競馬データにみられる統計的偏りについて(3)

野田 明男 (総合人間科学講座・数学)

On the Statistical Bias Found in the Horse Racing Data (3)

Akio NODA

Integrated Human Sciences · Mathematics

Abstract: This is a continuation of the author's previous papers [2] and [3]. Our approach based on exchangeable random variables t_i (i = 1, 2, 3, 4) was introduced in [3] and is improved in § 1. By separating all horse racings into the two categories of dirt and turf (such a separation was suggested by a referee of [3]), we are able to get better results on the statistical bias found in the racing files [4]. Here we take up only racings of 16 participants carried out on these racetracks: Chukyo, Hanshin, Kyoto, Nakayama and Tokyo.

The present data analysis thus performed leads us to investigate some characteristics for each racetrack mentioned above. In fact, we first make up a lot of contingency tables naturally arising from our approach, and by appealing to the familiar chi-square test ([1]), we see how large the deviation is between the empirical and expected frequencies. We are then in a position to report what kinds of differences are observed among these racetracks and also between the two categories of dirt and turf on the same racetrack. The details are in § 2.

Key words: chi-square test, contingency table, exchangeable random variables.

§ 1. 序

著者の論文[2][3]に引き続いて、中央競馬レース成績[4]で見出される統計的偏りを考察する。5つの競馬場(イ)中京(ロ)阪神(ハ)京都(ニ)中山(ホ)東京におけるレース成績を比較検討し、各競馬場の「個性」を解明したい、これが著者の研究目標である。この論文では[3]のアプローチの不十分な点を改善した上で、「芝」と「ダート」の2つに分けて、m=16頭のレース結果を分析する。[3]のレフェリーから示唆されたこの分離分割のおかげで、偏り方に関する競馬場間の差異(および類似性)が一層鮮明になる。互いに強め合う方向に、大きな偏りをはっきりと示す阪神の芝とダート、いろいろな面で偏りを示すダートの一方で、全く偏りを見せぬ芝をもつ京都、そして互いに打ち消し合う方向に、少数の分類項目でしか偏りを見せぬ中山の芝とダート、これら3者が特にあざやかな対比を形作る。次節において、各競馬場毎にダートと芝のレース成績を分析した結果をそれぞれ詳述する。加えて、ダートと芝の偏り方の異同について、 χ^2 統計量の値の変化に着目して調べた結果を報告する。

[4]に記載されているn回のレース結果は、出走馬の馬番を表す有限母集団 $\{1,2,\cdots,m\}$ から、上位3頭の無作為抽出がn回繰り返されたものとみなす。これが偏りを測る基準となる帰無仮説 H_0 である。さて、 $1 = x_1$ 、 $2 = x_2$ 、 $3 = x_3$ と記すとき、 (x_1,x_2,x_3) の確率分布は H_0 の下で交換可能である([5]参照)。しかしながら、3連単の立場でレース結果を調べて行くと、分類項目が多くなって、統計的偏りは検出しにくい傾向がある。くじ引きで馬番が決まるので、偶然の要素がかなり大きく寄与するものと思われる。われわれは3連複の立場に移って、レース成績を整理し直す。そのため、 x_1,x_2,x_3 の順序統計量 $x_{(1)} < x_{(2)} < x_{(3)}$ 間の差

$$t_1 = x_{(1)}, t_2 = x_{(2)} - x_{(1)}, t_3 = x_{(3)} - x_{(2)}, t_4 = m + 1 - x_{(3)}$$

を基本統計量として採用する。 $t_1+t_2+t_3+t_4=m+1$ で和が一定の (t_1,t_2,t_3,t_4) の確率分布は、順序統計量に移って一端失った交換可能性を回復する。[3]と同じアプローチにより、基本統計量 t_i 達の大小関係および t_i のとる値に基づいて、レース結果を分類し、対応する分割表(度数分布表)を作成して、 χ^2 検定([1]参照)を実行する。その結果を比較検討し、まとめたものが \S 2に他ならぬ。

[3] におけるデータ分析の不十分さを改善するため、今回新たに導入したやり方を述べて、次節への準備とする。まず t_1 , t_2 , t_3 , t_4 の中から2つ選んで t_i , t_j (i < j) とし、

$$X_0 = \{t_i = t_j\}$$
 $X_1 = \{t_i < t_j\}$ $X_2 = \{t_i > t_j\}$

と定義する。即ち、[3]の内枠・外枠問題を意識して定めた (i,j) = (2,3) の X = A, (1,3) の B, (2,4) の C, (1,4) の D の4種類に加えて、 (i,j) = (1,2) の X = E, (3,4) の F の2種類を新たに考える。具体的に記すと次の通り。

$$A_0 = \{t_2 = t_3\}$$
 $A_1 = \{t_2 < t_3\}$ $A_2 = \{t_2 > t_3\}$

$$B_0 = \{t_1 = t_3\}$$
 $B_1 = \{t_1 < t_3\}$ $B_2 = \{t_1 > t_3\}$

$$C_0 = \{t_2 = t_4\}$$
 $C_1 = \{t_2 < t_4\}$ $C_2 = \{t_2 > t_4\}$

$$D_0 = \{t_1 = t_4\} \quad D_1 = \{t_1 < t_4\} \quad D_2 = \{t_1 > t_4\}$$

$$E_0 = \{t_1 = t_2\} \quad E_1 = \{t_1 < t_2\} \quad E_2 = \{t_1 > t_2\}$$

$$F_0 = \{t_3 = t_4\} \quad F_1 = \{t_3 < t_4\} \quad F_2 = \{t_3 > t_4\}$$

さらに、 $A\sim F$ 6種類の分割の中から2つ選んでX,Yとし、積事象 $X_i\cap Y_j$ (i,j=0,1,2) を構成する。こうしてできる(6+15)通りの分割がこの論文において第1の役割を担う分類項目である。このとき H_0 の下での確率分布は、 t_i 達の交換可能性を考慮して、Xと Y に用いられる t_i 達に重複がなければ $(A_i\cap D_j,B_i\cap C_j,E_i\cap F_j$ の3通り)[3]の命題3を、重複が1つある場合 $(A_i\cap B_j$ など残り12通り)は[2]の命題4を参照すればよい。

次に、 t_1, t_2, t_3, t_4 の順序統計量 $t_{(1)} \le t_{(2)} \le t_{(3)} \le t_{(4)}$ のうち、両端をなす最小値 $t_{(1)}$ と最大値 $t_{(4)}$ に着目して、次の4通りの分類(第2の役割を担う)を行う。以下 $t_{(k)} = t_{i_k}$ (k = 1, 2, 3, 4) と書く。

- (a) $t_{(1)} < t_{(2)}$ となる場合、最小値の位置 i_1 に加えて、その値 t_{i_1} との組 (i_1,t_{i_1})
- (b) $t_{(3)} < t_{(4)}$ となる場合、最大値の位置 i_4 に加えて、その値 t_{i_4} との組 (i_4, t_{i_4})
- (c) $t_{(1)} = t_{(2)} < t_{(3)}$ となる場合、その位置 (i_1, i_2) に加えて、その値との組 (i_1, i_2, t_{i_1})
- (d) $t_{(1)} < t_{(2)} \le t_{(3)} < t_{(4)}$ となる場合、両端をなす位置の組 (i_1, i_4)

m=16 のとき、交換可能性のおかげで、次のように確率計算される。 $i_1,\,i_4$ は1から4までの整数値 $(i_1\neq i_4),\,(i_1,\,i_2)$ は $1\leq i_1< i_2\leq 4$ を満たす。

(a)
$$P(i_1, t_{i_1} = 1) = \frac{66}{400}, P(i_1, t_{i_1} = 2) = \frac{28}{400}, P(i_1, t_{i_1} = 3) = \frac{6}{400}$$

(b) $P(i_4, t_{i_4} \le 6) = \frac{16}{508}, P(i_4, t_{i_4} = 7) = \frac{27}{508}, P(i_4, t_{i_4} = 8) = \frac{28}{508}, P(i_4, t_{i_4} = 9) = \frac{21}{508}, P(i_4, t_{i_4} = 10) = \frac{15}{508}, P(i_4, t_{i_4} \ge 11) = \frac{20}{508}$
(c) $P(i_1, i_2, t_{i_1} = 1) = \frac{1}{12}, P(i_1, i_2, t_{i_1} = 2) = \frac{1}{18}, P(i_1, i_2, t_{i_1} = 3) = \frac{1}{36}$
(d) $P(i_1, i_4) = \frac{1}{12}$ \mathcal{O} —様分布。

最後に[3]で採用した上記以外の分類項目を取りあげる。対応する確率分布表はすべて交換可能性から容易に従う([3]参照)。

§ 2. レース成績から競馬場の個性を引き出す試み

§1で述べたアプローチで、m=16頭のレースをダートと芝に分けて、データ分析 (χ^2 検定)を行った結果を5つの競馬場毎に詳述する。有意水準は5%とし、帰無仮説 H_0 が棄却されるケースを主として取りあげて行く。さらに、ダートと芝で偏り方にどんな違いがあるか、調べることにする。

- (i) 両者を合わせると γ^2 値が大きくなる (互いに強め合う向きの偏りを示す)ケース;
- (ii) 両者を合わせると χ^2 値が小さくなる (互いに打ち消し合うような偏りを示す)ケース;
- (iii) 上記どちらでもない (両者の χ^2 値の中間におさまる) ケース。 このような χ^2 値の変化に連動する P 値の変化を調べ、興味深い点を報告する。
- (イ)中京競馬場:[4]に記載されているレース数は、ダートの $n_1 = 405$ と芝の $n_2 = 268$ であり、全レース(N = 1524)中それぞれ26.6%と17.6%を占める。

<u>ダート</u> (1) まずB,D,Eにおいて、 χ^2 値が大きく、P 値はそれぞれ0.1%未満、 $1\sim 2.5\%$ 、0.1%未満になる。いずれも高頻度で、 t_1 の値が他の t_i に比べて大きくなる。B,D,E を含む積事象を調べると、 $A_i \cap D_j$ 以外すべて5%未満になる。特に、0.1%未満のP 値を示すのは $A_i \cap B_j$, $A_i \cap E_j$, $B_i \cap C_j$, $B_i \cap E_j$, $B_i \cap F_j$ の5つであり、 $0.1\sim 0.5\%$ になるのは $B_i \cap D_j$ と $E_i \cap F_j$ 、 $1\sim 2.5\%$ になるのは $D_i \cap E_j$ と $D_i \cap F_j$ である。

大きな χ^2 値をもつ分割表を2つ例示しよう。 H_0 の下での期待度数を()内に示す。

	A_0	A_1	A_2
B_0	3	8	22
	(3.616)	(11.571)	(25.313)
B_1	2	113	27
	(11.571)	(122.223)	(48.455)
B_2	38	69	123
	(25.313)	(48.455)	(108.482)

	E_0	E_1	E_2
B_0	3	22	8
	(3.616)	(25.313)	(11.571)
B_1	24	74	44
	(25.313)	(108.482)	(48.455)
B_2	20	48	162
	(11.571)	(48.455)	(122.223)

- (2)最小値の位置 i_1 によって分類すると、 $i_1=1$ が低頻度で生じるため P 値は2.5~5%となるが、値との組 (i_1,t_{i_1}) に移ると、5%を越える結果になる。また最大値の位置 i_4 では $i_4=1$ が高頻度で生じ、P 値は0.1%未満になる。しかしながら、値との組 (i_4,t_{i_4}) に移ると5%を越えてしまう。最後に (i_1,i_4) によって分類すると、P 値は0.5~1%である。 (2,1) と (4,1) が高頻度、 (1,4) と (4,2) が低頻度を示す。
- (3) $t_{(2)} = t_{(3)}$ となるケースに限って、 (i_1, i_2, i_3, i_4) の12項目の分類を行うと、P 値が1~2.5%になるのが、 H_0 を棄却できるケースである。

以上 t_1 の大きさに関する偏りが顕著で、いろいろな面から検出される。

- 芝(1) C に関する分割のみ P 値が2.5~5%になる。 $t_2 < t_4$ が高頻度で生じる。
- (2) i_4 による分類では H_0 を棄却できぬが、組 (i_4, t_{i_4}) に移って最大値によって細分すると、P 値が $1\sim2.5\%$ になる。これはダートの場合と反対の主張であり、いささか驚かされる結果である。また、 $t_{(1)}=t_{(2)}< t_{(3)}$ となるケースで (i_1,i_2) によって分類すると、P 値は $2.5\sim5\%$ になるが、値との組 (i_1,i_2,t_{i_1}) に移ると5%より大きくなる。同じケースで (i_1,i_2,i_3,i_4) の12項目に細分すれば、P 値は $1\sim2.5\%$ になる。このとき、(2,3,1,4) と(1,2,4,3) が高頻度、(2,4,3,1) と(3,4,1,2) が低頻度を示す。

以上芝の場合は、ダートと違って2,3の面で偏りを示すに過ぎぬ。

最後にダートと芝を合わせたとき、 χ^2 値はどう変化するか、目につく点を列挙する。C とE に関しては χ^2 値は分けた場合に比べて大きくなり、P 値は $0.5\%\sim1\%$ と0.1%未満を示す。 $A_i\cap E_j$, $C_i\cap D_j$, $C_i\cap E_j$, $D_i\cap E_j$, $E_i\cap F_j$ に移れば χ^2 値はやはり大きくなり、それぞれ0.1%未満, $1\sim 2.5\%$, $0.1\sim0.5\%$, $0.5\sim1\%$, $0.1\sim0.5\%$ の P 値を得る。他の場合はダートの大きな χ^2 値と芝の小さな χ^2 値の中間におさまる。合わせたときダートと違って H_0 を棄却できなくなるケースは、D と $D_i\cap F_j$ の2つ。次に、 i_1 と (i_1,i_4) については合わせると χ^2 値が大きくなり、 $1\sim2.5\%$ と $0.5\sim1\%$ の P 値を示す。 i_4 の方は両者の中間に来て $0.1\sim0.5\%$ の P 値を得る。さらに組 (i_1,i_2) と (i_4,t_{i_4}) では χ^2 値は小さくなり、P 値は5%を越えてしまう。このようにダートと芝では相反する要素が含まれていて、明確な方向づけをすることは難しい。

- (ロ)阪神競馬場:ダートの $n_1=473$ と芝の $n_2=250$ のレースを分析する。全レース (N=2484) 中に占める割合は、19.0% と10.1%である。
- <u>ダート</u> (1) C と F において P 値は0.1~0.5%と1~2.5%になる。 t_2 , t_3 に比べて t_4 が大きい傾向を示す。偏差の大きい C を含む積事象を調べると、すべて H_0 が棄却される。 $B_i \cap C_j$ 、 $C_i \cap D_j$ 、 $C_i \cap C_j$ (および $C_i \cap C_j$)で1~2.5%、 $C_i \cap C_j$ (および $C_i \cap C_j$)で2.5~5%の $C_i \cap C_j$ 値を得る。
- (2)最大値の位置について、 $i_4=4$ が高頻度、 $i_4=2$ が低頻度で生じ、0.1%未満のP 値を得るが、 (i_4,t_{i_4}) に移ると、5%より大きくなる。 (i_1,i_4) による分類では $0.1\sim0.5\%$ のP 値になる。 (1,4) と

- (3,4)が多く、(1,2)と(1,3)が少ない。
- (3) t_i がすべて異なるケースで (i_1,i_2,i_3,i_4) の24項目で分類すると、 $0.5\sim1\%$ のP 値を示す。 (1,2,3,4) と (3,2,1,4) が高頻度、(1,3,4,2) が低頻度である。

以上 t_4 の大きさに関する偏りが種々の面で見出される。しかしながら、次に論じる芝の場合が、 ダートと同じ向きの圧倒的に大きな偏差をわれわれに呈示するので、上記の記述も色褪せてみえる かもしれぬ。

 $\underline{Z}(1)A,C,D,F$ の分割においてP値はそれぞれ $0.5\sim1\%,0.1\%$ 未満,0.1%未満 $,2.5\sim5\%$ になる。 t_2 が小さくて t_4 が大きい傾向が明白に(次の(2)でも同様に)読み取れる。CかDを含む積事象を調べると、 $0.5\sim1\%$ の $B_i\cap D_j$ と $D_i\cap F_j$ を除く残り7つ(および $A_i\cap F_j$ と $E_i\cap F_j$)において、すべて0.1%未満のP値を示すという驚嘆すべき結果を得る。なお、 $A_i\cap E_j$ は $2.5\sim5\%$ のP値である。 χ^2 値が極めて大きい分割表を3つ例示しよう。

	D_0	D_1	D_2
A_0	0	18	16
	(0)	(12.5)	(12.5)
A_1	16	81	30
	(12.5)	(50)	(50)
A_2	7	45	37
	(12.5)	(50)	(50)

	D_0	D_1	D_2
C_0	1	5	7
	(2.232)	(7.143)	(15.625)
C_1	11	115	27
	(7.143)	(75.446)	(29.911)
C_2	11	24	49
	(15.625)	(29.911)	(66.964)

	D_0	D_1	D_2
E_0	1	25	8
	(2.232)	(15.625)	(7.143)
E_1	11	62	25
	(15.625)	(66.964)	(29.911)
E_2	11	57	50
	(7.143)	(29.911)	(75.446)

(2)最小値の位置 i_1 による分類では、 $i_1=2$ の度数が大きく0.1%未満のP 値になり、組 (i_1,t_{i_1}) に移っても1~2.5%のP 値を得る。また最大値の方は $i_4=4$ の度数が大きく0.1%未満のP 値、組 (i_4,t_{i_4}) に移っても0.1%未満のP 値が保持される。 (4,8) と (4,9) が極めて高い頻度で生じる。さらに、 (i_1,i_4) による分類でもP 値は0.1%未満であり、 $t_{(1)}=t_{(2)}< t_{(3)}$ のケースでの (i_1,i_2) に移るとP 値は2.5~5%である。

(3) t_i がすべて異なるケースで (i_1, i_2, i_3, i_4) の24項目で分類すると、P 値は0.1%未満になる。 (2, 1, 3, 4) と (2, 3, 1, 4) が極めて高い頻度で生じる。

最後にダートと芝を合わせるとどうなるか、調べると多くの分類項目において χ^2 値は大きくなる。例えば、 (i_1,i_2,i_3,i_4) に基づく分類 (上記 t_i がすべて異なるパターンだけでなく、2つが一致するパターンにおいても χ^2 値は大きくなる)、 i_4 , (i_4,t_{i_4}) , (i_1,i_4) による分類、そして C, E (単独では両者5%を少し超えるが、合わせると5%未満になるケース) および F による分割、 $A_i \cap E_j$, $B_i \cap C_j$, $B_i \cap E_j$, $B_i \cap F_j$ (E と同じく、合わせて初めて5%未満になるケース)、 $C_i \cap D_j$, $C_i \cap F_j$, $C_i \cap F_j$ を挙げることができる。他の項目では合わせると、芝の大きい χ^2 値とダートの小さい χ^2 値の中間に来るけれども、そのうち P 値が0.1%未満になるのは $A_i \cap C_j$, $A_i \cap F_j$, $C_i \cap E_j$, $D_i \cap E_j$, $E_i \cap F_j$ の5つ。 $E_i \cap E_j$ の5つ。 E_i

(ハ)京都競馬場:ダートの $n_1 = 468$ と芝の $n_2 = 167$ レースを分析する。全レース (N = 2588)中、18.1%と6.5%である。

<u>ダート</u> $(1)A\sim F6$ 種類の分割すべてにおいて、 H_0 を棄却できる。P値は阪神芝の場合ほど小さくないが、 $0.5\sim 1\%$ がBとD、 $1\sim 2.5\%$ がA,C,F、 $2.5\sim 5\%$ がEである。 t_3 , t_4 が t_1 , t_2 に比べて大きい傾向を示す。また、 $t_1=t_2$ が有意に多く、 $t_3=t_4$ が有意に少ない。次に積事象を調べると、5%をほんのわずか越える $B_i\cap D_j$ (不思議なことに、小さな χ^2 値をもつ芝と合わせると χ^2 値が大きくなって $1\sim 2.5\%$ のP値を示す)を唯一つの例外として、残りすべてにおいて H_0 が棄却される。このうち最大の χ^2 値をもつ分割表を例示する。

	E_0	E_1	E_2
B_0	10	29	17
	(4.179)	(29.25)	(13.371)
B_1	44	119	71
	(29.25)	(125.357)	(55.993)
B_2	8	41	129
	(13.371)	(55.993)	(141.236)

- (2)最大値の位置 i_4 による分類で、 i_4 = 4 が高頻度で生じて1~2.5%の P 値を得るが、 組 (i_4, t_{i_4}) に移ると5%よりかなり大きくなる。また、 $t_{(1)} = t_{(2)} < t_{(3)}$ のケースで (i_1, i_2) に着目すると、(1, 2) と (2, 3) が高頻度、 (3, 4) が低頻度で生じ、1~2.5%の P 値を示す。値との組 (i_1, i_2, t_{i_1}) に移っても 1~2.5%の P 値が保持される。このとき、 $(i_1, i_2) = (1, 2)$ に対しては $t_{i_1} \ge 2$ の方が多く、(2, 3) に 対しては $t_{i_1} = 1$ の方が多く現れる。
- (3) $t_{(1)} = t_{(2)} < t_{(3)}$ のケースで、 (i_1, i_2, i_3, i_4) の12項目で分類すると、上記 (i_1, i_2) による場合と同じく1~2.5%の P 値を得る。少数例ながらも、 t_i のうち3つの値が一致するケースでは、値による分類でも位置による分類でも、両方とも P 値は5%より小さくなることを付言する。
- $\underline{\mathbf{Z}}$ すべての項目において H_0 を採択する結果に終わる。

最後に両者合わせると、ダートで H_0 が棄却されたところは、そのまま H_0 が棄却される。ダートの場合からのP値の変動はそう大きくはない。つまり、芝のレース結果が、ダートの偏りを打ち消す方向に働くことはほとんどみられない。

- (二)中山競馬場:ダートは $n_1=845$ 、芝は $n_2=289$ でm=16頭のレースが最も多く行われる。 全レース(N=2663)中、31.7%と10.9%を占める。
- ダート ほとんどの分類項目で H_0 が採択されるが、例外は次の5つ。
- (1) $t_1 > t_2$ の方に偏る E の分割、および $A_i \cap C_i$ 、 $C_i \cap F_i$ の3つにおいて2.5~5%の P 値になる。
- (2)最小値の位置 i_1 では P 値は5%をはるかに越えるけれども、値との組 (i_1,t_{i_1}) に移ると、0.5~1%の P 値になる。 t_{i_1} = 1のとき i_1 = 1が少なく、 i_1 = 4が多いのに対照的に、 t_{i_1} = 2のときは i_1 = 1が多く、 i_1 = 4が少ない。
- (3) t_i のうち3つが一致するパターン (度数は34)で、他と異なるのが t_1 であるケースが半分近くも占める。(この結果、上記 $A_i \cap C_i$ と $C_i \cap F_i$ における χ^2 値が大きくなる。)
- $\underline{\underline{z}}$ (1) t_1 が小さく、 t_4 が大きい傾向を示す。実際 B と D による分割で、ともに P 値は1~2.5%になる。積事象ではすべて H_0 を採択する結果になる。
- (2)最大値の位置 i_4 で分類すると、2.5~5%の P 値を得る。最小値の方は、単独の i_1 では5%を少し越えるが、値との組 (i_1,t_{i_1}) に移れば1~2.5%の P 値になる。 t_{i_1} = 1 のときダートの場合と反対に i_1 = 1 が多く、 i_1 = 4 が少ない。 t_{i_1} \geq 2 のときは、 i_1 = 2 が少ない。従って芝とダートを合わせると、P 値は5%より大きくなる。最後に、 (i_1,i_4) において2.5~5%の P 値を得る。
- ダートと芝を合わせると、互いに打ち消し合う方向に働くため H_0 を棄却できる分類項目を発見することができない。これは[3]の結論に合致する。
- (ホ) 東京競馬場:ダートは $n_1=503$ 、芝は $n_2=126$ で、全レース (N=2483) 中20.3%と5.1%を占める。 m=16 頭による芝のレースの少なさが際立つ。
- ダート(1) D による分類のみ $2.5\sim5\%$ のP 値であり、 $t_1 < t_4$ の向きに偏る。積事象では $B_i \cap F_i$

 $(t_1 < t_3 < t_4$ の度数が大きい), $C_i \cap D_j$, $D_i \cap E_j$ において、それぞれ $0.1 \sim 0.5\%$, $1 \sim 2.5\%$ のP 値を得る。

- (2)最大値の位置に関して、 $i_4=4$ が高頻度で生じて2.5~5%のP値になるが、値との組 (i_4,t_{i_4}) に移ると5%より大きくなる。
- (3) 特筆すべきは、5つのタイプ (no pair型、3つのone pair型、three cards型)への分類において $0.5\sim1$ %のP 値が得られること。他の競馬場ではみられぬ特色である。 $t_{(1)}=t_{(2)}$ のケースが多く、 $t_{(3)}=t_{(4)}$ のケースが少ない。また高頻度で生じる $t_{(1)}=t_{(2)}$ のケースに限ると、 (i_1,i_2,i_3,i_4) による12項目において(1,2,3,4)と(1,3,2,4)が高頻度で生じ、P 値は $2.5\%\sim5\%$ になる。しかしながら、最初の (i_1,i_2) だけみて分類すれば、5%をはるかに越えてしまう。

<u>芝</u> H_0 を棄却できる分類項目は数少ない。まず C による分割で、 $t_2 > t_4$ のケースが有意に少ない。最小値の位置では $i_1 = 3$ の度数が最大で、 $2.5 \sim 5\%$ の P 値になる。ダートの場合は $i_1 = 3$ が最小度数であり、両者合わせると χ^2 値が小さくなって5%より大きくなる。最後に、特異な分割表を示すものとして (i_4,t_{i_4}) を取りあげよう。 $i_4 = 4$ の行では、 $t_4 \ge 11$ が極めて大きい度数をもち、 $i_4 = 3$ の行では $t_3 = 7$ の度数が目立つ。(阪神芝では、 $i_4 = 4$ で $t_4 = 8,9$ の度数が極端に大きかった点を思い起こす。)また $t_{i_4} = 10$ の度数が期待度数よりも小さい。例数が少ないけれども、 χ^2 値を計算して1~2.5% の P 値を導く。

さて、ダートと芝を合わせた場合、 χ^2 値が大きくなり5%未満の P 値を示すのは、C による分割、 $B_i \cap C_j$ と $C_i \cap D_j$,そして $t_{(1)} = t_{(2)}$ のケースで (i_1, i_2, i_3, i_4) による分類の4つ。なお、 $B_i \cap F_j$, i_4 と (i_4, t_{i_4}) による分類では、合わせると両者の χ^2 値の中間に来て、それぞれ1~2.5%、2.5~5%と1~2.5%の P 値を与える。

謝辞

資料の整理と原稿の清書をお願いした鴨藤江利子さんに、心から御礼申しあげます。また鋭いコメントで不十分な点を指摘し、著者の目を新たな方向に向けてくれた[2][3]のレフェリー達に感謝申しあげます。

参考文献

- [1] Everitt BS: The Analysis of Contingency Tables, 2nd edition. Boca Raton: Chapman&Hall/CRC,1992.
- [2] 野田明男: 競馬データにみられる統計的偏りについて(1), 浜松医科大学紀要一般教育18:1-11,2004.
- [3] 野田明男: 競馬データにみられる統計的偏りについて(2), 浜松医科大学紀要一般教育19:1-7, 2005.
- [4] レーシングファイル(中央競馬全レース成績書), No.22~42. ケイバブック, 1999~2004.
- [5] Peccati G: Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. *Ann.Probab.* 32(3A): 1796-1829, 2004.