学術論文

非鉛系圧電材料 BNT の高性能化に関する研究

Development of High-performance Lead-free BNT Piezoelectric Materials

裘 進浩	(東北大学)	正員
谷順二	(東北大学)	正員
松田 和也	(東北大学)	
折笠 和之	(東北大学)	
高橋 弘文	(富士セラミックス)	
Jinhao QIU	Tohoku University	Member
Junji TANI	Tohoku University	Member
Kazuya MATSUTA	Tohoku University	
Kazuyuki ORIKASA	Tohoku University	
Hirofumi TAKAHASHI	Fuji Ceramics Corporation	

This study aims to fabricate high-performance lead-free piezoelectric materials by using a hybrid sintering process, which is a combination of microwave heating and hot-press. The hybrid sintering process was found to be able to improve the density and consequently the piezoelectric properties of PZT and PNN-PZT materials in the former study. The lead-free piezoelectric materials used in this study are BNT [$(Bi_{1/2}Na_{1/2})$ TiO₃+0 1wt%MnO₂]. The BNT was sintered with the hybrid process, the conventional process, the microwave process and the hot-press process and the piezoelectric properties of the acquired specimens were investigated and compared. The results show that electromechanical coupling factors, k_p and k_t of the specimens of the hybrid process increases due to higher density and larger grain size, but the dielectric constant $\varepsilon_{33}^{T}/\varepsilon_{0}$ decreases due to the resulual strain generated by the pressure during sintering.

Keywords Piezoelectric, Hybrid Sintering, Hot-Press, Microwave Sintering, BNT, Residual Strain.

1 緒言

現在,多くの分野で使用されている高性能圧電材 料は PZT や PNN-PZT 系を中心としており,主成分 として多量の鉛を含んでいる。しかし,鉛は廃棄処 理等によって環境や生態系に悪影響をもたらすこと が報告されており鉛を含む工業製品は欧米を中心に 規制され始めている。このような状況から,環境に やさしい非鉛系圧電材料の研究・開発は急務かつ, 必要不可欠であると考えられ,現在使用されている PZT 系の圧電材料と同等の性能を有する非鉛系圧電 材料の研究開発[1,2]が活発に行われている。

本研究では非鉛系圧電材料として比較的高い圧電 特性を示す BNT[(Bi_{1/2}Na_{1/2})TiO₃+0.1wt% MnO₂]を選 択し,非鉛系圧電材料の高性能化に関する研究を行 った。高性能化へのアプローチとして,圧電特性向 上の一要因である高密度化に注目し,ホットプレス

連絡先: 裘 進浩, 〒980-8577 仙台市青葉区片平 2-1-1, 東北大学流体科学研究所, e-mail[·] qiu@ifs.tohoku.ac.jp 焼結法とマイクロ波焼結法を組み合わせたハイブリ ッド焼結法を用いて焼結実験を行った。以前の研究 で、ハイブリッド焼結法は PZT 系圧電材料の高性能 化に有効であることが報告されている[3-7]。今回、 非鉛系圧電材料 BNT においても特性が向上するか を調べるため、ハイブリッド焼結した試料と一般的 な電気炉を用いて焼結(以後、従来焼結)した試料 を中心に圧電特性を調査した。また、ホットプレス 焼結法とマイクロ波焼結も比較のために行い、各焼 結方法と圧電特性の関係を調べた。

2 実験方法

2.1 原料粉末の作製及び成形

原料粉末の Bi₂O₃(純度 99.9%),Na₂CO₃(純度 99%),TiO₂(純度 99.9%)と MnO₂(純度 99.99%)を BNT[(Bi_{1/2}Na_{1/2})TiO₃+0.1wt%MnO₂]の組成になるよ う秤量し,自動乳鉢により1時間乾式混合を行った。 得られた混合物を電気炉を用い 800℃(昇温,冷却 共に100℃/h)で2時間仮焼を行いその後,水に分散 剤としてマリアリムを原料粉末に対して 0.15wt%加 えたものを溶媒として,ボールミル($\phi 5 mm$ ジル コニア製ボール使用)で24時間粉砕し,乾燥したも のを原料粉末とした。原料粉末の粒度分布をレーザ 一回折式粒度分布測定装置で測定した。測定結果を Fig.1に示す。平均粒径は0.78µm であり粒度分布の ピークが一つの良質な原料粉末が得られた。次に, 5%のポリビニルアルコール (PVA) 水溶液に対して エタノールを 5wt%加えたものをバインダーとして 原料粉末に対して 1.5wt%添加し乳鉢混合を行った。 得られた粉末を目の開き 100µm のふるいに通した 後, 200Mpa の圧力を加えて直径 15mm, 厚さ 1mm の円盤と直径15mm 厚さ15mmの円柱状の成形体を 作製した。これらを 700℃で 5 時間, 脱脂焼結を行 いバインダーを除去した後、本焼成用の試料として 用いた。

2.2 焼結

2.2.1 従来焼結とホットプレス焼結

厚さ 1mm の試料を用いて従来焼結を行った。焼 結温度依存性を調べるため焼結温度を 1050℃, 1100 ℃, 1150℃, 1200℃, 1250℃(昇温,冷却共に 100℃ /h) で 2 時間保持の条件で焼結を行った。また特性 比較用として厚さ 15mm の試料を用いてホットプレ ス焼結も行った。昇温速度 100℃/h で焼結温度の 11 50℃まで昇温させ,焼結温度に達してから 2 時間保 持しこの間,試料に 20Mpa を加える条件で焼結を行 った。得られた試料を 0.5mm の厚さに研磨した後, アルキメデス法により試料密度を測定した。次に銀 ペーストを試料に塗布し 700℃で焼き付け電極を形 成した。この試料を 60℃のシリコンオイル中で 7kV/mm の DC 電界を 10 分間印加して分極を行った。 分極した試料の材料定数測定は、*d*₃₃メータ、インピ ーダンスアナライザ HP4294A を用いて、電子材料工 業規格(EMAS-6100)に定められた方法によって測 定した。また、焼結体の内部組織を調べるため焼結 体を 975℃で熱エッチングを行ったあと走査型電子 顕微鏡(SEM)を用い、試料表面の組織を観察した。 また、X線回折測定(XRD)も行った。

22.2 ハイブリッド焼結

ハイブリッド焼結はマイクロ波焼結の特徴である マイクロ波吸収による試料自身の発熱を利用した急 速加熱,内部加熱,均一加熱に加えてホットプレス の特徴である圧力付加による固相反応の促進と気孔 除去による高密度化が可能である焼結方法である。

ハイブリッド焼結装置はマルチモード型アプリケ ータと油圧プレス機によって構成され,マイクロ波 による加熱とプレス加圧を同時に行うことができる。 ハイブリッド焼結装置のアプリケータ内の概略図を Fig. 2 に示す。今回使用したマイクロ波の周波数は 28GHz,最大出力は 10kW で,油圧プレス機の最大 出力は 49kN である。マイクロ波は導波管によりア プリケータ内に導入され,アプリケータ内部で多重 反射を繰り返しマルチモードに変換されアプリケー タ内の空間内に均一に分布するよう設計されている。

試料温度は試料下部に Pt 熱電対を接触させて測 定し,設定値に追随するよう PID コントローラによ ってフィードバック制御される。試料構成を Fig. 3 に示す。プレス用の金型はアルミナ製で,試料と金 型の接着を防ぐために試料と金型の隙間に安定化ジ ルコニアを充填している。

本実験では厚さ15mmの試料を用いてハイブリッド焼結を行った。ハイブリッド焼結の温度スケジュ

Fig. 2 Configuration of applicator.

Fig. 3 Principle of hybrid sintering.

ールを Fig. 4 に示す。室温から 600℃まで 400℃/h で 昇温させ、その後焼結温度まで 600℃/h で昇温させ た。焼結温度依存性を調べるため焼結温度を 1000℃, 1050℃, 1100℃, 1150℃と変化させ、焼結温度に到 達後 30 分間保持しこの間, 試料に圧力 20Mpa を加 える条件で焼結を行った。更に、焼結時間依存性を 調べるため 1100℃に到達してから 2 時間保持し試料 に 20Mpa を加える条件とプレス効果を調べるため 1150℃で 30 分保持し圧力 0 の条件 (マイクロ波焼結 に対応する) で焼結を行った。またそれぞれ、焼結 温度に達し決められた時間保持した後, 100℃/h で冷 却を行った。得られた焼結体は切断機により厚さ 0.6mm 程度にスライスした後、従来焼結と同様に研 磨,密度測定, 電極形成, 分極, 材料定数測定, SEM 観察, X 線回折を行った。

Fig. 4 Temperature and pressure schedule of hybrid sintering process.

3 実験結果と考察

3.1 密度測定結果と内部観察結果

密度測定結果を Fig. 5 に示す。以後, 従来焼結を con, ハイブリッド焼結を HB, ホットプレス焼結を HP, マイクロ波焼結を MW と表すことにする。従 来焼結体の結果を見ると温度と共に密度は上昇し 1150℃で密度のピークとなっている。そして 1200℃ 以降は徐々に密度が下がり始める。1150℃と1200℃ の焼結体の SEM 写真を Fig. 6 に示す。1150℃で緻密 化が進んでるのに対し、1200℃では大きな空孔が発 生しているのが確認できる。これは 1200℃では BNT の成分が蒸発したために生じた空孔であると考えら れる。また、ハイブリッド焼結体に関しては1000℃ 付近でもかなり密度が高い状態で温度と共に密度が 上昇し1100℃で最も高い値となった。そして1150℃ では密度が下がり始めた。またこの1150℃では、試 料の一部が溶融して金型に付着するという現象が起 きた。これらの結果から、従来焼結とハイブリッド 焼結では最も密度の高くなる温度が異なることや最 適な焼結温度帯域の幅が極めて狭いことがわかる。

また, HB-1100℃-30min に比べ HB-1100℃-2h と HP-1150℃-2h の密度は僅かに増加した。これらは従 来焼結体の最高密度よりも大きな値である。 HB-1100℃-30minとHB-1100℃-2hのSEM 写真をFig. 7 に示す。両方とも緻密化がすすんでいるのが, HB-1100℃-30minに比べHB-1100℃-2hの焼結体の方 が粒径が大きくなっているのが確認できる。

一方,マイクロ波焼結体は 1150℃で焼結し溶融し た形跡もみられなかったが,同温度の従来焼結体よ りも密度は低下した。これはマイクロ波焼結に用い た厚さ15mmの試料では成形の際に大きな圧力分布 ができ成形密度が低くなる傾向があることに加え, 焼結中に圧力を付加しないために空孔を外部に放出 しにくかったことが影響していると思われる。

以上の結果を踏まえると、焼結時にプレス機構を 含むハイブリッド焼結やホットプレスはプレス効果 により効率的に試料内部の気孔除去を行うことがで き密度を増加させるのに有効な手段であることが確 認できる。また、ハイブリッド焼結では保持時間が 30分でも2時間でもほぼ同程度の密度であり、保持 時間 30分でも十分にプレス効果が表れ、内部の気孔 を除去でき焼結保持時間を長くしてもそれほど密度 は変わらないということがわかる。

Fig. 5 The density ρ of sintered specimens.

(a) Sintered at 1150℃.

(b) Sintered at 1200°C.

Fig. 6 Microstructure of the specimens sintered using the conventional process.

(a) Sintered at 1100° C and 20Mpa for 30 minutes.

(b) Sintered at 1100°C and 20Mpa for 2hours.

Fig. 7 Microstructure of the specimens sintered using the hybrid process.

3.2 圧電特性測定結果

電気機械結合係数の測定結果を Fig. 8 に示す。 1050℃の従来焼結の焼結体は分極時にリークしてし まい測定できなかった。円盤の径方向での電気機械 結合係数 *k*_pはハイブリッド焼結体で従来焼結体に比 べ若干増加していることがわかる。また,同様に円 盤の厚み方向の電気機械結合係数 *k*_iもハイブリッド 焼結体で増加している。尚,*k*_iに比べて *k*_pの値がか なり小さいがこれは BNT に圧電異方性があるため である。このようにハイブリッド焼結では従来焼結 に比べ特性が向上する傾向が確認できるが,これは 焼結体の密度が増加したためだと思われる。また, ハイブリッド焼結 1100℃-20Mpa-30min と 1100℃ -20Mpa-2h で *k*_iを比べると後者の方で大幅に増加し ている。この要因を考えると密度はほぼ同程度であ るので違いは焼結体の平均粒径の大きさということ になる。Fig.9に焼結体のSEM 観察によりインター セプト法から算出した焼結体の平均粒径測定結果を 示す。これにより、1100℃-20Mpa-2hの方が平均粒 径で1µm 程大きいことがわかる。よって平均粒径の 増大により k,の特性も向上したと思われる。またこ れらのメカニズムは以下のように考察できる。密度 の増加により試料に含まれる空孔の割合が減るので 圧電特性は全体的に向上する。また、結晶粒界自体 は圧電性を持たず、電気抵抗や振動の伝達ロスとし て働くが、粒径が増大すると単位体積あたりに含ま れる粒界の総面積が減り結果として粒界により生じ る電気抵抗や振動の伝達ロスが減るために特性が向 上するのだと考えられる。

(b) coupling factor k_t .

Fig. 8 Electromechanical coupling factors, k_p and k_t of sintered specimens.

次に比誘電率 ε₃₃^T/ε₀の測定結果を Fig. 10 に示す。 一般的に比誘電率は焼結体の密度増加に伴って大き くなる傾向にあるが,今回測定した結果ではこのよ うな傾向にはならず,密度の低い従来焼結体の方が 比誘電率は大きいという結果になった。そのためハ イブリッド焼結体やホットプレス焼結体では密度増 加による比誘電率の増加分を打ち消すその他の要因 があると考えられる。要因として考えられるのは残 留ひずみによる比誘電率低下の可能性である。残留 ひずみがあると,結晶格子内のイオン変位によって 生じる自発分極に影響が生じ,今回の場合自発分極 が減少するほうに作用し,比誘電率も低下したのだ と考えられる。

Fig. 10 Dielectric constant $\varepsilon_{33}'/\varepsilon_0$ of sintered specimens.

次に圧電定数 *d*₃₃の測定結果を Fig. 11 に示す。ハ イブリッド焼結体と従来焼結体で大きな差はみられ ない。これは *d*₃₃ が比誘電率と電気機械結合係数の

Fig. 11 Piezoelectric constant d_{33} of sintered specimens.

積で表されるためであり、従来焼結、ハイブリッド 焼結共に比誘電率と電気機械結合係数のどちらか一 方が高く他方は低いということから、結果としてど ちらも圧電定数 *d*₃₃は 100pC/N 程度の値になってい ると思われる。

3.3 X 線回折結果

焼結温度の低い従来焼結 1050℃やハイブリッド 焼結 1000℃のものと逆に高い従来焼結 1250℃では ペロブスカイト相以外のピークが若干確認されたが, それ以外ではペロブスカイト相のみのピークが得ら れていることが確認できる。従来焼結1150℃とハイ ブリッド焼結 1100℃-20MPa-2h のもので比較を行っ た結果を Fig. 12 に示す。この結果からハイブリッド 焼結したものでは回折ピーク位置 20 が右側にシフ トしていることが確認できる。この現象はブラック の反射式 n λ = 2 $dsin\theta$ から考えると, 面間隔 d が小さ くなることに対応する。このことから結晶にはX線 の反射面に垂直な方向、つまり試料をプレスした方 向に残留ひずみが内在していることが確認できる。 また、回折ピークの半値幅の大きさはほとんど変化 していないことから、不均一な残留ひずみはそれほ どないことがわかる。

Fig. 12 The XRD result of Con-1150 $^\circ\!C$ and HB 1100 $^\circ\!C$ -20MPa-2h sintered specimens.

4 結言

ハイブリッド焼結により特性向上の要因となる密度の増加,結晶粒径の増大を満たした試料を作製し 電気機械結合係数を増加させることができたが,逆 に比誘電率が低下してしまった。その結果圧電定数 *d*₃₃も低下してしまった。この原因としては焼結時に 生じた残留ひずみの影響が大きいと思われる。

PZT 系の場合と比べて非鉛圧電材料 BNT ではハ イブリッド焼結で大きく特性を向上させることはで きなかった。今回用いた材料は残留ひずみの影響が 大きく影響していると考えられる。材料によりこれ らの影響の度合いが違うために,ハイブリッド焼結 の効果に大きな違いが生じるのだと思われる。

(2004年11月25日受付)

参考文献

- H. Nagata, T. Takenaka, (Bi_{1/2}Na_{1/2})T₁O₃-based Non-lead Piezoelectric Ceramics1, *Journal of Korean Physical Society*, Vol.32, pp S1298-S1300, 1998
- [2] T. Takenaka, K. Maruyama, K. Sakata, (Bi_{1/2}Na_{1/2})TiO₃ System for Lead-Free Piezoelectric Ceramics, *Japanese Journal of Physics*, Vol 40, No.9B, pp.2236-2239, 1991.
- [3] H. Takahashi, K. Kato, J. Qiu, J. Tani, and K. Nagata, Property of Lead Zirconate Titanate Ceramics using Microwave and Hot-Press Hybrid Sintering Process, *Jpn J Appl Phys.*, Vol.40, No.9B, pp.5642-5646, 1991.
- [4] T. Takenaka, A. Hozumi, T. Hata, K. Sakata, Mechanical Properties of (Bi_{1/2}Na_{1/2})TiO₃-based *Piezoelectric Ceramics, Silicates Industrials*, pp.7-8, pp.136-142, 1993.
- [5] K. Okazaki, H. Takemoto, and K. Takahashi, Sintering Process of Dielectric Materials by Hot-Pressing, *Memories* of the Defense Academy, Japan, Vol. 5, No.2, pp 151-160, 1965.
- [6] H. Takahashi, K. Kato, J Qiu, J. Tanı and K. Nagata, Fabrication of High-Performance Lead Zirconate Titannate Actuators Using the Microwave and Hot-Press Hybrid Sintering Process, *Japan journal of Appleid Physics*, Vol 40, No.7, pp.4611-4614, 2001.
- [7] H. Takahashi, K. Kato, J. Qiu, J. Tani, and K Nagata, Property of Lead Zirconate Titanate Ceramics using Microwave and Hot-Press Hybirid Sintering Process, *Japan Journal of Applied Physics*, Vol 40, pp 5642-5646, 2001.