り捨てて,逆変換して データを再構成すると図の右上のようになる. 方,分解アルゴリズム (33)によって得られた  $g_{-1} \ge g_{-2}$ を切り捨てて  $f_{-2}(x)$ をプロットし たのが図の右下である.一般に、ウェーヴレット による方法ではピークの高さは保たれ、高調波成 分のデータのない領域への滲みだしは少ない.



図 9. 周期的でないデータ列におけるノイズ除去.

# 11 応用例

振動系を加振して、系に働く乾性摩擦力の性質 を調べる実験において、ノイズの除去にウェー ヴレット解析を用いた例を示す [15–18]. 変位 x と摩擦力 f を一定の時間間隔  $\Delta t = 0.005$ 秒で測定した、それぞれ 6320 個の離散データ  $x_k$ ,  $f_k$  が得られた. 乾性摩擦力 f は速度 v の  $f = -F \operatorname{sign} v$  なる関数としてモデル化される が、実際にはもっと複雑な関数と考えられる. 実 験では、変位から速度 v を求め、これと摩擦力 f の関係を調べるのが目的であるが、ここでは速 度 v と摩擦力 f のデータからノイズを取り除く ことに焦点を当てる.

まず、変位  $x_k$  をデータ列  $c_k^{(0)}$  として分解ア ルゴリズム (33) を適用する、 $d_k^{(-1)}$  の値の分布 はほぼ一様で、これはすべてノイズと考えられた、 そこで、次にマザー関数を m = 4 の B スプラ インとして、 $x_k$  の補間関数  $f_0(x)$  を作り、これ を  $f_0(x) = f_{-2}(x) + g_{-1}(x) + g_{-2}(x)$  に分解す る.上の観察から g をノイズと見なし,  $f_{-2}(x)$ を平滑化された信号と見なす.図 10 に補間関数 (上)と平滑化された信号 (下)の一部を示す.ノ イズがとれて、滑らかな曲線が得られている.

次に速度 v を求める.変位  $x_k$  から次のよう にして速度  $v_k$  を求めることができる.

$$v_k = \frac{x_{k+1} - x_{k-1}}{2\Delta t}$$
(36)





図 11. 速度におけるノイス除去

これは図 11 (上) に示すようにノイズの影響を 強く受けている. これを通常のバターワース. ディ ジタルフィルタで処理したものを図 11 (中) に示 す. ノイズ除去の効果はそう大きくない. ウェー ヴレットを使う方法では, 図 10 のように変位が 十分滑らかな関数  $f_{-2}(x)$  として得られている. したがって,これを微分して速度を求めることが できる.特にこの場合, B スプラインの微分公式

$$N'_{m}(t) = N_{m-1}(t) - N_{m-1}(t-1)$$

を使って簡単に求めることができる. こうして得 られた結果を図 11 (下) に示す.

一方,摩擦力 f については,信号そのものが 方形波に似ているため,そのエッジに相当する真 の信号の一部は残さなければならない.ウェーヴ レット縮小法 [19] を用いて処理した結果を図 12 (下) に示す.図 12 (上)の元の信号と較べると, 細かいノイズは取れているものの,角は丸くなっ ている.

ジャンプのある関数をフーリエ級数に展開して 有限項で打ち切ると,近似関数はジャンプの近傍 でオーバーシュートをもつことは Gibbs の現象 として知られているが,ウェーヴレット展開に おいても同様のことが起こる.つまり,ジャンプ の近傍では高周波のウェーヴレット成分はノイズ と区別できない.したがって,ジャンプのある データからノイズを分離するには特別な工夫が必 要とされる [20].



図 12. 摩擦力におけるノイズ除去

# 12 結論

ウェーヴレット解析は時間周波数解析を実 現する画期的な信号処理手法で,データ処理に 極めて有効に利用できる.ウェーヴレットは Daubechiesの関数や B スプラインを基にした もののほか,様々な種類の関数を使って構成す ることができる.多重解像度解析などの一般的な 構造は共通であるが,その性質は細かい点でそれ ぞれ異なっている.応用の際,目的に合わせて 関数を正しく選択することが重要であろう.とく に,関数の補間・近似という立場からの B スプ ライン・ウェーヴレットは,その利点を有効に 活用できる多くの応用があると期待される.いろ いろな場面に様々なマザー関数を使ってウェー ヴレット解析を行い、多くの経験を積み重ねて、 それぞれの特徴を把握することが今後の課題であ ろう.

### 参考文献

- Chui, C. K., An Introduction to Wavelets, Academic Press, 1992.
   桜井・新井 訳,ウェーブレット入門,東京 電機大学出版, 1993.
- [2] Daubechies, I., Ten Lectures on Wavelets, SIAM, 1992.
- [3] Meyer, Y., Wavelets, SIAM, 1992.
- [4] 山口・山田, ウェーブレット解析, 科学, 60, 1990, 398-405.
- [5] 佐藤, ウェーブレット理論の数学的基礎 I, II, 日本音響学会誌, **47**, 1991, 405–423.
- [6] 山口 他,「ウェーブレット特集」, 数理科学 12 月号, 1993.
- [7] 榊原 進, ウェーヴレット ビギナーズガイド, 東京電機大学出版, 1995 (近刊).
- [8] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure. and Appl. Math. 41, 1988, 909– 996.
- [9] Chui, C. K. and J. Z. Wang, On compactly supported spline wavelets and a duality principle, *Trans. Amer. Math. Soc.* 330, 1992, 903–915.
- [10] Sakakibara, S., A practice of data smoothing by B-spline wavelets, in Wavelets: Theory, Algorithms, and Applications, ed. by C. K. Chui et al., 1994, Academic Press, 179–196.
- [11] 斎藤 他, 特集「ウェーヴレットへの道」, 電子情報通信学会 秋期大会 講演論文集, 1994.

- [12] イブ・トーマス、中村 尚五、 プラクティ ス デジタル信号処理、東京電機大学出版、 1995.
- [13] 岸本・井上・中西・渋谷,分散性波動のウェー ブレット解析,機械学会第6回計算力学講 演会(仙台)講演論文集,1993,350-351.
- [14] 曽根・山本・中岡・増田、ウェーブレット変換を用いた高層構造物のヘルスモニタリングシステム、機械学会機械力学・計測制御講演会(秋田)講演論文集,1994,421-424.
- [15] 榊原・清水,乾性摩擦系の振動応答における
   ノイズの影響,機械学会 第6回計算力学講
   演会(仙台)講演論文集,1993,299-300.
- [16] 榊原・清水,ウェーヴレットを用いた乾性摩 擦の解析法,機械学会 機械力学・計測制御講 演会(秋田)講演論文集,1994,172-175.

- [17] 榊原・遠藤,狭帯域スペクトルを持つ振動 波形のウェーヴレット解析,機械学会 機械 力学・計測制御講演会 (秋田) 講演論文集, 1994, 168–171.
- [18] 榊原,ウェーヴレット縮小法による乾性摩 擦力解析法,機械学会 第7回計算力学講演 会(東京)講演論文集,1994,269-270.
- [19] Donoho, D. L., and Iain M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, *Biometrica*, to appear, (Stanford Univ. Dept. of Statistics, Technical Report 400, 1992).
- [20] Donoho, D. L., On minimum entropy segmentation, in Wavelets: Theory, Algorithms, and Applications, ed. by C. K. Chui et al., 1994, Academic Press, 233–269.