野性小動物の這上がり能力に 関する基礎試験

右田泰弘*

Experimental Study on Climbing Ability of Small Wild Animals by

Dy

Yasuhiro MIGITA

(Received : September 23, 2008, Accepted : February 6, 2009)

1. はじめに

道路整備にあたっては従来から自然環境保全への 配慮がなされてきたが、近年になって、自然環境や 生態系に対する関心がさらに高まり、生態系との調 和を図り、自然環境に配慮した道路づくり(エコロ ード)への取り組みが様々な方面で行われている。 しかし、対象が広範囲のため、見落とされがちなも のも少なくない。その一つが、道路建設に伴って造 られた側溝に野生小動物が転落し、そのまま死亡す る例である。これらを放置しておくと、生物の多様 性が失われ、生態系が崩れることにもなり兼ねない。

道路脇の側溝は、昆虫などの小動物にとっては、 転落すれば二度と脱出できない檻そのものであるの で、転落、死亡を最少限にするための対策が必要で ある。転落防止の対策としては、側溝の表面を塞ぐ ことと、グレーチングの目を細かくすることが考え られる。しかし、側溝の本来の目的は雨水吐である ため、この対策には限界がある。したがって、野性 小動物が側溝に転落しても脱出できるような脱出口 の設置が必要である。野生小動物の脱出の難易には、 脱出口の傾斜、表面の凹凸、表面の温度あるいは表 面の乾湿が影響すると考えられる。

本報告は特に脱出口の傾斜に注目し、脱出に適切 な角度を求めることを目的として行った野生小動物 の這上がり能力試験の結果を報告するものである。 2. 転落・死亡の調査

平成 19 年 7 月から 10 月まで、小磧水辺公園で、 野生小動物の側溝への転落状況の調査を行った。 写真-1,2 に示すような側溝への転落、あるいは死亡 が確認された。

写真-1 転落した小昆虫 写真-2 死亡したミミズ

側溝内で確認された野生小動物は主に昆虫類、ミ ミズであった。ミミズは側溝内に落下した場合、垂 直な壁面をよじ登ることができないし、主に湿った 土壌中に生息しているので、側溝内で死亡したもの は熱死によると考えられる。また、垂直な壁面をよ じ登るアリ類も認められた。側溝内に転落している 死亡個体は風によって飛ばされた個体も含まれてい るものと考えられる。さらに、垂直な壁面をジャン プしたり、よじ登ったりして脱出を試みようとする バッタやコウロギなどが確認された。これらの昆虫 に関しては「脱出しようとする」ことから脱出口の設 置などの対策工は有効であると考えられる。

3. 試験方法

試験は、写真-3 に示すスロープ付試験装置で行った。試験装置は斜面の傾斜を10度単位で調節できる 構造とした。材料は木版で、試験を行なっている際 に中の様子が見えやすいように、一側面を透明アク リル板とした。その中に小動物を入れ這上がり角度 を測定した。

写真-3 スロープ付試験装置

* 產業工学部環境保全学科教授

試験の斜面は、写真-4~7 に示すように凹凸の異な る4種類のコンクリートの表面とした。各表面は次 のとおりである。

表面-1 コテ仕上げ(コンクリート打ち、コテ仕上げ をしたもの)

表面-2 ほうき仕上げ(ほうきの跡をつけたもの) 表面-3 熊手仕上げ(熊手の跡をつけたもの)

表面-4 石混仕上げ(石を散らしたもの)

写真-4 表面-1

写真-6 表面-3

写真-7 表面-4

今回の試験では、対象とする野性小動物は、生態系 ピラミッドにおいて分解者であるミミズ、および消 費者であるカメ、クワガタムシ、カエルおよびヘビ とした。試験は、各小動物を試験装置の中に斜面上 方に頭が向くように入れ、斜面を這い上がることが できるかどうかを観察した。斜面を這い上がれた個 体については斜面の傾斜を 10 度ずつ上げて同様の 試験を繰り返した。なお、表面温度は18~19 であった。また、ミミズについてのみ、湿った状態 での試験を行い、乾燥した状態と比較した。

4.試験結果と考察

試験の様子を写真-8.9に、試験結果を表-1に示す。

写真-8 ミミズ 表面1、湿、70度

カメ 表面 2

表-1 野生小動物別 這上がり可能最大角度

	表面 1	表面 2	表面 3	表面 4
ミミズ (乾)	30度	50 度	30度	30 度
ミミズ (湿)	70 度	70 度	50度	50 度
カメ	30度	60度	50度	60度
クワガタ ムシ	50 度	90度	80度	90度
カエル	50度	60度	70 度	70 度
ヘビ	20度	60度	70度	70 度

5.おわりに

一部の野性小動物の這い上がり能力について試験 を行った結果、斜面に表面-2 程度の適度な凹凸があ れば、50度程度の傾斜の斜路ならば十分這い上がれ る、という結論を得た。

道路の建設、改修にあたっては、生態系に配慮 がなされるようになってきたが、まだ十分とは言 ない1)。特に、ここで取り上げた側溝についての研 究・検討は極めて少ない^{2)~4)}。今回の試験は、1 0月中旬~11月上旬にかけての試験であり、動物 種も種類が少なく、限られた試験になった。今後も 動物種を増やしつつ、他の季節においても試験を行 い、また施工面を考慮した表面の種類を増やすなど して、データの蓄積を図る必要がある。

参考文献

- 1) 鬼首エコドード研究会: 鬼首道路 エコロード 人と自然にやさしい道路をめざし への挑戦 て、(株)大成出版会、2003年3月.
- 2)小野田豊他:土木学会第51回年次学術講演会 概要集(平成8年9月) pp.524-525.
- 3) 倉品伸子:林業技術 N0640、(1995 年 7 月) pp.24-25.
- 4)川西恵美子他:第8回環境情報科学論文集、(1995 年) pp.57-62.