周期外乱オブザーバによる集中巻 IPMSM の制御 Periodic disturbance observer for IPMSM with Concentrated Winding

IPMSM with concentrated winding have a large amount of space harmonics in its inductance and magnet flux-linkage distributions. Therefore undesirable current distortion and torque ripple can be caused. To overcome this problem, a current controller employing the periodic disturbance observer is presented in this paper. Experimental studies using 7.5kW-8 poles IPMSM show that the proposed current controller realizes not only robust current control but also torque ripple suppression under the condition superimposing a compensated part on current command.

1. まえがき

最近では、小型・高効率化や製造コスト低減のために永久 磁石同期電動機の固定子巻線を従来の分布巻から集中巻とし たモータが増えてきている。集中巻にすることで製造コスト 低減が図られるだけでなく、巻線の総延長を短くでき、軸方 向の寸法も短縮できることから、銅損が低減される。よって 空間高調波増加により鉄損は増加するものの、一般的には分 布巻に比して総合的に損失が低く抑えられて効率が向上する。 集中巻モータは上記の特徴を有するため、コンプレッサ、イ ンホイールモータ、発電機、車載用モータなどの特殊用途で 多数適用されている。

しかし,集中巻により磁石磁束鎖交分布やインダクタンス 分布に含まれる空間高調波が大きくなり,コギングトルクも 増加する。するとそれが電流制御にとっては高周波数の外乱 となり,制御ゲインを上げることによりその影響を抑制する ことはサンプリング制御の無駄時間による不安定性を引き起 こすため限界があるので,電流を指令通りに制御することが 困難となる。その結果,電流に多量の時間高調波が含まれる ようになり,モータ効率の劣化やトルク脈動を生じるのみな らず,インバータの電流容量増大のリスクも生じる。また電 流を正弦波状に制御できたとしても,空間高調波やコギング トルクによるトルク脈動を抑制することはできない。

そこで著者らは、まず集中巻永久磁石同期電動機の特性式 とトルク式を導出し、主な空間高調波成分やトルク脈動成分 が6次であることを示す。そして電流制御ループに6次の位 相に応じて複数のフィルタを切り換える周期外乱オブザーバ を追加して電流の5次と7次の高調波成分が低減できること を実験で示す。また、電流指令に6次の交流成分を重畳し、 電流制御に周期フィードフォワードを追加することで、トル ク脈動を低減できることを示す。

大森 洋一	萩原 茂教	北条 善久
Yoichi Ohmori	Shigenori Hagiwara	Yoshihisa Hojo

2. 集中巻永久磁石同期電動機の特性式

この章では,集中巻永久磁石電動機の dq 座標上での電圧 方程式を導出する。3 相の電圧方程式は,

$$\begin{bmatrix} V_{u} \\ V_{v} \\ V_{w} \end{bmatrix} = R \begin{bmatrix} i_{u} \\ i_{v} \\ i_{w} \end{bmatrix} + p \begin{bmatrix} \lambda_{u} \\ \lambda_{v} \\ \lambda_{w} \end{bmatrix}$$
(1)

で表現でき, 巻線鎖交磁束は,

$$\begin{bmatrix} \lambda_{u} \\ \lambda_{v} \\ \lambda_{w} \end{bmatrix} = \begin{bmatrix} L_{u} & M_{uv} & M_{uw} \\ M_{vu} & L_{v} & M_{vw} \\ M_{wu} & M_{wv} & L_{w} \end{bmatrix} \begin{bmatrix} i_{u} \\ i_{v} \\ i_{w} \end{bmatrix} + \begin{bmatrix} \psi_{u} \\ \psi_{v} \\ \psi_{w} \end{bmatrix} \dots \dots \dots \dots \dots (2)$$

と記述できる。(1)式を3相から dq 軸の2相に変換する。 すると、

$$\begin{split} & [\mathbf{C}][\mathbf{v}] = [\mathbf{C}]R[\mathbf{i}] + [\mathbf{C}]P[\boldsymbol{\lambda}] \\ &= R[\mathbf{C}][\mathbf{i}] + p\{[\mathbf{C}][\boldsymbol{\lambda}]\} - p\{[\mathbf{C}]][\boldsymbol{\lambda}] \\ &= R[\mathbf{C}][\mathbf{i}] + p\{[\mathbf{C}][\mathbf{L}][\mathbf{i}] + [\mathbf{C}][\boldsymbol{\psi}]\} \\ &- p\{[\mathbf{C}]\}[\mathbf{L}][\mathbf{i}] - p\{[\mathbf{C}]\}[\boldsymbol{\psi}]\} \\ &= R[\mathbf{C}][\mathbf{i}] + p\{[\mathbf{C}][\mathbf{L}][\mathbf{C}^{-1}][\mathbf{C}][\mathbf{i}]\} + p\{[\mathbf{C}][\boldsymbol{\psi}]\} \\ &- p\{[\mathbf{C}]\}[\mathbf{L}][\mathbf{C}^{-1}][\mathbf{C}][\mathbf{i}] - p\{[\mathbf{C}]\}[\boldsymbol{\psi}]\} \end{split}$$

となり,

$$\begin{bmatrix} \mathbf{v}_{dq} \end{bmatrix} = R[\mathbf{i}_{dq}] + p\{[\mathbf{C}][\mathbf{L}][\mathbf{C}^{-1}]\}[\mathbf{i}_{dq}] + [\mathbf{C}][\mathbf{L}][\mathbf{C}^{-1}] p\{[\mathbf{i}_{dq}]\}_{...(4)} + p\{[\mathbf{C}][\boldsymbol{\psi}]\} - p\{[\mathbf{C}]\}[\mathbf{L}][\mathbf{C}^{-1}][\mathbf{i}_{dq}] - p\{[\mathbf{C}]\}[\boldsymbol{\psi}] \end{bmatrix}$$

である。ここで,

$$[\mathbf{C}] = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos\theta & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) \\ -\sin\theta & -\sin\left(\theta - \frac{2\pi}{3}\right) & -\sin\left(\theta + \frac{2\pi}{3}\right) \end{bmatrix} \dots (5)$$

であり, θはd軸位置でU相巻線軸から回転子の磁石のN 極軸までの角度である。

(2)式のインダクタンス行列の各要素は、巻線配置の空間的

な3相対称性と回転子の構造的対称性から

$$L_{u} = \sum_{k=0}^{\infty} L_{k} \cos 2k\theta$$

$$L_{v} = \sum_{k=0}^{\infty} L_{k} \cos 2k \left(\theta - \frac{2\pi}{3}\right)$$

$$L_{w} = \sum_{k=0}^{\infty} L_{k} \cos 2k \left(\theta + \frac{2\pi}{3}\right)$$

$$M_{uv} = M_{vu} = \sum_{k=0}^{\infty} M_{k} \cos 2k \left(\theta + \frac{2\pi}{3}\right)$$

$$M_{vw} = M_{uv} = \sum_{k=0}^{\infty} M_{k} \cos 2k\theta$$

$$M_{wu} = M_{uw} = \sum_{k=0}^{\infty} M_{k} \cos 2k \left(\theta - \frac{2\pi}{3}\right)$$

と表すことができる。ここで,

 L₀:各相巻線自己インダクタンスの直流成分

 L₁:各相巻線自己インダクタンスの2次成分

 L_{kk=2,3},...:

 A相巻線間の相互インダクタンスの直流成分

 M₁:各相巻線間の相互インダクタンスの2次成分

M_{kk=2,3}: 各相巻線間の相互インダクタンスの空間高調波成分 である。(6)式の各係数の値については、磁気飽和を無視すれ ば、回転子位置を固定した状態でU相巻線に商用電源を印加 し、流れた電流との関係からインピーダンス法にてU相巻線 自己インダクタンスを、またこのとき開放相であるV相巻線 の開放電圧を測定することでU-V相間の相互インダクタン スを測定し、この測定を適当な間隔で回転子位置を固定しな がら繰り返し行うことで得られる回転子位置対インダクタン ス分布特性をフーリエ級数展開して得られる。

同様にして、(2)式の永久磁石鎖交磁束は、

$$\psi_{u} = \sum_{I=1}^{\infty} \psi_{I} \cos I \theta$$

$$\psi_{v} = \sum_{I=1}^{\infty} \psi_{I} \cos I \left(\theta - \frac{2\pi}{3} \right)$$

$$\psi_{w} = \sum_{I=1}^{\infty} \psi_{I} \cos I \left(\theta + \frac{2\pi}{3} \right)$$

(7)

と記せる。ここで,

ψι:永久磁石磁束鎖交数の基本波成分

¥1.1=2.3.…: 永久磁石磁束鎖交数の空間高調波成分

である。(7)式の各係数の値については磁気飽和を無視すれば, 無負荷時の逆起電力波形を積分した磁束波形をフーリエ級数 展開して得られる。

(4)式に(6),(7)式を代入することで dq 座標上での電圧方程 式は以下のように書き改められる。

$$\begin{bmatrix} \mathbf{v}_{d} \\ \mathbf{v}_{q} \end{bmatrix} = \begin{bmatrix} \mathbf{R} + \mathbf{L}_{d} \mathbf{p} & -\omega \mathbf{L}_{q} \\ \omega \mathbf{L}_{d} & \mathbf{R} + \mathbf{L}_{q} \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{d} \\ \mathbf{i}_{q} \end{bmatrix} + \omega \begin{bmatrix} 0 \\ \psi \end{bmatrix} \\ + \begin{bmatrix} \mathbf{L}_{h1} \mathbf{p} + \omega (\mathbf{L}'_{h1} - \mathbf{L}_{h2}) & \mathbf{L}_{h2} \mathbf{p} + \omega (\mathbf{L}'_{h2} - \mathbf{L}_{h3}) \\ \mathbf{L}_{h2} \mathbf{p} + \omega (\mathbf{L}'_{h2} + \mathbf{L}_{h1}) & \mathbf{L}_{h3} \mathbf{p} + \omega (\mathbf{L}'_{h3} + \mathbf{L}_{h2}) \end{bmatrix} \begin{bmatrix} \mathbf{i}_{d} \\ \mathbf{i}_{q} \end{bmatrix} \\ - \omega \begin{bmatrix} \psi_{h1} \\ \psi_{h2} \end{bmatrix}$$

である。

(8)式の右辺第3,4項が,それぞれインダクタンス分布,磁 石磁束鎖交分布の空間高調波によって生じる電圧で,電流制 御においては外乱電圧に相当する。(11)式から第3項による 外乱電圧は6の倍数次成分となり,(12)式から第4項は3の 倍数次成分となることが分かる。

トルクの脈動成分は,(9)式の第3項以降であり,第8項 はコギングトルク成分である。コギングトルクは,極数と固 定子スロット数との最小公倍数を極対数で除したものの整数 倍の成分であり,通常は(9)式に示されるように6の倍数次成 分となる。

図1は,集中巻の供試機の線間無負荷誘起電圧波形である。 この波形が歪んでいるのは,電流は流れていないのでインダ クタンスの空間高調波成分には関係なく,永久磁石磁束鎖交

数の空間高調波成分によるものと考えられる。有限要素法に よるこのモータの磁界解析によって得られた回転子位置によ るインダクタンス分布(Ld,Lq)と永久磁石磁束鎖交数(φ)を図 2に示す。どれも回転子位置の6倍の次数で変動しているこ とから,(11)式及び(12)式で表される空間高調波成分が妥当 であることが分かる。

3. 周期外乱オブザーバによる電流制御

図3は従来の電流制御のブロック図であり,図4はその電流制御で集中巻の供試機(7.5kW, 1800min⁻¹, 190V, 29A, 8Pole)を100%トルク指令,1500min⁻¹の状態で運転したときの電流波形である。図5はそのFFT解析結果である。

図4,5より,従来の電流制御では電流に5次及び7次の 高調波成分があることがわかる。よって,インダクタンス分 布及び磁石磁束鎖交分布の空間高調波の主成分は6次 ((11)(12)式のm=1,z=2)であることが分かる。つまり図3に おいて,実際のモータがGなる既知の特性式((8)式の右辺第 2項まで)とおりであれば問題ないが,空間高調波による主 に6次の外乱電圧((8)式の右辺第3項以降) v_{dqh}が存在す るために電流波形が歪んだものと推測される。

そこで、電流制御の PI ゲインを大きくすることが考えら れるが、サンプリング制御であるのでゲインを大きくすると 不安定となってしまう。また、図6のような外乱オブザーバ を構成し、それによって外乱電圧を推定し補正する手法が考 えられる。しかし外乱オブザーバには低域通過フィルタ LPF を必ず必要とするので、外乱電圧の周波数が高いと振幅及び 位相の両方で外乱推定が正しくできなくなってしまう。それ を避けるために LPF の時定数を小さくすると PI ゲインを大 きくすると同様に不安定となってしまう。

以上の問題を解決するために、図7に示されるような周期 外乱オブザーバを提案する。図6の通常のオブザーバと異な り、低域通過フィルタをLPF1~LPFnのn個用意し、それら を補正対象次数の高調波の位相₀hに応じて選択する。0hは、

Fig.5 FFT analysis result of current with conventional control

図 7 周期外乱オブザーバ付き電流制御ブロック図 Fig.7 Block diagram of proposed current control

d 軸位置 θ に必ず同期しているので、 θ を補正対象次数で等分 することで得られる。低域通過フィルタは、選択されたもの のみフィルタ動作し、選択されていないものはデータを保持 する。例えば高調波の補正対象次数を6次とし n=8 とする と、6次の外乱電圧の位相が 0° $\leq \theta_h \leq 45^\circ$ の時 LPF1 が選択さ れ、45° $\leq \theta_h \leq 90^\circ$ の時 LPF2 が選択され、順に選択されて 315° $\leq \theta_h \leq 360^\circ$ の時 LPF8 が選択されることになる。空間高 調波に起因する外乱は周期的なものでその位相と等価なもの に応じて各 LPF を切り替えるので、各 LPF の入力はいつで も同じような値となる。図8は、n=8 の場合の各 LPF の入 力となる外乱電圧(実線)と各 LPF の出力(破線)を模擬 したものである。図に示されるように、各 LPF は外乱電圧 の各々の位相における外乱電圧の平均値を求めるように動作 し、外乱電圧の位相に応じて各 LPF の出力を切り替えるの で、周期外乱オブザーバの出力は図8の破線を接続した階段 状の波形となる。よって LPF の数を多くすれば、補正対象 次数の高調波の周波数が高く、LPF の時定数が長くても、周 期外乱オブザーバは補正対象次数の高調波外乱を位相遅れな く推定できることになる。選択された LPF の出力が外乱オ ブザーバの出力となるが、外乱オブザーバでは交流分のみ補 正させるために全ての LPF の平均値つまり直流分を引いて 外乱オブザーバの出力としている。

図9は、**図7**の周期外乱オブザーバ付き電流制御により**図4** の場合と同じ条件で電流制御した結果であり、**図4**と比較し

図9 周期外乱オブザーバ付き電流波形(1ms/div,10A/div) Fig.9 Current waveform with proposed control

-140dB

図10 周期外乱オブザーバでの電流波形の FFT 解析結果 Fig.10 FFT analysis result of current with proposed control

高調波成分の比較(基本波に対する割合) 表 1 Table 1 Harmonic component of current

次数	従来制御	提案制御
5	5.9%	1.4%
7	1. 2%	_
11	1.8%	1.2%

て高調波の少ないより正弦波に近い波形となっている。その FFT 解析結果を図10に、図5の場合と比較した高調波成分 値を表1に示す。補正対象次数の6次(3相電流波形では5 次及び7次)の成分が激減していることが分かる。なお5次 成分が残っているのは、簡単のため n=4 で実験をしたこと によるものと推測され、LPF の数を増やすことで減らすこと ができるものと考えられる。

4. トルク脈動の低減

(9)式に示されるように、トルク脈動は空間高調波によって 生じる成分とコギング成分がある。図11は、100%トルク 指令,200min⁻¹でのトルク波形を FFT 解析した結果であり, 6次の成分が最も大きく、12次や3次の成分も存在するこ とが分かる。最も大きい6次の成分を抑制するためにトルク

に寄与するq軸電流指令に6次の交流成分を重畳する方法が 考えられる。しかし, その周波数は比較的高いので, PI 制 御だけでは応答させることが困難となる。対策としてフィー ドフォワードを追加すればよいが、フィードフォワードは微 分演算なのでやはり低域通過フィルタを通す必要があり、そ れによって制御遅れが生じる。そこで、図7のスイッチ Sw を ON した構成とする。フィードフォワードは指令を入力と した逆システムG⁻¹の交流分を出力すればいいので、Swを ON することで周期外乱オブザーバの出力は、外乱電圧と フィードフォワードとの和の交流分とすることができる。つ まり LPF1~LPFn は、外乱オブザーバとフィードフォワー ドとの両方のフィルタとして動作することになり,外乱オブ ザーバと同様に LPF によるフィードフォワードの遅れをな くすことができる。

図12は、図7の Sw を ON した制御で q 軸電流指令に $i_{a6}\sin(6\theta+\alpha)$ の交流分を重畳した結果である。その大きさと 位相は調整されたものである。図12では、6次成分が大幅 に減少していることが分かる。図13は、その時の電流波形 である。これからも分かるように,集中巻永久磁石同期電動 機のようにコギングトルクや空間高調波が大きいモータでは, トルク脈動を小さくするために歪んだ電流を流す必要がある。

表2はトルク脈動の各次の成分を示したものである。表中 の「補正無」は q 軸電流指令に 6 次の補正項を重畳しないも のであり、「補正有」は q 軸電流指令に 6 次の補正項を重畳

トルク波形の FFT 解析結果

Fig.13 Current waveform with torque compensation

しただけで**図7**の Sw が OFF の状態であり,「補正有+周期 FF」は, q 軸電流指令に6次の補正項を重畳して Sw を ON にした状態である。上記交流分を重畳する補正をすることで 6次成分が大幅に減少し,**図7**のスイッチ Sw を ON するこ とで補正が遅れることなく行われることで,6次の脈動成分 がほぼ完全に抑制されている。

5. あとがき

集中巻 IPMSM の電圧方程式を導出し、インダクタンス分布の 空間高調波が6n 次の時間高調波電圧を、磁石磁束鎖交分布の 空間高調波が3n 次の時間高調波電圧を生じることを示した。 比較的高い周波数の時間高調波電圧による電流制御精度劣化 を改善するため、周期外乱オブザーバを提案し、電流の主た る歪み成分である5次・7次の低減効果を実験的に検証した。 また、q軸電流指令に6次の交流分を重畳することで、トル ク脈動の6次成分を低減できることを示した。同時に、電流 指令を電流制御の周期外乱オブザーバの入力に加えることで、 簡単に位相遅れのないフィードフォワードを構築することが でき、それによって主たるトルク脈動成分の6次成分をほぼ 完全に抑制できることを実験的に示した。

表2 トルク脈動成分の振幅(定格に対する割合)

Table 2 Amplitude of torque ripple component

次 数	補正無	補正有	補正有+周期 FF
3	0. 87%	0. 82%	0. 87%
6	7. 23%	1. 97%	0. 28%
12	1. 70%	2.03%	2. 04%

参考文献

- 吉本・北島・塚本・篠原:「IPMSM の高調波電流制 御」, 産業応用部門全国大会, 1-81, I-419~I-422, 平 15
- (2) 小坂・松井・谷口・百目鬼「リラクタンスモータのト ルク脈動抑制法の考察」,電気学会論文誌 D, 118, 2, 150-157,平10
- (3) 北条、大森、萩原、小坂、松井:「集中巻 IPMSM の トルク脈動低減制御」産業応用部門全国大会,1-105, I-499~I-502, 平16

大森 洋一 1987年入社。技術研究 所にてモータ制御に関 する研究に従事。現在, 産業事業部産業工場開 発グループにてインバ ータの開発・設計に従 事。

電気学会会員。

執筆者略歴

萩原 茂教 1996年入社。技術研究 所にて永久磁石同期モ ータ制御に関する研究 に従事。現在,産業事 業部産業工場開発グル ープにてインバータの 開発・設計に従事。 電気学会会員。

北条 善久 1998年入社。相模製作 所電機技術部にてイン バータ開発技術に従事。 現在,産業事業部産業 工場開発グループにて EDモータ制御装置設計 に従事。 電気学会会員。