388

大出力電子滅菌装置(10MeV 25kW)の開発

Developments of High Power Electron Beam Sterilizer (10MeV 25kW)

神納祐一郎*2 樹*1 名古屋航空宇宙システム製作所 久 л**̀**к 直 若 夫*3 元 技術本部 郁 中菱エンジニアリング株式会社 加 藤 卣 男*4

当社では、医療用具の滅菌用として 10 MeV、25 kW 級の電子リニアックを開発した。この電子リニアックは、高周波源とし て5MW,2856MHzのパルス型クライストロンを使用し、進行波型2m加速管と定在波型1空洞プリバンチャで構成されてい る。ビーム出力は、±1 MeV のエネルギースリットを持つエネルギー分析磁石(ビーム偏向磁石)を出たあとのチタン合金膜ビ ーム出力窓で25 kW(定格値)である。実運用における連続最大出力は、29 kW に達しており、この規模のS-band 電子リニア ックでは世界最高出力である。本電子リニアックのコントロールは完全自動化を図り、ボタン操作一つでシステム全体の起動/停 止が行える。今回2式を納入し、連日安定稼動を続けている。

A 10MeV 25kW class electron LINAC was developed for sterilization of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2 m electro-plated traveling wave guide uses a 5MW 2 856MHz pulse klystron as an RF source. This provides 25kW of beam power at the Ti alloy beam window stably after the energy analyzing magnet (beam bending magnet) with a plus-minus 1 MeV energy slit. The practical maximum beam power reached 29kW and was demonstrated as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and realizes "One-Button Operation" which is valuable for easy operation in a plant system. Two systems have been delivered and are being operated stably.

1.まえがき

医療用具の滅菌は、従来 EOG (エチレンオキサイドガス) によ るガス滅菌や Co⁶⁰ によるガンマ線照射が主流であった.しかし, 排ガスによる環境汚染や使用済み Co⁶⁰ 線源の処理等の問題が深刻 になりつつあり、クリーンな滅菌方法である電子ビームによる電 子線滅菌が注目されてきた。

電子滅菌装置の要求仕様に、電子エネルギー及び出力がある. 電子エネルギーは、滅菌される医療用具等の被照射体への電子ビ ームの浸透深さ、出力は、照射線量値を決定する. 滅菌工程では、 常に被照射体の表面線量、深度方向線量を管理し、正常に滅菌さ れていることを保証している. 前述の電子エネルギー及び出力は, 滅菌の信頼性及び生産性を左右する重要な要素であり、これらを 安定に供給することが電子滅菌装置には不可欠である。今回、(株) ホギメディカル向けに開発した電子滅菌装置は、加速エネルギー 10 MeV±0.5 MeV, ビーム出力 25 kW であり, 加速エネルギー は低いものの科学実験用の大型電子リニアックに比べ,加速管1 本当たりで数十倍程度の大出力を要求された。この国産初の大出

表 1	システム主要性能	
	Constant of the second	

5	ystem performance
電子エネルギー	10 MeV±0.5 MeV
ビーム出力	25 kW
ビームスキャン幅	45~70 cm 可変
照射均一度	± 5 %
周波数	2 856 MHz
ビームパルス幅	13.5 µs
ビーム電流	340 mA
パルス繰返し	10~700 Hz
	550 Hz (25.2 kW)
スキャン周波数	0.1~50 Hz

*4 電技総括部航空電子技術試験室グループマネージャ

*1 電子技術部電子技術課

*2 電子技術部電子技術課主務

*3 広島研究所応物·振動研究室主務

力電子滅菌装置の開発について紹介する.

2. 電子滅菌装置の概要

表1にシステム主要性能,図1,図2に外観及びシステム側面図 を示す、本システムは、放射線シールド用の約3m厚のコンクリ ート壁で囲われた放射線管理区域に設置されている。クライスト ロン及び電子銃への高電圧パルスを造りだすパルサ電源、加速器 制御盤、真空制御盤及び磁石電源盤等は、管理区域外の電気室に 設置してある.

2.1 電子リニアック

電子銃,プリバンチャ,加速管で構成されている.

電子銃には、140 kVのパルス電圧が掛かるため、大型の絶縁碍 子(がいし)にて大気中での絶縁を確保する設計とした。カソード としては、小さなヒータ電力で高い電流密度が得られる CPI EIMAC社の Y-845 を使用した. このカソードは、ディスペンサ

図1 電子滅菌システム外観 Electron beam sterilizer

型カソードと呼ばれ、タングステンのポーラス基材内に BaO を含 浸したもので、ヒータを加熱することにより電子放出源である Ba 原子がカソード表面に供給される.電子ビームの出力は、カソー ド前面のグリッドメッシュに電圧を掛けることにより制御してい る. このカソードは、良好なエミッション特性を確保するために 1×10⁻⁶Pa 程度の高真空としてある.

プリバンチャは、定在波型1空洞で電子銃と加速管の間に設け、 電子銃から出力された電子ビームに速度変調を掛けて予備バンチ ングを行う.このプリバンチャを備えることで、加速管のビーム 透過率を20%以上改善して90%まで高め、ビームロスによる加 速管熱負荷を最小とした.

加速管は,進行波型 60 空洞で,入口から 8 空洞が管内高周波の 位相速度を除々に光速度まで上げ加速するバンチャ部,残り 52 空 洞は管内高周波の位相速度が光速度一定で加速する CG 型 (Constant Gradient) レギュラ部の全長約 2 m である.加速管各空洞 は,超高品質無酸素銅を鍛造処理により剛性を高めたものを,精 密旋盤でダイヤモンドカッタにより±2 µm の精度で加工し,電鋳 により一体成形してある.

加速管外壁には、冷却ジャケットを設け冷却水を流す構造とし、 発熱による加速管ひずみを最小に抑える設計とした.加速管入口 及び出口部には、ゲート弁を設けメインテナンス時に加速管を大 気開放しなくてもよい設計とした.

2.2 270°ビーム偏向磁石

270° 偏向磁石は、ビーム軌道に沿って No.1, No.2, No.3 の磁極から構成される3セクタ方式とし、ビーム軌道となる偏向 部真空容器を挾んで両側にホローコンダクタ巻線を備えている。 No.1及び No.3磁極には、ビーム軌道の補正を行うためにトリム 巻線を配置した(図3参照).また、偏向角180°の部分にエネルギ ースリットを備え、帯域外のエネルギーをカットしている.

2.3 ビームスキャンニング装置

ビームスキャンニング装置は、ビーム偏向部の後段に配置され、 スキャンニング磁石とスキャンニングホーンで構成されている. スキャンニングは、スキャンニング磁石に直線性の優れた三角波

電流を流しビームを左右に走査している.スキャンニング幅及び 周期は,三角波電流の振幅及び繰返し周期を変えることで任意に 設定できるように設計した.

スキャンホーンは、スカート形状をしており、出力窓には130 μm のチタン合金膜で大気と隔離し、高真空を確保している。出力窓 では電子ビーム通過時のロスで発熱するため、約20 m/sの風速で 強制空冷を行っている。

2.4 パルサ電源

パルサ電源は、PFN (Pulse Forming Network) に蓄えた電 気エネルギーを大容量スイッチで放電させパルスを造るラインタ イプパルサ電源である.大容量スイッチには、サイラトロン (EEV 社 CX-1720 MN)を使用している.コマンド充電方式により、 PFN に充電するタイミングを厳密に制御し、サイラトロン導通後 の消弧時間を十分に確保して、サイラトロンの寿命を延ばす設計 としている.パルサ電源で成形された高圧パルスは、パルストラ ンスで昇圧/分配され、クライストロン及び電子銃に約140 kVの パルス波形を供給する.

図 4 加速管軸方向のビームプロファイル及びエネルギースペクトラム解析結果 加速管内径 20 mm に対し、10 mm 以内にビ ームが集束されており、10 MeV±0.5 MeV の範囲にエネルギーが集中していることが分る. Result of beam profile and energy spectrum analysis

2.5 システム制御

加速器制御盤及び真空制御盤等の制御は,工業用 PLC (Programmable Logic Controller) で行っており,各制御盤間は高速 のディジタル光リンクで接続されている.通常,加速器の運転は, 各種のパラメータ (加速高周波出力,ビーム電流値,磁石電流値 等)をモニタしながら行うのが一般的である.本システムでは, 集中監視室の EWS 上で起動操作をするだけで,出力上昇を完全自 動で行い,オペレータの負荷を最小としている.EWS 上では,加 速器関連,真空関連等の運転状況をリンクを介して常にモニタし ており,異常時に自動停止するインタロック機能及びモニタ値の トレンド表示等の機能を持たせ,安全性に細心の配慮をしている. また,運転状況モニタは,電話回線にて名古屋航空宇宙システム 製作所に設置の端末機で見ることができるようにしてあり,異常 時の原因分析,客先への的確なアドバイスができるように配慮し ている.

3. 大出力電力リニアックの技術的要点

大出力電子リニアックを安定に動作させるための技術的な要点 は、① 加速用高周波ロス及びビームロスを極小として、加速管熱 負荷を最小とする、② 熱負荷による加速管熱ひずみを最小化及び ひずみ分の補正、の2点である。本電子リニアックでは、高品質 の加速管により加速用高周波ロスを最小にするとともに、以下に 述べるビームダイナミックス設計の最適化によりビームロスの最 小化をすることで①を解決した。また、②については適応冷却方 式(特許出願中)により加速管熱ひずみの最小化をすることで、 この問題を解決した。

ビームダイナミックス設計は、PARMELA (Phase and Radial Motion in Electron Linacs) によるビームダイナミックスのシミ ュレーションで解析を行った.本プログラムは、米国 LANL (Los Alamos National Laboratory) で開発され、SLAC (Stanford Linear Accelerator Center) 等の加速器研究機関で広く使用され ている低 β 領域でのビームダイナミックスシミュレーションコー ドである.この解析コードによる試行結果、バンチャ/レギュラー 体の加速管のみでは、最適調整をしてもビーム透過率約 60 %、有 効ビーム (10 MeV±0.5 MeV) は約 45 %しか得られないことが 分かった.ビーム透過率が低いのは、電子銃からの電子ビームの 位相が加速高周波の1周期 (360°) の全域に分布しているためで、 加速高周波位相に乗れず加速途中で加速高周波からスリップして しまうためである.このため、加速管前段にプリバンチャ (定在 波型1空洞)を設ける設計とした. プリバンチャでは,電子銃か ら出力される電子ビームに比較的低い電界を与え,加速高周波で 加減速し電子に速度変調を与える.速度変調された電子ビームは, ドリフト空間を進む間に速い電子が遅い電子に追いつき,加速管 入口で加速高周波位相に対して一定の位置に集群する. プリバン チャを付けた場合のシミュレーションでは,ビーム透過率約90 %,有効ビーム約84%と格段に改善されることが判明した.

図4(a)は、加速管軸方向の電子ビームプロファイルで、加速管 内径約20mmに対し、10mm以内にビームが集束されており、加 速管出口部では約8mmのビーム径であることが分かる。図4(b) は、中心エネルギー10MeV時のエネルギースペクトラムで、10 MeV±0.5MeV以内に全電流の84%が集中していることが分か る。

4. 性能確認結果

調整過程において、ビームプロファイル、ビーム透過率、電子 エネルギーを測定した結果を以下に示す.

4.1 ビームプロファイル

ビームプロファイルは、加速管出口の直線延長上1.5m位置の 観測窓からビーム軌道に蛍光板を差込み、ビームが当ったときの 蛍光をモニタカメラで観測した.図5(a)は、蛍光状態の写真で、 蛍光部の径は約15mmとなった.これは、図5(b)の解析結果と 良好に一致している.

4.2 ビーム透過率

ビーム透過率は,電子銃出口,加速管出口及びビーム偏向出口 に取付けてあるコアモニタにより測定した.

測定結果は、電子銃出口で400 mA、加速管出口360 mA、ビーム偏向出口340 mA であり、加速管でのビーム透過率90%(解析結果90%)、有効ビーム85%(解析結果84%)と、解析結果と良く一致した結果が得られた。

4.3 電子エネルギー

電子エネルギーは、比重 0.2 の均一試料を用いて深度方向線量 分布を測定し、減衰特性から求めた.その結果、図 6 (a)に示す深 度方向線量分布が得られ、透過深度が 25 cm であることから 10 MeV の電子エネルギーを確認した.

電子エネルギー幅は、270°偏向磁石のエネルギースリット部の観 測窓に蛍光板を差込み観測した. 偏向磁石電流設定値を10 MeV にしたときの結果を図7に示すが、10 MeV をセンタにして±0.5 MeV の範囲にビームが当たっていることが確認できた. これは、

(b)加速管出口1.5mでの径方向のビームプロファイル解析結果

図5 ビームプロファイルモニタによる観測と解析結果 加速管出口から、1.5 m でのビーム径が約15 mm に収まっ ていることが分かる. Result of beam profile moniter and analysis of radial section

図6のPARMELAによる解析結果と良好に一致している.

5. 照 射 特 性

滅菌を保証するためには、被照射体(医療用具を収めたダンボ ール)に均一に電子ビーム照射をする必要がある.このため、被 照射体の幅方向表面に線量計を取付け,照射後の線量分布を測定 した.線量分布測定結果は,最大幅80 cmにおいても、均一度± 5%以内であり、良好な結果を得た〔図6(b)参照〕.

6. あとがき

電子リニアックの安定性,操作性が向上し,今後は,EOG 滅菌 やガンマ線滅菌から電子滅菌への移行等の市場拡大が期待される. そのためには,より信頼性の高い装置の開発及び経済性の点から も,電力変換効率を上げ消費電力を下げる等の工夫が必要となっ ている.

(株)ホギメディカル筑波滅菌センターに納入した電子滅菌装置

図6 深度方向及び幅方向線量分布測定結果 深度方向線量 分布から電子エネルギーが10 MeV 及び幅方向の照射均一性が ±5%以内であることが分かる. Result of depth profile and scan uniformity

初号機(2機)は、現在順調に稼動しているが、今後も現状に満 足することなく、市場ニーズに沿った装置の改善を推進する予定 である。