実態活荷重に基づく道路橋の合理的疲労設計法の研究

Study on Rational Fatigue Design Method of Road Bridges Based on Actual Live Load

神 戸 造 船 所 **磯 田 厚 志*! 岩 本 洋 一***² 技 術 本 部 **神 野 藤 保 夫***³ 阪神高速道路公団 **堀 江 佳 平***⁴

道路橋では、変動応力比率が低いことから、一部を除き疲労を考慮した設計法は採られていなかった。近年の車両大型化・通行量増大・合理化構造の採用などから、疲労設計の導入とライフサイクルコスト面からの最適設計が要求されている。本報では、鋼床版箱桁(けた)橋の主桁・床組に着目した実橋長期応力頻度計測及び載荷試験より、応力頻度の実態並びに荷重一応力関係を明らかにし、大型車両通行量データを用いて疲労損傷度を算定した。これらより交通実態と等価な損傷度を与える荷重を推定し、実態荷重と整合した疲労照査手法を提案した。特に主桁系では、複数車線の同時載荷の影響を考慮した同時載荷補正手法を提案した。なお、本調査研究は阪神高速道路公団の委託業務として実施したものである。

With some exceptions, road bridges are not designed taking into account fatigue so far due to the low fluctuation stress ratio. Fatigue and an optimum design considering life-cycle cost are increasingly required as vehicle size and traffic volume increase. We studied fatigue damage by measuring long-term stress frequency, focusing on the main beam and floor construction of steel-floor box-girder bridges, and clarified the load-stress relationship by the actual bridge live load, then computed the degree of fatigue damage using traffic volume data on large vehicles. A load that may provide a degree of damage equivalent to actual traffic volume was estimated from these factors, and fatigue checking compatible with an actual load is proposed. For the main girder, in particular, a simultaneous load compensation taking into account the effects of simultaneous traffic load in a number of lanes is required.

1. 緒 言

鋼道路橋においては、設計段階での疲労の考慮が望まれているが、荷重形態が多種多様であり、疲労設計上重要となる応力変動量及びその頻度の推定が困難である。すなわち、橋梁各部位の応力頻度分布は活荷重の大きさ、通行回数のみならず活荷重の通行位置によっても異なってくる等影響因子が複雑であり、疲労設計荷重を統一的に設定することが難しい。

本報は、供用中の道路橋の実態活荷重に基づき疲労設計荷重を 設定し、疲労設計法の指針を得ることを目的としたものである。

2. 実 施 内 容

阪神高速道路の標準的な鋼床版箱桁(けた)橋2橋を対象に, 以下の手順にて調査・研究を実施した.

- (1) 実橋載荷試験により1車両の応力影響線の特性を評価した.
- (2) 実態活荷重による応力頻度の計測及び大型車通行量の把握.
- (3) 両者の比較により実態交通に相当する疲労設計荷重の逆推定を行う. なお, 疲労設計曲線 (S-N線図)等の設計基準は, 鋼構造物の疲労設計指針・同解説(1)を適用した.
- (4) この過程において疲労照査で考慮すべき影響因子を部位ごと に整理し、疲労設計用荷重からの合理的な設計照査手順の一提 案を行った。
- (5) 特に、主桁系については3~4車線の同時載荷の影響について、鉄道橋複線載荷時の補正手法を参考に車両同時載荷確率に基づく簡易補正手法を新たに提案した。

3. 実橋応力計測の概要

実橋計測は、以下に示す構造の異なる2種類の3径間連続鋼床 版箱桁橋を対象とした。

- (1) 3号神戸線明治工区: 1箱桁2車線桁. 縦リブはバルブプレート. 交通量が多く,供用後25年経過し,補修歴がある. 設計荷重は TL-20 である.
- (2) 4号湾岸線石津工区: 2箱桁4車線桁. 縦リブはUトラフ. 湾岸線の標準的な構造である。設計荷重はTL-20及びTT-43 である。

上記2橋梁に対し、試験車による載荷試験を実施、その後各3

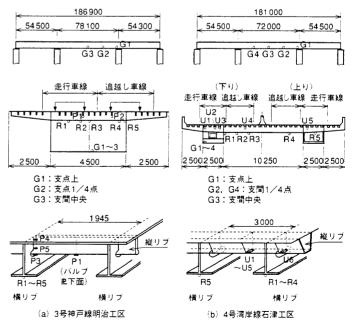


図1 応力計測位置 対象橋梁の一般図と実橋計測における応力計測位置を 示す。

Stress measurement points

^{*1} 鉄構部構造設計課長

^{*3} 高砂研究所構造研究室主查 *4 湾岸管理部保全課

^{*2} 鉄構部構造設計課

三菱重工技報 Vol. 36 No. 5 (1999-9)

箇月間の実働応力頻度計測を実施した。図1に対象橋梁の一般図と計測位置を示す。計測位置は主桁系と床組系の代表部位を選定した。載荷試験の荷重には総重量20tfの後輪2軸のダンプトラックを用いた。応力頻度計測はヒストグラムレコーダを用い、レインフロー法により応力振幅とその頻度を計測した。

3.1 実橋載荷試験

本試験は応力変動波形の把握を目的としたもので、別途 FEM 及び一般的な鋼床版の計算法である FSM (有限帯板要素法) により 影響線解析を行い、試験車走行時の応力変動波形を求めた。

試験車の載荷による応力変動波形の実測値の一例を解析結果と 共に図2に示す。鋼床版縦リブのように応力影響線長の短い部材 では、輪重対応で応力振幅を生じており、疲労設計荷重は車両の 軸数を考慮する必要がある。

3.2 実橋長期応力頻度計測

応力頻度計測により実態活荷重による応力範囲頻度分布を把握 するとともに、別途調査による大型車通行台数も把握しておく.

なお、実測応力範囲頻度分布による、疲労照査の結果を表1に

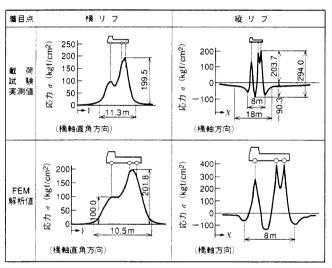


図 2 実橋載荷試験における応力変動波形と解析値 縦リブでは輪荷 重対応で応力振幅を生じていることを示す。 Stress fluctuation wave-form and analytical values of actual bridge live load test

表 1 長期応力範囲頻度分布計測結果

Results of measurement of long-term stress range frequency distribution

(応力単位:kgf/cm²)

		(5) - Fr 365 (tid 956 (6)	簡便な照査			詳細な照査			
	-1 -1 14 14 14		応力範囲頻度分布計測結果		INDEA WEE			H-FM 3 MH TE	
計測部位		路線	最大応力範囲 Jσ _{max}	総カウント数	継手 等級	$\Delta\sigma_{\mathrm{ce}}$	結果	50 年間の 疲労損傷度	
主桁	支点上	К	441	268 358	Е	632	O.K.	_	
	支間中央	К	713	974 080	Е	632	要	0.255	
	支点上	11.	862	85 310	Е	632	要	7.00 E-04	
	支間中央	W	1 098	406 672	Е	632	要	2.63 E-03	
横	主桁内	K	778	1 397 075	Е	633	要	0.042	
関リブ	支点上	К	519	347 719	G	326	要	0.188	
	.注桁間	W	I 258	185 503	Е	632	要	4.05 E-03	
	支間中央	К	1 297	2 605 372	D	857	要	0.504	
縦リブ	支点上	K	908	2346756	Е	632	要	0.259	
	支間中央	W	712	555 962	F	169	要	2.29 E-03	
	支点上	W	368	280 355	F	469	O.K.		

路線…K:神戸線、W:湾岸線、計測期間…K:93 H、W:63 H コσ_c。: 一定振幅応力に対する応力範囲の打切り限界。要:詳細な照査必要

示す。疲労設計指針⁽¹⁾における"簡便な照査"(疲労限照査)では 床組系を中心に"詳細な照査"が必要との結果が得られた。"詳細 な照査"(疲労損傷度照査)にて現計測結果を 50 年間の累積疲労 損傷度に換算すると、約 0.5 程度であった。

4. 同時載荷係数の補正手法

隣接車線の影響については同時載荷係数として研究されている⁽²⁾ が、いずれも2車線分の影響を主として取扱っている。これらは、図3(a)に示す鈑桁を対象としたもので、図3(b)のように橋軸直角方向の荷重分配効果の大きい非合成箱桁及び鋼床版箱桁の主桁では同時載荷の影響を過小評価する可能性がある。

ここでは鉄道橋における複線載荷の影響の考慮法⁽³⁾を道路橋に適用し、3車線以上に拡張することを検討した。

車両1台の走行による応力影響線を三角形分布とし、その基線 長(同符号部分)をL(m)とすると、隣接車線との影響線が重なり 合った場合の影響線形状は、 $\mathbf{23}$ 4に示すように変化する。ここで、

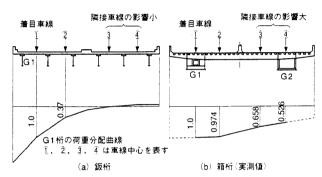


図3 荷重分配係数比 着目車線の影響線の最大値と、隣接車線の 影響線の最大値との比を荷重分配係数比とする。 Ratio of load distribution coefficient

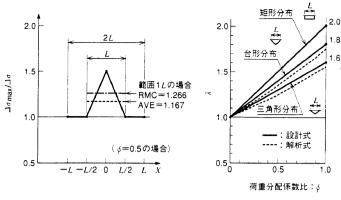



図4 隣接車線の影響 応力影響線が3角形分布の場合の影響線の重なりを示す。Effects of adjacent lanes

- (a) 影響線の最大値(三角形分布)
- (b) 隣接車線同時載荷時の合成応力 範囲の期待値を与える係数:λ

図 5 影響線の重なりの最大応力範囲のモデル化 (a) 影響線の重なり時の 最大応力範囲の推移を示す。(b) 最大応力範囲の 3 乗平均期待値の近似式 を示す。

Modeling of maximum stress range where influence lines overlap

着目車線の影響線の最大値を $\Delta \sigma$ とし、隣接車線の影響の最大値を $\phi \cdot \Delta \sigma$ (ϕ : 荷重分配係数比)とする。このときの最大応力範囲は図 δ のように、範囲 δ において変動する。

この最大応力範囲が変動する区間が、隣接車線と重なり合う確率 b は、式(1)のようになる。

$$b = L/l$$
 (三角波) (1) ここで、

L=1000 t·v: 大型車の平均車頭間隔 (m)

v:大型車の平均速度(km/h)

t=24/n: 大型車の平均到着時間(h)

n: 1日の1レーン当りの大型車交通台数 (台/d・レーン), ADTT (Average Daily Truck Traffic) と称す。

三角波の重なりの最大応力範囲の 3 乗平均期待値 $\Delta\sigma_{RMC}$ は、図 5 の範囲 L において式(2)で与えられる。

$$\Delta \sigma_{\text{RMC}} = \left[\int_{-L/2}^{L/2} \Delta \sigma(x)^3 dx / L \right]^{1/3}$$

= $\left[1 + 3 \phi / 2 + \phi^2 + \phi^3 / 4 \right]^{1/3} \Delta \sigma$ (2)

同様に影響線の形状を放物線分布の簡略モデルとして台形波とした場合、鉄道橋のように矩(く)形波とした場合の同時載荷による最大応力範囲の期待値を与える係数を、 $\lambda = 2 \sigma_{RMC}/2 \sigma$ として、図 5 に示す。いずれもほぼ直線的に右上がりのこう配を有するため、若干の余裕をみて以下の直線近似式(3)を定義する。

$$\lambda (\phi) = 1.0 + a\phi \tag{3}$$

$$\Xi = \mathcal{T},$$

a:影響線形状係数(a=0.6:三角形分布,

a=0.8:台形分布, a=1.0:矩形分布) したがって同時載荷係数 K_2 は, 式(4)のように求められる.

$$K_2 = \beta / \Phi \tag{4}$$

$$\beta = [(1-b)(1+\phi^3) + b(1+a\phi)^3]^{1/3}$$
 (5)

$$\mathbf{\Phi} = (1 + \mathbf{\phi}^3)^{1/3} \tag{6}$$

ここで,

β:同時載荷がある場合の隣接車線の影響

Φ:同時載荷のない場合の横分配による隣接車線の影響

b:同時載荷確率

φ:荷重分配係数比

式(4)と交通流シミュレーションによる既研究結果(2)を比較する

と、両者は良く一致するが、大型車交通量が極端に多くなる場合は式(4)の方が5%程度大きく(安全側)なる傾向にある。

3 車線における同時載荷係数は、3 車線同時載荷の確率、2 車線のみ同時載荷の確率、単独載荷の確率を求め、それぞれの応力 範囲の期待値(同時載荷は3乗平均値)に乗じて、全体の3乗平 均値を求めることにより得られる。

4 車線では同時載荷係数 K₂は式(7) で表される。

$$K_2 = \beta / \Phi \tag{7}$$

$$\mathbf{\Phi} = (1 + \mathbf{\phi}_1^3 + \mathbf{\phi}_2^3 + \mathbf{\phi}_3^3)^{1/3} \tag{8}$$

$$\beta = [(1-3b)(1+\phi_1^3+\phi_2^3+\phi_3^3)+b(1+a_1\phi_1)^3 + b(1+a_2\phi_2)^3+b(1+a_3\phi_3)^3+b(a_1\phi_1+a_2\phi_2)^3 + b(a_1\phi_1+a_3\phi_3)^3+b(a_2\phi_2+a_3\phi_3)^3]^{1/3}$$
(9)

ここに,

φ₁, φ₂, φ₃:着目車線以外の車線の荷重分配係数比
 a₁, a₂, a₃:着目車線以外の車線の影響線形状係数
 b:2車線だけの場合の同時載荷確率(b=L/l₂)

5. 疲労設計活荷重の推定

5.1 推定手順

橋梁各部材の大型車 1 台通行時の疲労に対する影響度合を表す指標 $^{(4)}$ として、大型車 1 台当りの等価応力範囲 $\varDelta\sigma_{\rm e}^{\prime}$ を次式(10)により求めた

$$\Delta \sigma_e' = (\sum \Delta \sigma_i^3 \cdot n_i / N_L)^{1/3} \tag{10}$$

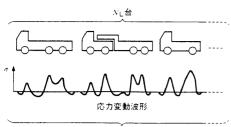
ここに,

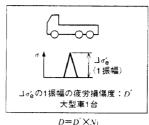
 $\Delta \sigma_i$: 応力範囲頻度分布の一応力範囲成分 n_i : 応力範囲頻度分布における $\Delta \sigma_i$ の頻度 $N_{\rm L}$: 計測期間中の 1 レーンの大型車通行台数 $(N_{\rm L}={
m ADTT}\times{
m 計測日数})$

ADTT:路線別大型車通行量データによる

これは、図 6 に示すように、実交通における大型車による疲労損傷度と等価となる、大型車 1 台につき 1 振幅の応力波形の大きさを表す。この場合、疲労損傷度は $2\sigma_{\rm c}$ と $N_{\rm L}$ で求めることができ

また、載荷試験及び解析による応力変動波形もレインフロー法でカウントすることにより、20 tf 車 1 台走行時の等価応力範囲を求めることができる。したがって、両者の Δσωを比較することにより、実態交通を代表する疲労設計荷重の推定が可能となる。


5.2 疲労照査で考慮すべき影響因子


主桁については、荷重横分配の影響を補正する係数 ϕ 、橋軸方向同時載荷係数 $K_1^{(2)}$ 及び隣接車線同時載荷係数 K_2 を考慮する必要がある.

 $K_1 = 0.0012 \ L + 0.964 \quad (30 \le L \le 200 \quad L : スパン)^{(2)} \quad (11)$ 横リブでは、横分配補正係数 ϕ のみを考慮すればよい。なお、主桁、横リブの場合、 $\Delta \sigma_{\rm e}$ は厳密には大型車が各車線に 1 台ずつ走行したときの等価応力範囲である。

縦リブについては、輸荷重位置の橋軸直角方向の分布⁽⁵⁾を考慮する横分布補正係数 α_1 , アスファルト剛性等⁽⁶⁾の設計計算上考慮されていない応力の低減を行う設計計算補正係数 α_2 を考慮する必要がある。 α_2 は、載荷試験による実測値と解析値により定めた。このほかに応力頻度分布からの荷重推定のためには、実際のレーンの輸荷重載荷位置が縦リブ直上にないため、走行位置補正係数 α_3 を考慮した。

$$\alpha_{1} = \left[\int \sigma_{YY}^{3} \cdot f_{XYY} \sigma_{\pi,0,\mu,\mu,0} \, dY \right]^{1/3} / \sigma_{Y=0}. \tag{12}$$

疲労損傷度:D

(a) 実際の大型車交通と応力変動波形

(b) 大型車1台当りの 等価応力範囲:ユ ré

図 6 大型車 1 台当りの等価応力範囲 大型車 1 台当りの等価応力範囲の意味を示

Equivalent stress range per large-size vehicle

表 2 大型車 1 台当りの等価応力範囲 🛮 🗗 🖟 の比較

Comparison of equivalent stress range per large-size vehicle $\Delta \sigma_{\rm e}'$

部材	主 桁			横りブ		縦リブ	
部位			支点上	主桁内	主桁間	支間中央	支点上
路 線			К	K	W	W	W
横分配補正係数: 0			1.26	1.00	1.00	_	_
1 車線同時載荷: K ₁			1.12	_			
隣接車線同時載荷:K ₂			1.16	_			-
横分布補正係数:α ₁			-	_		0.73	0.74
Σ Mi⊥E ∶ α₂	_	_	_	Teacher	_	0.65	0.65
l袖正:α ₁	-		-	-	-	0.90	0.90
実測応力頻度	ച் _{σe} ′			.Jσ′ _e		Δσ _e	
による⊿が。	191	118	81	209	101	114	83
截荷試験による	$\mathbf{\Phi} \cdot K_1 \cdot K_2 \cdot \mathbf{\Delta} \sigma_{\mathrm{e}}'$			Ø· Jσ′ _e		$\alpha_1 \alpha_3 \perp \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	
⊿σ _e	219	117	117	234	138	146	116
解析値による	$\mathbf{\Phi} \cdot K_1 \cdot K_2 \cdot \Delta \sigma_{\mathrm{e}}'$			Φ· Δσ _e		$\alpha_1\alpha_2\alpha_3 \mathcal{J}\sigma_e'$	
⊿σ _e	231	145	113	235	127	135	124
	部 位 路 線 直正係数: の 同時破荷: K_1 限同時破荷: K_2 真正係数: α_1 注補正: α_2 資補正: α_2 ではよる $\Delta \sigma_0$ 板荷試験による $\Delta \sigma_0$ 解析値による	部 位 支間 路 線 K it E K	部 位 支間中央 路 線 K W 直正係数: の 1.26 1.33 司時級荷: K ₁ 1.06 1.05 限同時极荷: K ₂ 1.10 1.07 直正係数: α ₁ 注誦正: α ₂ 実測応力頻度 Jσ ₆ による Jσ ₆ 191 118 最荷試験による の・K ₁ ・K ₂ 解析値による の・K ₁ ・K ₂	部 位 支間中央 支点上 路 線 K W K 直正係数: の 1.26 1.33 1.26 同時級荷: K ₁ 1.06 1.05 1.12 疑同時級荷: K ₂ 1.10 1.07 1.16 直正係数: α ₁ — — — — — — — — — — — — — — — — — — —	部 位 支間中央 支点上 主桁内路線 K W K K 直正係数:の 1.26 1.33 1.26 1.00 目時報荷:K ₁ 1.06 1.05 1.12 一 傾同時報荷:K ₂ 1.10 1.07 1.16 一 直正係数:α ₁ — — — — — — — — — — — — — — — — — — —	部 位 支間中央 支点上 主桁内 主桁間路 線 K W K K W M ELF系数: の 1.26 1.33 1.26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10	部 位 支間中央 支点上 主 行内 主 行間 支間中央 路 線 K W K K W W M i L に 係数: の 1.26 1.33 1.26 1.00 1.00 - 同時 板荷: K ₁ 1.06 1.05 1.12

$$\boldsymbol{\alpha}_{3} = \left[\frac{\int \sigma^{3}_{Y} \cdot f_{X|Y|: \sigma = 30, \; \mu = 0} \, \mathrm{d}Y}{\int \sigma^{3}_{Y} \cdot f_{X|Y|: \sigma = 30, \; \mu = 30} \, \mathrm{d}Y}\right]^{1/3}$$
(13)

ここに,

σ_Y: 着目点の橋軸直角方向の影響線 f_{NY:σ,μ}: 標準偏差 σ, 平均 μ の正規分布

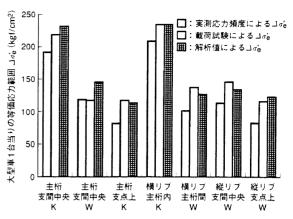

5.3 推定荷重

表 2 及び図 7 に、各影響因子を考慮して求めた大型車 1 台当りの等価応力範囲 $\Box \sigma_{i}'$ を示す。実交通による応力範囲頻度分布及び大型車通行量より求めた $\Box \sigma_{i}'$ と、載荷試験による 20 tf 車の $\Box \sigma_{i}'$ を比較すると、実交通は疲労に対して、部材別に $\Box \tau_{i}'$ の荷重効果があることが明らかになった。したがって、現状の交通荷重を代表する疲労設計荷重は前輪 1 軸、後輪 2 軸の 20 tf 車程度に相当すると考えられる。

本研究とは別に、車重頻度分布から求めた大型車重量の 3 乗平均の 3 乗根(RMC)を表 3 に示す⁽⁷⁾. このデータも 20 tf 近傍であり、本研究の結果と良く対応する.

6. 疲労設計手法への提言

本研究による手法を疲労設計へ反映すると、設計応力範囲を疲労設計荷重が 1 台走行したときの応力変動波形を 1 振幅で表す、大型車 1 台当りの等価応力範囲 2σ (とし、設計繰返し数を 1 車線の計画大型車通行台数とすることができる。縦リブ、横リブでは、 2σ (を疲労設計荷重が 1 台走行したときの最大応力範囲として簡略

着目点(路線···K:神戸線、W:湾岸線)

図7 大型車1台当りの等価応力範囲⊿♂。の比較 実態応力 頻度と載荷試験、解析値より求めた⊿♂はおおむね等しいこ とを示す

Comparison of equivalent stress range per large-size vehicle $\varDelta\sigma_{\rm e}'$

表3 大型車重量 RMC の比較(7)

Comparison of large-size vehicle weight RMC

	大型車重量 RMC	比率	重量測定機関
首都高速3号線	22.628 tf	1.132	
首都高速 5 号線	16.377 tf	0.819	首都高速道路公団
首都高速湾岸線	24.702 tf	1.235	
熊谷バイバス	22.323 tf	1.116	
湾岸線有明	21.660 tf	1.083	建設省
首都高速用賀	18.816 tf	0.941	
阪神高速尼崎	20.758 tf	1.038	
阪神高速住之江	17.964 tf	0.898	阪神高速道路公団
阪神高速芦屋	18.756 tf	0.938	

注) 車重 RMC の比率は車重 20 tf に対する比率を示す。

化できる.

一方,既往の研究では RC 床版の飯桁を対象に疲労設計荷重は T 荷重 (1軸 20 tf) を基準として議論されているが、本研究対象 の鋼床版床組のように影響線長が短い部材については、荷重とす る車両の軸配置が評価に大きく影響することに注意が必要である。

1. ま と め

本研究により、実態交通による疲労損傷度の把握及び相当する 実態疲労設計荷重推定値を得た。また、3車線以上に適用可能な 隣接複数車線の影響評価手法を提案し、実態交通一実応力頻度の 関係と整合性のとれた合理的な疲労照査手順の一提案を行った。

参考文献

- (1) 日本鋼構造協会, 鉄構造物の疲労設計指針・同解説 (1993)
- (2) 阪神高速道路公団・日本鋼構造協会、都市高速道路橋の疲労 設計荷重の設定に関する研究(I~III) (1993~5)
- (3) 土木学会,本州四国連絡橋の疲労設計,本州四国連絡橋鋼上 部構造に関する調査研究報告書別冊 2 (1974)
- (4) 三木千寿ほか、シミュレーションによる道路橋の疲労設計活 荷重の研究、構造工学論文集、Vol.32 A (1986) p.597
- (5) 阪神高速道路公団, 阪神高速道路の設計荷重体系に関する調 査研究,設計荷重(HDL)委員会報告書(1986)
- (6) 名古屋高速道路公社、鋼床版の合理化と耐久性向上に関する 調査研究報告書 (1995)
- (7) 関西道路研究会道路橋調查研究委員会,耐久性小委員会報告 書(1994)