

特集論文

・民生電子部品搭載 オンボードコンピュータの宇宙実証

Space Verification of On-Board Computer Integrated with Commercial IC

柴山直樹*1	赤 澤 宣 子*²	小 山 正 博*²
Naoki Shibayama	Nobuko Akazawa	Masahiro Koyama
宮 川 真 —*²	伊 藤 哲 正* ³	上之郷一都*4
Shinichi Miyagawa	Tetsumasa Ito	Kazuto Kaminogo

衛星搭載機器の低コスト化・高性能化・小型化の実現手段として,近年,民生部品・技術を積極的に取 り込み,宇宙転用していくことが重要な鍵となっている.当社では,民生部品・技術を採用した将来衛星 搭載用低コスト・高性能オンボードコンピュータ(OBC)の開発を行い,2003年11月より宇宙環境信 頼性実証衛星(SERVIS)1号機にて,宇宙実証実験を実施中である.今日まで良好な実証結果を得ており,約2年近くの長期運用実績を得た.本報では,今回開発したOBCの概要及び宇宙実証試験結果について 紹介する.

1. はじめに

21世紀のグローバルネットワーク構築に向けて, 衛星通信,観測分野の衛星需要は高く,衛星搭載機器 の低コスト化・高性能化・小型化が要求されている.

現状の衛星搭載機器には,特殊な高信頼性部品が使 われており,非常に高価で性能的にも時代遅れのもの となっている.このため,低コスト化・高性能化・小 型化の実現手段として,民生部品・技術を取り込み, 宇宙転用していくことが重要な鍵となっている.

しかしながら,民生部品は厳しい宇宙環境下で使用 するように設計されておらず,耐放射線性や耐環境性 (振動,熱等)に問題がある.特に,放射線に関して は,機器設計上必要な部品メーカの放射線保証データ はなく,軌道上での耐放射線性評価方法も十分確立さ れていない等,課題が多い状況である.

当社では、上記の課題を解決し、宇宙転用を図るた め、各種対策を施した民生部品搭載の低コスト・高性 能オンボードコンピュータ(OBC)を開発し、宇宙 環境信頼性実証衛星(SERVIS)1号機にて、宇宙実 証試験を実施中である.

2. 実験機器の開発

2.1 開発仕様

本機器は、将来衛星搭載機器への適用を目指してお り、それらに要求される処理性能を想定し、開発仕様 を表1の通り設定した.処理性能は、画像処理等を実 現可能とするため、従来衛星用の10倍以上である

*1 名古屋誘導推進システム製作所誘導・電子機器技術部主幹*2 名古屋誘導推進システム製作所誘導・電子機器技術部電子機器・ソフト設計課

100 MIPS以上と設定した.

また,機器には2.3項の各種放射線対策と,搭載 した民生部品単体の耐放射線評価回路を追加した. OBCの外観を図1に示す.

2.2 採用した民生部品・技術

今後のプロジェクトで低コスト化・高性能化・小 型化実現の必要性が高い部品であり,また地上の放射 線試験結果から,宇宙転用の耐性評価に有効な部品と

表1 開発仕様

項目	性能・諸元
CPU	32 bit CPU
処理性能	100 MIPS (百万命令/秒) 以上
メモリ容量	SRAM (1 Mbyte), SDRAM (16 Mbyte)
消費電力 (Typ)	$20\mathrm{W}$
外形寸法(Typ)	$302 \times 230 \times 84 \text{ mm}$
質 量 (Typ)	5.2 kg 以下
追加機能	耐放射線対策回路, 部品単体評価回路

図1 オンボードコンピュータ(OBC)の外観 (3段構造)

して、コンピュータを構成する CPU・メモリ等の中 枢部分に、表2に示す6種類の高性能民生部品を採用 した.また、民生技術には、耐環境性向上・低コス ト・小型化に有効なマルチチップモジュール (MCM) 実 装技術を適用し、採用した民生部品をシリコンベアチ ップの形態で1個の名刺サイズ (55×95mm)のセラミ ックパッケージに実装した.これにより、汎用 CPU ボー ドと比べ約1/5の小型化・低コスト化を実現できた.

製作した CPU - MCM の外観を図2に示す.

2.3 民生部品の弱点と対応策

民生部品は,低コスト・高性能であるが,軌道上で 使用するには耐放射線性や耐環境性(振動,熱等)に 問題がある.特に軌道上では様々な放射線(太陽系外 から飛来する重イオン,太陽から放出される陽子,地 球磁場に捕捉されている陽子)が存在し,これらが電 子部品に入射すると以下の(1)~(3)の誤動作や永 入損傷を引き起こすため,何らかの対策を採用する必 要がある.また,部品ごとに,これらの耐放射線性に 対する評価項目が必須となる.

(1) SEU (Single Event Upset)

1個の陽子,重イオンの入射により発生.メモリ の"1""0"というbitデータが反転する一時的誤 動作を引き起こす.試験内容は,エラー発生頻度を 評価.

(2) SEL (Single Event Latchup)

1個の陽子,重イオンの入射により発生.部品内 部でラッチアップと呼ばれる過電流を発生させ,部 品の永久焼損等を引き起こす.試験内容はラッチ アップの発生有無を評価.

24.2	氷川りでたて品品	
部品種類	機能	
CPU	32 bit RISC型 CPU	
SDRAM	64 Mbit メモリ	
SRAM	4 Mbit メモリ	
Gate Array	32 000 ゲート FPGA	
Digital IC1	16 bit バストランシーバー	
Digital IC2	RS-422 ドライバー	

表2 採用した民生部品

図 2 CPU-MCMの外観(55×95 mm)

電子・陽子等の照射の影響が蓄積して消費電流が 増加し,最終的に機能異常を引き起こす.試験内容 は,消費電流増加や機能異常の発生有無を評価.

これらの耐放射線性を含めた耐環境性を向上させる ために、OBCに採用した各種の対応策を表3に示す.

表3に示す対策を機器に適用することにより,民生 部品の宇宙転用における高信頼性化の実現を図った.

2.4 実験機器の機能構成

本機器の機能構成を図3に示す.システムは2重冗 長系(A系, B系)になっており,各系統は,機能的 にCPU-MCMを搭載したCPU回路部と電源部の2 つに大きく分かれ,OBCは下記3つの回路部を積み 重ねる3段構造となっている.

●A系/B系統CPU回路部:各1段

●電源回路部:1段(2系統の供給電源部を搭載)

また、OBCの機器レベルにおける宇宙実証試験項 目は、CPUの演算機能(模擬フライト制御演算,模 擬画像演算,性能評価演算(MIPS値)),及び消費電 流であり、主として放射線による影響を評価する.

表3 OBCに採用した各種の対応策

2000日日に100000000000000000000000000000000		
対 応 策	目 的	
メモリエラー検出・ 補正回路(SEU対策)	メモリのデータエラーを検出・補正する回路. (2 bit エラーまで検出,1 bit エラーを補正)	
冗長系システム (SEU対策)	2 重系を構成し, 片系統の CPU が誤作動しても, 処理を中断しないよう, 他系統でバックアップ するシステム. 信頼性を向上できる.	
ウオッチ・ドッグ・ タイマー (SEU対策)	CPUが一定時間間隔で所定の処理を実施してい ることを監視する機能であり、CPUの誤作動を 検出しCPUを再起動し復帰処理を行う.	
過電流検出回路 (SEL, TID 対策)	部品の過電流を検出し、電流を遮断することに より、部品の焼損を防ぐ回路.	
MCM 実装技術 (小型化・耐環境性 向上・低コスト化)	複数個のベアチップICをセラミックや金属の パッケージに高密度で実装する技術であり,小 型化に有効.民生部品(樹脂パッケージ)の弱 点である耐振・耐湿・耐熱性を改善できるため, 民生部品を組み込むことで耐環境性向上・低コ スト化を両立できる.	

3. 今日までの宇宙実証結果

本機器は,SERVIS 1 号機に搭載され,2003年10 月30日に打ち上げられた.軌道高度1000km,傾斜 角100 degにおいて,約2年間の計画で宇宙実証試験 を実施中であり,今日まで故障もなく良好な実証結果 を得ている.

宇宙実証試験は,機器レベルと部品単体レベルの2 つの評価試験で構成されており,軌道上で同試験が自 動的に実施され,その結果は,衛星から地上へ送信・ 蓄積されている.ここでは,運用開始(2003年11月) から,2005年7月時点までの宇宙実証試験結果につ いて記述する.

3.1 機器評価試験結果

機器レベルの宇宙実証試験結果を表4に示す.打上 げ開始から今日まで,各模擬演算を正常に実行中であ り,CPUの演算処理性能も約110 MIPSで実行してお り,開発仕様の100 MIPSに対して,それ以上の性能 が得られている.

また,放射線対策として付加した機能も正常に動作 しており,メモリエラー検出・補正回路は,今日まで に9回のエラー補正を実施している.

3. 2 部品評価試験結果

宇宙実証試験で取得した各部品評価試験結果を以下 に示す.考察は,打上げ前に実施した,各民生部品の 地上放射線試験結果から算出した耐性予測値と比較・

夜4 十田夫祉武衆右朱 (俄 石 レ ヘル	表 4	宇宙実証試験結果(機器レベル)
------------------------	-----	-----------	-------	---

評価項目及び結果(放射線対策評価を含む)

(1)	模擬制御演算	(飛行制御演算)	
	→ 放射線によ	る異常動作なく,	正常に演算実施中.
(2)	模擬画像演算	(画像データ処理	演算)
	→ 放射線によ	る異常動作なく,	正常に演算実施中.
(3)	性能評価演算	(CPU演算処理の	性能評価演算)
	\rightarrow 110 MIPS	(100万命令/秒)	にて演算実施中.
(4)	放射線対策		

図4 SEUエラー発生場所 (SRAM)

検討を行った.

(1) SEU · SEL評価結果

表5にSEU発生頻度の評価結果を示す.SEU 発生頻度の予測計算は3STEPあり、まず、第1 STEP目に各軌道における放射線環境をシミュレー ションにより算出、第2STEP目に、衛星構体と OBC筐体の遮蔽による減衰を考慮した放射線環境 を算出し、第3STEP目に各部品の耐放射線性(地 上放射線試験のデータ)を用いて予測値を算出し た.

表中の①と②は,部品の地上放射線試験結果 より予測したエラー発生頻度,③は実際の宇宙軌 道上で実測したエラー発生頻度を示す.なお②は, 計算1ステップ目の放射線環境について,実際の衛 星に搭載された放射線センサによる計測データを用 いて予測計算を参考に行った.

評価結果は、6品種中3品種でSEUが発生して おり、いずれもエラー発生頻度が、地上評価試験結 果による予測結果より低く、CPUとSRAMは、約 1/4、SDRAMは約1/17という結果が得られた.

また、エラー発生場所は、図4に示すように南大 西洋異常(SAA:South Atlantic Anomaly)と呼 ばれる地域(地球磁場が落ち込み、低高度でも陽子 が多く捕捉されている場所)に集中しており、軌道 上で観測された放射線粒子数は、陽子(100~500 [1/($cm^2 \cdot sr \cdot s$)])、重イオン(0.1 [1/($cm^2 \cdot sr \cdot s$)]) であることより、エラー発生要因は陽子の影響が主 であることが分かる.

また,SELは,6品種とも過電流(ラッチアッ プ)の発生はなく,地上評価試験の予測結果と同じ であった.

評価民生部品		地上評価試験結果からの予測値		軌道上実測值	
		解析条件	シミュレーショ ンによる放射線 環境使用	軌道上で計測した 放射線環境を使用 (2005年7月)	
			遮蔽効果:衛星構体とOBC筐体の遮 蔽による放射線環境の減衰を計算		実測(2005年7月) ・陽子によるエラー
		部品耐性:重イオン放射線試験データ 使用(陽子のSEU効果へ換算して使用)		が支配的	
		SEU 発生頻度①		SEU 発生頻度②	SEU発生頻度③
CDU	命令キャッシュ		0.08回/日	0.5回/日	0回
CPU	データキャッシュ	3.87回/日		27回/日	0.21回/日
SRAM	SRAM 17回/日		117回/日	4.0回/日	
SDRAM 16.7回/日		109回/日	≑0回/日		
Gate Array ≒0回		≑0回/日	0回		
Digital IC1		≑0回		≑0回/日	0回
Digital IC2		≑0回		≑0回/日	0回

表 5 SEU 発生頻度の評価結果(①~③にて比較)

表6 評価部品のTID結果

新年日中朝日	TID 量の比較 (遮蔽による減衰後の値を算出)		
計恤氏生命前	環境シミュレーション より算出した予測値	軌道上実測値 (2005年7月末時点)	
全6部品	2.5 krad (Si) (3.8 rad/d)	1.7 krad (Si) (2.6 rad/d)	

(2) **TID**評価結果

表6に評価部品のTID結果を示す.TID量の実 測値は,予測値より小さく7割程度の結果であっ た.消費電流は,全6品種において変化が見られず, 機能異常も発生していない.したがって,現時点の TID耐性は各部品とも1.7 krad (Si) (シリコン (Si) に対する放射線の吸収線量の単位)以上であること がいえる.地上評価試験における各部品の耐性はこ の数10倍以上であり,今回のミッションにおいて は特に問題ないと考えられる.

3.3 宇宙実証試験結果の考察

宇宙実証試験結果より,機器レベルでは,現在まで 各演算の正常動作を確認でき,開発仕様以上の動作性 能(110 MIPS)が得られた.したがって,表3に示 す各種対策を適用することにより,約2年間の宇宙動 差実績が得られ,民生部品の宇宙転用における高信頼 性化実現の目処を得ることができた.

また,部品単体レベルでは,各6部品の耐放射線デ ータを宇宙実証試験において取得でき,中低軌道にお ける本部品の宇宙転用を図ることができた.

なお,設計上重要となるSEU発生頻度予測について,地上評価試験結果から,軌道上の耐放射線性 を予測する際の誤差要因について考察した.図5に, SEU発生頻度の算出フローとSEU発生頻度①~③ の誤差要因の比較を示す.図中の各フローより地上と 軌道上の評価試験結果の誤差要因を抽出すると,大き く以下の3つが起因していると考えられる.

 ・
 か射線環境の実環境との誤差(Δa₁, Δa₂)

 ・遮蔽による減衰効果の計算誤差(Δβ)

●陽子による部品の耐放射線性の予測誤差(Δy)

1つ目の放射線環境の実測値は、予測値より今回約 1桁多い結果であり、環境計測の誤差や環境シミュ レーションモデルの誤差要因が考えられる.次に、2 つ目の遮蔽による減衰効果の誤差は、宇宙空間から部 品までの遮蔽厚モデル及び減衰計算コードの要因が考 えられる.また、陽子による部品の耐放射線性の予測 誤差は、地上の重イオンによる耐性から、SEU主要 因の陽子への耐性変換モデルの要因が考えられる.

今後は、上記誤差要因の原因を更に調査し耐放射線 性予測精度の向上を図っていく必要がある.

4.まとめ

将来の衛星搭載機器への適用を目指して開発した OBC及び,OBC搭載民生部品の約2年間の宇宙実績 を通して,本機器の宇宙転用の目処付けを得ることが できた.また,民生部品・技術の宇宙転用に関して, 下記の成果が得られた.

(1) 高性能民生部品採用·MCM技術適用の効果確認

- 低コスト化:従来機器の1/3 (MCM にて1/5)
- ●高性能化:従来機器の10倍以上
- ●小型化:従来ボードの1/5 (名刺サイズのMCM)

(2) 耐環境性向上及び高信頼性対策のノウハウ取得

(3) 耐放射線性評価技術及び予測手法のノウハウ取得 なお、今後も、宇宙実証試験を継続することにより、

評価データを蓄積し、データの信頼性を高めていく.

本機器の開発に当たり,多大なご指導,ご助言を頂 きました,(独)新エネルギー・産業技術総合開発機構 (NEDO)及び(財)無人宇宙実験システム研究開発機 構(USEF)の関係各位に深く感謝致します.

三菱重工技報 Vol.42 No.5 (2005-12)