CO₂冷媒用スクロール圧縮機のトライボロジー要素開発

Tribology in CO₂ Scroll Compressors

技術本部	萩	田	貴	幸 *1	牧	野	武	朗 *²
	洞	П	典	久*3				
冷熱事業本部	鵜	飼	徹	≡*4				

現在カーエアコンに用いている R134a は、地球温暖化係数が高いため代替冷媒として自然冷媒である CO₂が注目を集めている。今回、CO₂カーエアコン用にスクロール圧縮機を開発した。CO₂は R134a に対して運転時の圧力が高いため、CO₂スクロール圧縮機のスラスト軸受は従来の圧縮機より負荷が高くなり、効率・信頼性ともに低下する。そこで、高効率・高信頼性を達成するために "静圧アシスト軸受"を開発し、これを適用した CO₂スクロール圧縮機が高効率を達成できることを確認した。また、CO₂冷媒用のエラストマ、冷凍機油、シャフトシールの調査を実施した。

The natural refrigerant CO_2 has attracted attention as an alternative to R134a currently used in automotive airconditioning, which has high global warming potential. A scroll compressor was developed for CO_2 automotive airconditioning. The pressure of CO_2 is much higher than that of R134a, resulting in low CO_2 scroll compressor thrust bearing reliability and efficiency because of the large gas thrust. The static pressure assist bearing we developed was confirmed experimentally and analytically to be feasible in CO_2 scroll compressor use. We also studied elastomer, shaft-seal, and refrigerant oil for CO_2 refrigerant.

1.まえがき

カーエアコン用冷媒は、オゾン層破壊防止のためR12から R134aへの切替えを終了した。しかし地球温暖化防止の観点 から、R134aも規制対象になりつつある。これに代わる冷媒 として自然冷媒である二酸化炭素(CO₂)が注目されている。

CO₂を冷媒として考えた場合,利点として毒性がなく不燃性 で,安全および安価であることが挙げられる.その一方 R134a と異なり CO₂は高圧側が超臨界状態になり,従来の単純な冷 凍サイクルでは COP (Coefficient of Performance:成績係 数)が低くなるため,システムとして高圧制御等により COP を改良する必要がある.システムの改良に関しては既報⁽¹⁾にお いて詳しく報告している.

その時用いた圧縮機では、単体として全断熱圧縮効率 (ηall)で76%と高効率を達成した.しかし、プロトタイプ として性能の確認用に製作したため、現行のR134a用に対し て重い圧縮機となっていた.今回、軽量化と高効率を両立し た軽量圧縮機を試作し、実機による性能試験を実施した.

2. CO2冷媒の特徴

表1に CO₂と R134a の物性を示す.現行カーエアコンに使用している R134a 冷媒はオゾン破壊係数は0 であるものの,GWP (Global warming potential:地球温暖化係数.地球温暖化への寄与度を CO₂を1とした割合で示す)が3100と高いものになっている.一方,CO₂冷媒は GWP は低く,また R134a と同様に毒性がなく,不燃性の取り扱い易い冷媒である.一見,地球温暖化防止(CO₂排出量の削減)のために CO₂を冷媒に使用するということは矛盾に聞こえるが,CO₂は

表1 CO₂物性一覧

Characteristics	of	CO_{2}
-----------------	----	----------

	ODP*1	GWP 20 年* ²	臨界 温度 (℃)	臨界 圧力 (MPa)	蒸発 潜熱* ³ (kJ/kg)	飽和 圧力* ³ (kPa)	飽和 蒸気密度*+ (kg/m ³)
CO_2	0.0	1	31.1	7.38	231.6	3485	97.32
R134a	0.0	3100	101.2	4.07	198.4	293	14.43

*1 ODP: Ozone Depleting Potential (オゾン層破壊係数), *3 at 0°C *2 GWP: Global Warming Potential (CO₂対比20年積分), *4 at 0°C

冷媒用として新たに生成するのではなく,既存ガスを使用するため,実質的にGWP=0である.

次に 0 °C における CO₂と R134a の単位体積当たりの冷凍能 力を比較すると、CO₂の方が約 8 倍程度大きくなる. このため 広範囲な運転条件等を考慮しても、CO₂用圧縮機の押しのけ量 は R134a に対して $1/8 \sim 1/6$ 程度にできる.

また、0℃の飽和圧力を比較するとCO₂冷媒は R134a 対比 10 倍以上の高圧となっている。従来より高圧となることによ り各しゅう動部の荷重の増加、シール部の差圧の増加を招き、 圧縮機を設計していく上で問題となる。

CO₂スクロール圧縮機の高効率化

3.1 CO2冷媒用スクロール圧縮機の構造

R134a 用カーエアコン圧縮機としてのスクロールタイプ は、吸入弁を持たないことにより特に高速回転域での圧力損 失が小さい優れた特性を有する。また体積変化率が小さいた め吐出脈動が小さくなり、低騒音・低振動となる優れた特性 も有する。冷媒を CO₂に変更してもこの基本的な資質は保た れる。

特

集

図1 CO₂圧縮機外観 今回試作した軽量プロトタイプ圧縮機(押 しのけ量:13 ml). The appearance of CO₂ compressor

図2 **圧縮機効率損失分析** CO₂冷媒用に改良した軽 量プロトタイプ圧縮機はR134a以上の効率となる. Compressor efficiency

図3 静圧アシスト軸受の効果 スラスト面に油圧を導入し、スラスト軸受荷重をアシストしている(a 図). アシストの効果により PV 値を実績値以下に(b 図)、また効率向上できる(c 図) ことが分かる. Effect of 'static pressure assist bearing'

したがって、CO₂用圧縮機にはスクロールタイプを選定した.図1に試作した軽量プロトタイプ圧縮機の外観を示す.

図2に R134a で用いているカーエアコン用スクロール圧縮 機の損失と,押しのけ量のみ小さくし CO₂用としたスクロー ル圧縮機(以下,改良前 CO₂圧縮機と称す),および今回の改 良を加えた軽量プロトタイプ圧縮機の3種類の損失効率の解 析結果を示す.

改良前 CO₂圧縮機は R134a に比べ圧力損失が小さい. この 理由は CO₂の密度が R134a より大きく,循環量が少なくなっ たためである.一方,改良前 CO₂圧縮機は漏れによる損失が 大きいが,これは CO₂圧縮機の高圧と低圧の圧力差が R134a より大きいためである.機械損失が増加した理由は,圧力が 高くなることにより,しゅう動部(特にスラスト軸受)の損 失が増加したためである.したがって,改良前 CO₂圧縮機は 全体として R134a 用圧縮機対比効率が低下する.

CO₂用スクロール圧縮機を高効率化するためには,高圧化に より発生する圧力室からの漏れの低減と,荷重の増加による 機械損失の低減が必要になる.そこで,スクロール歯先から の漏れに対しては旋回スクロールと固定スクロールを押し付 ける構造を採用した.また機械損失低減のために,特に大き な荷重の掛かるスラスト軸受には軸受背面から高圧を付加し スラスト荷重を低減する構造(以下"静圧アシスト軸受"構 造)を採用した.

3.2 静圧アシスト軸受

図3(a)に静圧アシスト軸受の模式図を示す。静圧アシスト 軸受は図のように上から掛かっている荷重に、高圧側にある オイルセパレータより分岐し注入した油圧を下から付加する ことにより、スラスト軸受に掛かる荷重を低減することを特 徴としている。

本静圧アシスト軸受構造は機械効率の向上を図ると同時に スラスト面の面圧も低減可能であるため信頼性の向上にも役 立つ.図3(b)に静圧アシスト軸受を採用した軽量プロトタイ プ圧縮機のしゅう動部面圧 P としゅう動部速度 V の関係示 す.図3(b)には当社 R134a 用圧縮機のスラスト軸受実績値及 び静圧アシストを採用しなかった場合の値を記入している. 境界潤滑領域での信頼性の指標となるしゅう動部面圧,しゅ う動速度のそれぞれの値及び両者の積(PV値)が圧縮機の CO₂対応化により従来の実績値を超えた厳しい領域になる.し かし静圧アシスト軸受採用により PV 値を従来の実績値以下 に抑えることができる.

この静圧アシスト軸受の効率向上の効果に関して、単体試 験により確認をした。図3(c)にその結果を示す。油圧でアシ ストしスラスト荷重を下げていった場合に効率(全断熱圧縮 効率で評価)が上昇していくことが判る。ただし、スラスト 荷重を下げ過ぎた場合には効率が低下し、効率に関してピー クとなる荷重があることが判る.この効率低下の原因はアシ ストに使用する高圧油の漏れ量がある荷重以下になると増大 するためである.

3.3 実機検証

前記構造を採用し、効率に対してスラスト軸受荷重を最適 化した軽量プロトタイプ CO₂スクロール圧縮機の性能を解析 した結果が、図2の中央の軽量プロトタイプで示されている。 漏れ損失及び機械損失低減により、R134a 全断熱圧縮効率 68%に対して CO₂は 75%まで向上する見込みを得た。

このプロトタイプ圧縮機を用いて 40 km/h 走行における全 断熱圧縮効率の実測を行った。図4に CO₂圧縮機効率の解析 結果と実測結果を示す。スクロール圧縮機の解析結果と実測 結果は若干実測値が低下しているがほぼ一致しており、回転 数2400 min⁻¹で効率 73%を達成した。

斜板圧縮機では、回転数を増加すると、吸入弁による吸入 圧力損失が増加し効率が低下するのに対して、スクロール圧 縮機では回転数を増加すると効率が向上することを示してい る.

解析および実測から軽量プロトタイプ CO₂スクロール圧縮 機は広い運転範囲で高効率を達成できることが分かった.

4. Oリング材および冷凍機油の評価

カーエアコン用 CO₂空調システムを実用化するに当たり、 システムに使用するエラストマ(今回は O リングに関して評価)および冷凍機油の選定も重要な課題の一つとなる.

4.10リング

現在 R134a 冷媒用のカーエアコンシステムに対しては H-NBR (水素化ニトリルゴム) 等の O リング材がシール部に多 用されている. CO₂冷媒で O リングを使用する際の大きな課 題として、O リング内の CO₂冷媒の透過による漏れ、および 破損 (ブリスタ) が挙げられる. そのため、現状 CO₂システ ム内 (圧縮機を含む)の固定シール部に関しては O リングで はなく、メタルシールを適用している. メタルシールを適用 できないシャフトのメカニカルシール等の可動シール部に適

表2 0リング浸漬試験結果

Results of dipping tests for O-ring

材 質	体積変化率(%) [試験直後]	体積変化率(%) [24 時間後]	ブリスタの有無
A	60.54	1.52	有り
В	22.78	4.77	有り
C	24.67	-0.25	無し
D	12.40	-2.28	無し

試験条件: 80°C, 15 MPa, 100 hr

表3 冷凍機油の CO₂冷媒に対する特性

Ch	aracteristics	of	oile	for	CO.	refrigerant
	aracteristics	U1	OIIS	101	UU_2	remgerant

	388 S.R. 54-	化学的	化学的安定性			
	间俏住	熱·酸化安定性	加水分解安定性	CO2相溶性	密度	
PAG	0	Δ	0	Δ	0	
POE	0	0	×	\bigtriangleup	\times	
アルキル ベンゼン	0	0	0	×	×	
鉱油	0	0	0	×	\times	

用するOリング材に関して,評価を実施した.試験結果を, 表2に示す.ブリスタや膨潤に対して優れる表中DのOリン グ材を選定した.

4.2 冷凍機油

一般的に空調システムで使用される冷凍機油に対しては, 潤滑性, 圧縮機への油戻りの良好さ, 化学的安定性等が要求 される. レシーバ等の液溜を内部にもつ冷凍システムでは安 定してシステム流量を調整するとともに, 圧縮機への油戻り 性を確保するために, 冷凍機油は CO₂冷媒より密度が重いこ と, あるいは CO₂冷媒との相溶性が要求される. **表**3に CO₂ 冷媒に対する各種冷凍機油の特性を示す. 油戻り性, 化学的 安定性を考慮した上で, PAG 油(グリコール油)を選定した.

5. シャフトシールの評価

開放型カーエアコン用圧縮機においては、配管継手、フラ ンジ、シャフトシールの3カ所のシールが必要である.この うちのシャフトシール部には、通常、リップシールを使用し ているが、CO2圧縮機では機内圧力が2MPa程度以上になる ことから採用が困難である.そこで、コンパクト性を勘案し て、シングルスプリング型メカニカルシールを採用した.

5.1 試験装置

試験装置の概要を図5に示す. 圧力容器の両端にシール部 を設け、その一端はモーター駆動の回転軸をシール部を貫通 させず、端面よりリークの計測を容易にするとともに、シー ル部の観察を可能とした. なお、メカニカルシールのシート 面からのリークは、Oリングからの浸透漏れと分離して独立 に計測している.

5.2 試験方法

静止時リーク試験では、通常のリーク計測の他に、シート リングにサファイアガラスを使用して、リーク量と状態観察 の対応をつけた.なお、冷凍機油は POE (エステル油) およ

三菱重工技報 Vol. 38 No. 6 (2001-11)

合には静止時に自標値サーク重をクリア可能な とが判る. Results of leak tests at static condition

び PAG を試験部容積の 50% 封じ込め使用した.

リーク量計測にはマスフローメータを使用した.また、リ ークレベルが常時低い場合に対応するため、質量分析装置を 用いた計測系で静止時のリーク量を同定した.

5.3 試験結果

静止リーク試験の結果を図6に示す. PAGを用いた場合と 温度を臨界温度以上に保持して実施した POE の試験の場合, リークは瞬時値としてあらかじめ設定した目標値に近い値を とるものの,時間平均ではほとんど検出限界近くにあって, 大きな漏れが認められない.

一方で、温度を臨界温度以下に保持して POE を用いた試験 でリークが急増した。

静止時のシール面の状態を図7に示す。外周側が高圧域で リークは内周に向かって発生する。PAGを用いたものでは油 (PAG)とCO₂が分離しており、油(PAG)は容器の下半部 を占めている。上半部のシール面外周部は油がメニスカスを 形成しており、液または気体のCO₂に直接曝されていないこ とが、少ないリーク量につながっているものと考えられる。

一方, POE を用いた場合には, CO₂が液化する条件では相 分離が起こらず,シール外周付近に界面が見られない.すな わち,液体の CO₂が油と同じくどの位置からも液体としてす 特集

シールしゅう動面

図7 シール面観察結果 PAG を用いた場合 には、CO₂と油との界面ができていることが 判る. View of seal surface

きまに侵入するのでリークが増大することが示唆される.

さらに回転試験を実施した結果,静止試験のリークレベル に比較してリーク量は増大しているが,実機の作動状態を考 慮すれば時間あたりのリーク総量は目標値をほぼ満足するこ とが分かった.

6.ま と め

CO₂冷媒の圧縮機に対してスクロールタイプを選定し、効率 向上のためスクロール押し付け構造および静圧アシスト軸受 を適用した.解析および実測により CO₂スクロール圧縮機が 全断熱圧縮効率で73%の高効率を達成することを確認でき た.また、CO₂冷媒用のエラストマ、冷凍機油に関しても調査 を実施し適用可能な材質を選定し、また CO₂シャフトシール の漏れ量を明確化し、通常使用時にはほぼ問題ない漏れ量で あることが確認できた.

今後は圧縮機の更なる小型・軽量化を進めると同時に,広 範囲での使用ができる信頼性を確認し,実用化を図る.

参考文献

(1) 吉岡明紀ほか、カーエアコン用 CO₂空調システムの開発、三菱重工技報、Vol.37 No.2 (2000) p.74