

# 固体酸化物形燃料電池(SOFC) 発電システムの開発

**Development of SOFC Power Generating System** 

| 杉 | 谷 | 敏 | 夫 | 加 | 幡 | 達 | 雄 |
|---|---|---|---|---|---|---|---|
| 橋 | 本 | 貴 | 雄 | 溝 |   |   | 孝 |

当社は,ガスタービン複合発電システムと組み合わせることにより,60%LHV(石炭)~70%LHV以上(LNG)の 高効率発電が実現できる固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)の開発を進めている.円筒型SOFCは, 2001年に10kW級モジュールにて加圧内部改質で755時間連続運転を達成した.また,一体積層型SOFCは,2000年7 月から2001年10月にかけて常圧25kWモジュールの運転試験を実施し,最大出力15kW,累積7500時間運転を達成し た.これら実証機試作を通じて,電池モジュール構造の確立を図り,SOFC発電システムの早期実用化に向けて開発を 進めて行く.

## 1.ま え が き

燃料電池は, エネルギー効率が高く, CO<sub>2</sub>をほとんど発生 せず環境負荷が小さいことなどから開発が進められている. その中でも固体酸化物形燃料電池(SOFC)は,高温作動の ため多様な燃料を使用できること,電池単体で45%以上, ガスタービン複合発電システムとの組合わせで60%LHV (石炭)~70%LHV以上(LNG)の高効率発電が可能なこ となどから,将来の分散電源,集中電源として期待されてい る.当社は1984年にSOFCの開発に着手して以来,電池を 構成するセラミック材料,電池構造,製造技術及び電池モジ ュール\*の開発を推進し,現在数10~100kW級発電システ ム実証機の開発段階にある.本報では,当社で開発を進めて いる円筒型SOFC及び一体積層型SOFCの開発状況と次ステ ップへの展望について述べる.

\* 電池モジュール:複数の電池を収納し,発電反応場を維持する容器

#### 2.円筒型加圧内部改質10 kW 級モジュールの開発

#### 2.1 加圧化技術開発

SOFCは1000 レベルの高温作動で排ガス温度が高く, また,燃料排ガス中に未利用燃料を含んでいるため,ガスタ ービンと組み合わせた複合発電システムを構成することが可 能である.図1にSOFC複合発電システムの系統図を示す. SOFC複合発電システムにおいては,ガスタービンの空気圧 縮機で昇圧した空気をSOFCへ供給するため,SOFC電池モ ジュールの加圧運転が必須となる.当社は,電源開発(株) と共同で加圧モジュールの開発を進めており,1998年には, 電源開発(株) 若松総合事業所において10kW級加圧モジュー ルにて7000時間連続運転を達成した<sup>(112)</sup>.

#### 2.2 円筒焼結型 SOFC の開発

当社は,モジュール開発と並行して電池本体の低コスト化 及び耐久性改善のため,焼結法による電池製造技術の開発を



図1 加圧型 SOFC 複合発電システム SOFC とガスタービン 複合発電システムを組み合わせた,加圧 SOFC 複合発電シス テムの系統図を示す.







進めてきた.図2(a)に円筒焼結型SOFCの電池構造を示す. 円筒焼結型SOFCは,押出成型した円筒状のセラミックス管 (基体管)の外面に,燃料極,電解質及び空気極を順次縞状 に成膜して複数の単電池を構成し,さらに,単電池間を導電 性のインターコネクタにより電気的に接続した構造となって いる.構成図2(b)は1本の基体管上に22個の単電池を配列 した例である.

129

表 2 加圧内部改質型 10kW 級 モジュール仕様

| 形式        | 円筒形      |
|-----------|----------|
| セルチューブ数量  | 288本     |
| 運転温度      | 900      |
| 運転圧力      | 0.39 MPa |
| 燃料        | 天然ガス     |
| 電流        | 64 A     |
| 電圧        | 160 V    |
| 出 力       | 10 kW    |
| 発電効率(HHV) | 40 %     |



| ,,,,,    |                         |      |
|----------|-------------------------|------|
| 項目       | 材 料                     | 製 法  |
| 基本管      | CSZ                     | 押出成型 |
| 燃料極      | Ni / YSZ                | 湿式法  |
| 電解度      | YSZ                     | 湿式法  |
| インターコネクタ | チタン塩酸                   | 湿式法  |
| 空気極      | (La,Sr)MnO <sub>3</sub> | 湿式法  |



図3 システム発電効率概算比較 内部改質によ る発電効率への効果を示す.発電時の電池発熱 をメタンの改質エネルギーとして利用するため, システム発電効率が上昇する.



ム及び運転結果を示す.

表1に円筒焼結型SOFCに使用している電池構成材料と製 法を示す.構成材料はすべてセラミックス材料である.焼結 法は,原料であるセラミックスの粉を溶媒に溶かしたスラリ ーを基体管表面に順次印刷し,複数の膜を同時に焼結するた め,材料の歩留まりが高く,製造設備も安価であることから 電池本体の製造コストの低減が期待される.

また,更なる低コスト化のため,単位面積当たりの電気出 力を増加させたアドバンス円筒型SOFCの開発を新エネルギ ー・産業技術総合開発機構(NEDO)の委託を受け実施して いる.

#### 2.3 内部改質技術開発

SOFCが発電反応に直接利用できる燃料は水素(H<sub>2</sub>)及び 一酸化炭素(CO)である.燃料に都市ガスを用いる場合, その主成分であるメタン(CH<sub>4</sub>)を水蒸気(H<sub>2</sub>O)と反応さ せて水素と一酸化炭素に改質する必要がある.メタンの改質 反応は式(1)のように,吸熱反応であり熱の供給が必要と なる.

| $CH_4 + H_2O$ | $CO + 3H_2$ | 11 218 KJ/Nm <sup>3</sup> | (1)    |
|---------------|-------------|---------------------------|--------|
| 一方,SOFCは      | は発電に伴い      | 電池が発熱するため                 | , 電池の冷 |

却が必要である.SOFCの燃料極にはメタン改質触媒作用の あるニッケル(Ni)が含まれていることからSOFC内部でメ タンの改質反応が可能で,電池発熱をメタン改質反応熱源に 利用すると同時に電池の冷却も行うことができる.このよう に,内部改質発電システムは熱を有効に利用できるため,シ ステム全体の発電効率向上が可能となる.図3に電池発熱を 利用しないでメタンを改質した場合(外部改質)及び電池発 熱を利用した場合(内部改質)のシステム発電効率の概算比 較を示す.内部改質の発電効率は,外部改質に比べて約 15%の向上が見込まれる.内部改質技術はSOFC複合発電シ ステムの発電効率65%を達成するために必要不可欠な技術 である.

#### 2.4 加圧内部改質型10 kW 級モジュール発電試験

当社は,円筒焼結型SOFCを使用した加圧内部改質型 10kW級モジュールの開発を,電源開発(株)と共同で進め てきた.本モジュールの主仕様を表2に示す.運転計画点は, 圧力0.39 MPa,温度900 で,電流64Aにおける出力は 10kWである.モジュール外観及びモジュール構造をそれぞ れ図4(a)(,b)に示す.モジュール容器は円筒竪型形状で, 内部は燃料ヘッダ,発電室,空気予熱器で構成されている. システム系統図を図4(c)に示す.燃料の都市ガスは付臭剤 として添加されている硫黄分を脱硫処理した後,モジュール へ供給する.また,都市ガスの改質に必要な水蒸気は,発電 後の燃料排ガスに含まれる水蒸気を再循環することで自給し ている.

本モジュールの運転結果を,図4(d)に示す.計画点にお いてモジュール出力10kWを達成し,加圧内部改質では世 界に先駆けて連続755時間の長時間運転を達成し,計画停止 した.

3. 一体積層型常圧25 kW 級モジュールの開発

#### 3.1 一体積層型 SOFC の開発

当社は,1990年より一体積層型(Monoblock Layer Built:MOLB型)SOFCの開発を進めてきており,1996年 には,中部電力(株)と共同で平板型のSOFCとしては当時 最高の5.1 kWの発電出力を達成した.電池構造を図5(a), (b)に示す.電池本体は,電解質に燃料極,空気極スラリ ー材料を塗布した発電膜と,発電膜を電気的に接続するイン ターコネクタにより構成される.発電膜に凹凸状の三次元デ ィンプル構造を採用することで,単位体積当たりの有効発電 面積が増加し,出力密度の向上が可能となった.さらに発電 膜の三次元ディンプル構造は燃料及び空気ガス流路を形成す るとともに,発電膜の機械的強度を向上させている.

一体積層型 SOFC では, 平板状の発電膜とインターコネク

タを積み重ねて電池を構成するため、電池端部に燃料ガス及 び空気をシールするガスシール材が必要である.従来は、ガ ラス材料を主成分とするガスシール材を使用していたため運 転状態で溶融し、シール性が不安定となる課題があった.こ れに対して、当社は、高密度化セラミックスを用いたガスシ ール材料を独自に開発し、耐久性、信頼性を向上させた.一 体積層型SOFCの特長をまとめて以下に示す.

- (1) 原材料をスラリー化して製作するため,連続生産が可能.
- (2)主要部材は発電膜,インターコネクタのみで部品点数が 少なく,すべてセラミックスで構成される.
- (3) 三次元ディンプル構造の発電膜によりコンパクトなシス テム構築が可能.

3.2 実用化電池の開発(電池の連結接合方式の開発)

ー体積層型SOFCは,大容量化に伴い,発電膜及びインタ ーコネクタの積層数を増していく必要がある.従来は,垂直 方向への積層構造[図5(b)左図]としていたが,積層数が 増えた時に電池の総重量が増加し,最下段層への荷重応力増 大が懸念された.さらに,積層段数を増加すると積層電池に 燃料ガス・空気を導入するためのガスマニホールドが大型と なり,電池とガスマニホールドの熱膨張率整合化と精密な成 形技術が要求され,積層数を制限する必要があった.そこで, 信頼性を確保しつつ大容量化を図るため,電池を水平方向に 接続する連結接合方式[図5(b)右図]を開発した.連結式 一体積層型(Train type MOLB:T-MOLB型)SOFCの外観



130



図6 連結一体積層型数10kW級発電試験装置 連結一体積層型電池を用いた数10kW級発電試験装置の構造及び外観写 真を示す. 部が電池モジュールである.

写真を図 5(c)に示す.写真は,発電膜とインターコネクタ を10段積層した電池にガスマニホールドを取り付け,2個 連結した例である.連結式一体積層型SOFCでは複数の積層 電池を水平方向に連結して大容量化を図るため,発電膜への 荷重応力が増大することがない.

3.3 一体積層型 SOFC の耐久性検証

ー体積層型SOFCの実用性を検証するため,積層電池(10 段)の長期及びサーマルサイクル特性試験を実施した.その 結果,1000 から室温までのサーマルサイクル3回を含む 2000時間の連続発電において出力密度0.35 W/cm<sup>2</sup>を示し, その耐久性を確認した.さらに,図5(d)に示すように,積 層電池(10段)を用いて,温度変化率を変化させたサーマ ルサイクルテストを実施し,10 /hから200 /hの温度変 化速度で電池性能の低下が無いことを確認した.

3.4 数10 kW 級常圧モジュール発電試験

SOFCの実用化には,電池反応による発熱により電池の作 動温度1000 を維持する熱自立システムの開発が不可欠で ある.熱自立運転の課題を抽出し解決するために,(1)電池 反応による熱自立運転,(2)都市ガスによる起動昇温,(3) 都市ガス改質ガスによる発電試験が可能な数10kW級の熱 自立モジュールを開発し,発電試験を実施した.

数10 kW級モジュールの装置系統について図6(a)に,試 験装置の外観を図6(b)に示す.燃料改質系統,燃料再循環 系統,空気系統,燃料系統からなり,装置としては,主に都 市ガス改質装置,制御盤,発電炉から構成される<sup>314)</sup>.2000 年7月から翌年3月まで5348時間発電試験,さらにモジュ ール改造後,2001年7月から10月まで2152時間発電試験を 実施し,平板型SOFCとしては世界最高となる出力15 kW, 累積7500時間発電(内部改質100%運転2473時間)を達成 した.さらに,モジュールの高性能化をNEDOの委託を受 け実施している.

### 4.ま と め

SOFCはクリーンで環境に優しい高効率発電システムとし て期待されている.SOFC実用化の1つの姿として,SOFC を加圧化しガスタービン複合発電システムと組み合わせた, 大容量事業用発電代替発電システム(代表写真)がある.ま た,SOFCは燃料の化学エネルギーを直接的に電力に変換す



図7 SOFC実用化イメージ(SOFC分散電源用パッケージ) SOFCを用いた分散電源用パッケージの実用化イメージを示す.

るため,小規模でも高い発電効率が得られることから,中小 容量分散電源(図7)としての適用も考えられる.

今後,SOFC電池モジュールのスケールアップとシステム 開発を図り,実用化を推進していきたい.

終わりに,SOFCに関する当社の技術は,NEDO委託研究 及び長年にわたる電源開発(株),中部電力(株)との共同 研究の中で培われてきたものであり,関係者に対し感謝の意 を表する.

#### 参考文献

- (1) 久留ほか,加圧型SOFC10kWモジュール,第7回燃料
  電池シンポジウム講演予稿集 No.B3-11(2000-5)
  P334-341
- (2) 森ほか,加圧型10kW級モジュール,第8回SOFC研究 発表会講演要旨集 No.110B(1999-12) P.49-54
- (3) Nakanishi, A. et al., Development of several 10kW class MOLB type SOFC, in proceedings of the Fuel Cell Seminar (2000-10) P.779-782
- (4) Sakaki, Y. et al., Development of MOLB type SOFC, in Solid Oxide Fuel Cells VII (2001-6) P.72-77

