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On the BCF-Characters of Complex Manifolds with Kihler
Metrics of Constant Scalar Curvature.

Kenji Tsuboi*
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Abstract: In this paper using BCF-character, we give examples of complex manifolds which do not admit any
Kéhler metric of constant scalar curvature whose Kihler form is contained in an assigned Hodge class. We also give
arestrictive condition on the fixed point data of a cyclic action on a complex manifold which admits a Kdhler metric
of constant scalar curvature. Our main results are Theorem 2.1 and Theorem 3.1.

Key words: BCF-character, complex manifolds, Kdhler metric, constant scalar curvature, fixed point set

1. Introduction

Let M be a closed n-dimensional manifold with a Riemannian metric g = (g,- j) with respect to a local coordinate (x!, -, x"*). Then
the scalar curvature R of the Riemannian metric is defined by

n ) ar‘k‘ ar‘k‘ n
R= ) gf‘[aTi’ - oL Y (Trh, - r;;’jr’;m)]
m=1

kt,j=1

where (gif ) is the inverse matrix of (g,» j) and I’ }k is the Christoffel’s symbol defined by

2 Oxk Ox/ Oxt

=1

. 1 < [ 09 0g;
r,jkz_zglg( 96, 99a _ gﬂc).

Scalar curvature is a fundamental quantity in differential geometry, and is also a fundamental quantity in general relativity when n = 4.
The question of whether a manifold admits a Riemannian metric of constant scalar curvature or not, namely, the question of whether
a solution (‘gi j) of the nonlinear partial differential equation R =constant exists or not is a classical problem, and has stimulated active
research. Though several topological obstructions to the existence of the metric of positive constant scalar curvature had been found (see
[6]), in [5] Kazdan and Warner proved that any closed manifold admits a metric of negative constant scalar curvature. But if the closed
manifold is a complex manifold and the Riemannian metric is a Kéhler metric, namely, a Riemannian metric which is compatible with
the complex structure, the result of Kazdan-Warner does not hold.

Let M be an m-dimensional compact complex manifold, Aut(M) the Lie group consisting of all biholomorphic automorphisms of
M and H(M) its Lie algebra consisting of all holomorphic vector fields on M. Note that the real dimension of M is 2m. In [7], [8],
Lichnerowicz proved that a complex manifold does not admit any Kihler metric of constant scalar curvature unless the Lie algebra H(M)
has a specific structure. But it is in general difficult to determine the structure of the Lie algebra H(M) and the Lichnerowicz’s result
asserts nothing about the existence of the Kahler metric of constant scalar curvature when the Lie algebra H(M) has the specific structure.

In [1], [2], [3] an obstruction to the existence of a Kihler metric on M of constant scalar curvature whose Kahler form is contained in
an assigned Hodge class is obtained, in [9] the obstruction is lifted to a Lie group character, and in [4] a formula to calculate the character
is obtained.

Let c;(M) € H*(M;Z) be the first Chern class of the tangent bundle TM, Q € HX(M;Z) a Hodge class and [M] the fundamental cycle
of M. Then a number g, is defined by
_ @ e (M)M]

QM)
where the product of elements of H>(M; Z) is the cup product. Let G be a compact connected subgroup of Aut(M). Then the obstruction
of Bando-Calabi-Futaki is a Lie group character

Hao

fao : G— C/(Z+paZ),
which is called the BCF character.

Thorem 1.1 ([11,[21,[31,[9]). If M admits a Kiihler metric of constant scalar curvature whose Kdihler form is contained in Q, then }‘;
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vanishes, namely, };(0’) € Z + poZ for any o € G.

Now let G, denote the dense subset of G consisting of elements of finite order. Then we can define a map F, : Gy — C by using the
fixed point data of the G-action as follows. Let o be an element of G, which has a finite order p and S (k) the fixed point set of o™, which
consists of compact connected complex submanifolds N of M. Let v(N, M) be the normal bundle of N in M and « the primitive p-th root
of unity. Then v(N, M) is decomposed into the direct sum of subbundles

(N, M) = &;V; (a")

where o acts on V; (a‘f ) via multiplication by @'i. We define the characteristic class ®(v(N, M)) by

v

1 * . _ £
(D(V(N,M))zl—j][:l[m eH (N,C) (rj—rank(c(Vj(a J)))
where [, (1 + x;) is the total Chern class of V; (o/f). Assume that the action of o preserves the Hodge class Q and that the o--action lifts
to an action on a holomorphic line bundle L with ¢, (L) = Q. Suppose that o|(Ky/|N) = o (namely, o~ acts on K)/|N via multiplication by
o) and o|(L|N) = o* for k, p € Z. Let Td(TN) be the Todd class of TN and [N] the fundamental cycle of N. N, V; (a/f) , K, p are called
the fixed point data of o~. Then F (o) is defined by the fixed point data as follows.

Definition 1.2.

Fi(0) = (m+ 1)2(4)/‘( ';’ )[S*‘(m ~2j) =8 (m-2))}
j=0

m+1

—mng(—l)f( m;’l )So(m+1—2j) (mod Z + uaZ)
j=0

where fore =1, 0, —1

SEmy= ) Sim,
NcS (k)
15
S;(ﬂ) —— Z (ak(ek+np)e£](Kﬁ4|N)+nL‘|(L|N) _ 1)m+1 Td(TN)q)(V(N, M))[N] .
p

-
.

— -«

Assumption 1.3. Assume that the fixed point set S (k) is independent of k and every connected component N has a cell decomposition

with no codimension one cells.

For example the fixed point set S (k) is independent of k if the order p is a prime number and N has a cell decomposition with no
codimension one cells if N is a complex projective space.

Thorem 1.4 ([4]). Under Assumption 1.3 the following equality holds:
fo(@) = Fio)  (mod Z +paZ).
Remark 1.5. As we see in [4], Theorem 1.4 holds without Assumption 1.3 when L = (K;')* for some integer A.

Using Theorem 1.4 above, we can show that certain complex manifolds M does not admit any Kéhler metric of constant scalar curva-
ture whose Kihler form is contained in an assigned Hodge class without determining the structure of the Lie algebra H(M). In section
2, we show that one or two points blow-up of CP? does not admit any Kihler metric of constant scalar curvature whose Kihler form is
contained in an integral multiple of the first Chern class. Theorem 1.4 can be used as the restrictive condition on the fixed point data. In
section 3, using Theorem 1.4, we show that the fixed point data of the action of the circle group S' on the product manifold of complex
projective spaces have to satisfy a certain condition.

2. BCF-characters associated to an integral multiple of the first Chern class

In this section using Theorem 1.4, we prove that certain complex manifolds do not admit any Kéhler metric of constant scalar curva-
ture whose Kihler form is contained in an integral multiple of the first Chern class ¢;(M). Here let A be any non-zero integer and set
L= (KA“,,1 )X, Then any action on M lifts to an action on L. Since Q = ¢,(L) is equal to Ac,(M), we have

_ AaM)a(MyM] 1

He= o T2

Let M, denote the & points blow-up of CP2. Then we have the next theorem.
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Thorem 2.1. Ifk = 1, 2, Aut(M}) contains S' and there exists an element o € S' which satisfies E}(O’) +0eC/Z

Proof. First let M, be the surface obtained from CP? by blowing up one point [1 : 0 : 0] where [zo : z; : z2] is the homogeneous
coordinate on CP2. Let D (a, b, ¢) denote the diagonal matrix with diagonal entries a, b, c. Let o be an element of Aut(M,) which is
naturally induced by the element of Aut(CP?) = PGL(3; C) represented by D (1, @, @) where a is the primitive p th root of unity for odd
prime p. Then the action of Z, = (o) lifts to an action of S and the fixed point set of o* (1 < k < p — 1) is equal to the disjoint union of
the exceptional divisor E over [1 : 0 : 0] and the hyperplane H defined by zo = 0, which have cell decompositions with no codimension
one cells. The normal bundle v(E, M) is equal to the tautological line bundle J and the normal bundle v(H, M) is equal to its dual J*, o
acts on J via multiplication by  and on J* via multiplication by &' and hence the following equalities hold. (See [10].)

TdATE)=1+u, TdTH)=1+v, cME,M))=-u, cy(v(H,M))=v
c1(Ky |E) = ¢|(TE) + ci(WE, M)) = u, ¢\(Ky/|H) = ¢/(TH) + ¢;(W(E, H)) = 3v,
cl(LIE) = Ac|(Kyf |E) = Au,  ¢(LIH) = Ac\(K; |H) = 3w,

A WE, M) = (K} |E) =o*, o ME, H) = c*(K;} |1H) = a”*,

oH(LIE) = o™, o*I(LIH) = o™,
1

, OW(H,M)) = T ok

1
OME. M) = T oy

a ket

where u, v are positive generators of HZ(E; Z)=17, HZ(H ;Z) = Z respectively such that u*[E] = v*[H] = 6 where [E], [H] denote the
fundamental cycles. Hence, for £ = 1, 0, —1 we have

eM

18 1 3 1
& _ (An—e)k ,(An—eu _
Se(n) = > k§= T (atr=oke 1) (1 + )7 ———[E]

1
p-l 1

; 1
(a(—An+s)keB(/1n—s)v _ 1).‘ (1+ U)—k[H]
-«

eV

+

ST
Ng
n

Qk

1 1é] 3 1
_ im (An—€)k (An—&u __
_pkll—a"}«l—»t)au{(a ¢ ]) (1+u)1—a"‘e"}
165 1 d 3 1
im (=An+ek 3(An—-ep _ -
+pzl——a’<lvl—»06u{(a ¢ 1) (1+U)l—a"e‘“}

Now set 8 = o* and

_ 1 . __a_ An—¢ (An—-eu _ 3 ;

i tim 2 {(/3-*”%3“"-8” ~1) A+ 07 _}Bew} .

Then since the equality 8~ = 77" implies that there exists an integral polynomial ¥(x) such that

Y®B)
) —3
=T gy
and the equalities
. 1 1 +ﬁ . a An—g (An—g&)u 3 1
s+ PeB) = 5 M {(ﬁ R R 2P
. 1 +ﬂ . a —An+e 3(An-g) 3 1 _ 3
+ml_ﬁm%{(ﬁ e -1) (40 —z 1 = 8n - ),
. . (+pY¥YB)
ﬁlirpl(l +Pg(B) = p]irf‘l a-pp 0
hold, it follows from Lemma A in Appendix that
1 & 4an-g 1
Sén) = — Z glay=s -—— " = — (—4/13113 +12e%0® — 1220 + 48) (mod Z).
) p p

Hence it follows from Theorem 1.4 and Lemma B in Appendix that

— 22\ s N 2%, 43 ,
fn(a)z3;(—l)( . )(s '2-2i)-8 '(2—21))—3;(—1)( : )50(3—21)
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1 2
=—|[3-(-12-12)- 2%- 222! - b (=2 233!) = (mod Z).
P

__1__93 22

p
Therefore E(o-) # 0if p > 5 and p is not a divisor of A.

Next let M, be the surface obtained from CP? by blowing up two points [1: 0 : 0], [0 : 1 : 0]. Let  : M, —> CP? be the projection
and o an element of Aut(M,) which is naturally induced by the element of Aut(CP?) represented by D (1, a, a/z) where @ = €*"/? for an
odd integer p > 3. Then the action of Z, = (o) lifts to an action of S' and the fixed point set of o*-action (I < k < p — 1) consists of
five points py, pa, p3, pa, ps where p; = 77'([0 : 0 : 1]), p» € #7'([1 : O : 0]) is the point in M, defined by the line:z; = O through
the point [1 : 0 : 0] in CP?, p; € x~'([1 : 0 : 0]) is the point in M, defined by the line:z, = 0 through the point [1 : 0 : 0] in CP?,
ps € m7'([0 : 1 : 0]) is the point in M, defined by the line:zy = O through the point [0 : 1 : 0] in CP? and ps € 77'([0 : 1 : 0]) is the point
in M, defined by the line:z, = 0 through the point [0 : 1 : 0] in CP2. Let T; = o [v(p;.m,) denote the transformation of the tangent space
T, .M, = v(p;, M>) induced by o*. Then we can see that T; = D (a‘f",a’f") (1 <j<5)where

(1,1) = (=2,=1), (52,2) = (-1,2), (s3,53) = (L, 1), (sa,84) = (=2, 1), (s5,85) = (=1,2).

Then o* acts on K;)z |p; via multiplication by @i*% Since the points clearly have cell decompositions with no codimension one cells
and the first Chern classes of vector bundles restricted to points vanish, we have

1 &
S5 = — " ga")
p k=1
where

1

_ 2 Gjrpan-—e) _ Y 4
=752, ) T

Then since there exists an integral polynomial ®(x) such that

_ @)
=T ha-pr
and direct computation shows that
. D et _ 3
11313}(1 R —,lggrll(l +B)g(B) = 12(An - &),
0B ~
ﬁlg{l1 a-pp —ﬁlgp](l +B)g(B) =0,

it follows from Lemma A in Appendix that
1 & 6
Se(n) = — Z 9@ =-=(n-¢e°  (mod Z).
) p

Hence it follows from the same calculation as in M, that

-~ 192 288
Jalo) == —9—9—-/12 =X (mod Z).
4 p p

Therefore f;)(a) # 0if p > 5 and p is not a divisor of A.

Corollary 2.2. M; does not admit any Kéhler metric of constant scalar curvature whose Kiéhler form is contained in an integral multiple
of ci(My) ifk =1, 2.

Remark 2.3. Using the results of Lichnerowicz [7], [8], we can also prove the corollary above by investigating the structure of the Lie
algebra HIM,) (k = 1, 2).

3. Fixed point data of an action on manifolds of constant scalar curvature

Theorem 1.4 can be used as the restrictive condition on the fixed point data. Let CP% (1 < j < £) be complex projective spaces and
M = CP% x - --x CP the direct product of CP%’s, whichis a ¥ ; dj-dimensional complex manifold. Let g; be the standard Kéhler metric
on CP% and g the Kahler metric on M defined by the direct product of g ;’s. Let Isom(M) denote the subgroup of Aut(M) consisting
of isometries with respect to g. Then Isom(CP%) contains the circle group S' for 1 < j < £. Let 7 : M — CP% be the j-th factor
projection and H; (1 < j < ¢) the hyperplane bundle over CP%. Set L = ®§=l n;H;lj for ; € Z (1 < j < ¢€). Then any Hodge class Q is
equal to ¢;(L) for some integers A;.
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Thorem 3.1. The product action of S' C Isom(CP%) c Isom(M) on M lifts to an action on L, and the fixed point data of the element
o € S' c Isom(M) of finite order satisfies the condition that F; (o) € Z + uqZ for any A; (1 < j <€) and for any lifted S '-action on L.

Proof. Let o; be an cyclic element of S ¢ CP%. Then o ; acts on H; as follows:
gi-llzo:-:zglhjl =10 lzo 0+ zg;) bl = [lwo = -+t wa;], byl

where /; is an element of the fiber of H; at [z : -+ : zdj]. Since any biholomorphic automorphism of CP% is linear, we can show that the
action defined above is well-defined as follows:

gj-llzo:---rzglhjl = 0~ llezo : -+t cza;), chjl = [0+ [ezo -+ - = czy)], chy]

= [[Cw() MR chdj],C]’lj] = [[IU() Dl wdj],hj]

where ¢ is a complex number. The product action o = oy X - -+ X 0; € Isom(M) clearly lifts to an action on L. Here since the scalar
curvature of g is the sum of the scalar curvatures of g;’s and the scalar curvature of g; is constant, g is a Kéhler metric of constant scalar
curvature. Therefore it follows from Theorem 1.1 and Theorem 1.4 that F; (o) € Z + poZ.

Example 3.2. Let M be the 2-dimensional complex manifold defined by the direct product M = CP} x CPj where both of CP}, CP}
are the 1-dimensional complex projective spaces CP'. Let H; denote the hyperplane bundles over CP} and n; : M —> CP} the
projection for i = 1,2. Let L be the complex line bundle over M defined by L = fr‘l‘H’l ® myH* for any integers A, p. Set
x = ¢i(miH) € HA(M;Z), y = c\(myH) € H*(M;Z). Then any element of H*(M;Z) is expressed as a linear combination of x, y
and any Hodge class Q is equal to c|(L) = Ax + py for some integers A, p1. Then since ¢,(M) = 2x + 2y and x*y*[M] = 6;,6;1, we have

xy — coeff. of (Ax + uy)2x +2y) A+p
xy — coeff. of (Ax + uy)? T

(1 Ho =
Let p be an odd prime number. Then the cyclic group Z, = (o) acts on M by

o (2o = 21l o = ) = (20 = 1), [awo  w1]) = ([z0 = 21), [uo = @' ]).
This action naturally extends to an action of S C Isom(M) and lifts to an action on i H (i =1, 2) as follows:

o [([z0 : z1)s [uo = w1]), (1, h2)] = [([20 : 21, [auo = wi]), (hy, h2)]
= [([z0 : 21), [uo : @' wy]), (hy, @' )]
where h; is an element of the fiber of niH at ([2o : 211, [uo : u1]) for i = 1, 2. This action naturally defines an lifted action on L and this

lifted action clearly extends to an S '-action.
The fixed point set of the action consists of the following two connected components:

Ny ={([z0: 1], [1: 0D} ~CP' X g9, N» ={([z0:2:],[0: 1]} =~ CP' x g

where qo = [1 : 0], ¢, = [0 : 1] are points in CP'. It is clear that N; (i = 1, 2) have cell decompositions with no codimension one cells.
Since it is obvious that x = x|N; is the positive generator osz(N,-; Z) such that x*[N;] = 61, y|N; = 0 and the total Chern class of TN; is
equal to (1 + x)?, we have

2
@) TATN) = (=)
® e\(LIN = Ax.

fori = 1,2. Let v(N;, M) be the normal bundle of N; in M. Then since v(N;, M) is the trivial bundle, it follows from the equality
c1(K;/ IN)) = ¢((TN;) + c;(v(N;, M) that

“ ci(KyIN;) = —2¢ex

fori=1, 2. Moreover since
c-(zo:zll:t)=z20:2alll:a'7]), o (z20:2l[r:1])=(z2:z]ler:1]),
o [(zo : 1], [1 : O1), (hy, )] = [([20 : z1], [ = OD), (hy, ho)] = [([20 : 2], [1 = O1), (hy, @' ho)],
o [([zo : 211, [0 : 1]), (A, h2)] = [([z0 : 211, [0 : 1]), (A1, h2)],

we have

1
, OW(N,M)) = T-a%

1
(&) QOWNL M) = por

a,k
(6) Ky IND =&, T I(KyIN2) = @7
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™ HLNY =a™,  d*(LIN;) = a°.
Now it follows from Theorem 1.4 and the equalities (3), (4), (5), (6), (7), (8), (9) that

Se(n) = x — coeff. of

p-1
i 1 (ak(s——n,u)e(~2£+n/l)x _ 1)3 ( X )2 1
pel-at l—e*) 1-ak
-1
+ i § 1 (ak(—e)e(—25+n/l)x _ 1)3 ( X )2 1
p=il-ot l—e*) 1—a*
= x — coeff. of
1 & 1 X V([ 3 3
- (e-nu) (=2e+nl)x _ _ Ak k(-¢g) (-2e+nd)x _
p;(l—a")z(l—e"‘) {(C’g”e ’ 1) - ok 1)}
= x — coeff. of
18 1
; (ak 1)2 (1 + x)
k=1
k(e=ny) 3k k-e) 3
(e (1 + (=26 +n)0) - 1) = ("7 (1 + (~26 + n)x) - 1)
= x — coeff. of
15 1
; _(ak— i 1+x)
k=1

{(ak(s—np) _ ])3 —dF (ak(—s) _ 1)3

+3 (0/‘(8“”“) (ak(s‘"") B 1)2 - aat® (ak(f"‘) - 1)2) (—2g +nA) x}

-1 (a/"(ﬁ“"”) (a"(s"'“) - 1)2 - atat® (a"(“s) - 1)2) (2¢ +nd)

1 P
EAE (@ — 1)?
(a,k(s—np) _ ])3 —ak (ak(—s) _ 1)3
’ (@ =17

Hence it follows from Lemma C in Appendix, we have
1 1
Sé(n) = —;3 (e = nu)* = (—&)?) (=26 + nA) = - (34un® = 6ep(A + pyn® + 12un) .

Hence it follows from Lemma B in Appendix that
2 {2 1 2 {2
Z(—l)f( . )(S"<2—2j)—s“<2—2j))=——12uu+y)2<—1>f( . )(2—2/')2
= J p = J
1
= L ipe 221 = - Lpa e,
p p

3 3
: 1 : 1 144
Z(—l)’( 3 )50(3 —2j) = ——342 Z(—l)’( 3 )n3 =32 283 = ——— .
4 J P - J P P
Therefore it follows from (1) that
1 Pl
Fu(o) = —— {3 - 960(A + ) — 2ﬂ144@2} -0
14 Au
forany A, pu.

APPENDIX

Lamma A  Assume that (x + 1)(x — 1)’g(x) is an integral polynomial ®(x) for a natural number ¢ and that

' e . - lim 2 _
ll_]}}(x-‘- Dg(x) = }cl_]:l} ———————(x_ 1)[ =4, XILIP‘(X+ Dg(x) = XILIP] (x - 1)[ =M.



25

Constant scalar curvature

Then we have
15 k i p
— ga)y=-—+= (modZ).
Proof. Since the former equality implies that (;Dfﬂ( is an integral polynomial P(x), there exists an integral polynomial Q(x) such that
D(x) P(x) u
= = + — .
x+1 o) x+1

Al v

i
= —1 (mod p) for any integer m, we have

-
Here since ™
k=1
p-1
> 0@ =-01) (mod p),
k=1
and since . )
Re——l— Re ak + 1 _ 1+cos; =l
ak+1 lef +1P ) " 2+2cos Z 2
we have
p-1 p-1
1 1 p-1
= R = —.
kZ:;ar"+l ,; e(a/k+1) 2
Therefore it follows that
S L Sy p-1 p . p-1
k = k = - 1 —_ = — 1 - _
;g(m ;Q(GH;MH Q)+ S—p=—g() + 5+ ——p
D(x) pe A pu
+ > = 2+ > (mod p).

=~ lim x+ D=1y

The equality of the lemma immediately follows from the equality above.

0 ifé<korf=k+1

Lemma B For non-negative integers k, ¢, the next equality holds.
k
ik
-1y k—2i) =
;( ) ( i )( 2 { 2k if L=k

Proof. Let k, ¢ be non-negative integers. First we prove the next equality:
0 €<k
(=D*k! €=k

k
Z(—l)"( : )i"=
P W kk+ 1) (=k+1)

(®)
Set f(x) = (1 + x)*. Then since f©(—1) = 0 for 0 < ¢ < k, it follows from the binomial theorem that

a 2 : 2
Z(—l)"—f( )i(i—l)~~~(i—t’+1)=0 — Z(—l)"( ) )i(i—l)---(i—€+1)=0.
i=0 ! i=0 !

Using the equality above, we can prove the equality
% k
i £ _
© ;(—n( l. )z =0
k

for 0 < ¢ < k by induction. Next set
N(k) = Z

i=0

(—1)"( ]l‘ )i".

i
(—1)i( : )i = —1 and it follows from (2) that

Then we have N(1) = Z
i=0
m+l m+ 1 i”'”——zml(—l)i m+1 (,+1)mﬂ
T4 iv1 |V

Non+1) = Z(—l)i
i=1

i
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=—(m+1)Z(—1)"( " )(i+1)”’:-—(m+1)2( ':‘ )Z( 1)’( )
i=0 J=0 i=0

- [ m
= - 1 -1) "= — 1N
(m + >;( 1)( l. ), (m+ DN(m),
and hence it follows that N(m) = (—1)"m!. Set
k

— i k k+1

M(k)_;(—l)( l, )z .
Then M(1) = —1 and it follows from (2) that

! -1
M(k)_z( D G "‘Z( Y E—a-nr t)'( N _kz( l)l( -1 )ik
- k-1 A k=1 k-1
=—k —-1) ) i 1k=__k _11( ] ).k k _1_,( ' )-k—l]
;H(])(H) (IZ()() ; j+;() )

= —kM(k - 1) = K*(-DF"'(k = )! = =kM(k = 1) + (= D*k k!

M)
— ar=aq_, +k where a; = K
= ag=k+k-1+---+1= k(k2+1)
k
— MK = (1 FEED 1) k(k + 1)! .

2
This completes the proof of (8). Note that it easily follows from (8) that

k k ¢ P . ]
_1) _onf = . o i '
2. 1)( i )(k = ZO( J )"ZO‘( 1)( ; )( 20920 ife<k.

Moreover using (8), we have

a k a k
§ (—1)"( . )(k—2i>" = § (—1>"( . )(—2i)"=(—2'>kN(k>=2kk!
i=0 ! =0 !
a k k k X k
i ~k+1 i ~k+1 i ~k
Z(—n( ) )(k—2z) —Z(—l)( l_ )(—21) +(k+ Dk ;O(—l)( i )(—21)

=(- 2)"*‘( k(k + 1)+ (k + D(=2) (= 1*k! = =2"k(k + 1! + 2*k(k + 1)! =

Lemma C For any integers &, 7, the next equalities holds.

1o a1 1, 18 k@ -1y
;Zf])zz__n (mod Z) , ;Z————)——O (mod Z)

k=1

Proof. Set
X (T —1)2 X1 -1)3
—_—, h(x)= ———.

90 =TT BRNCENNE

Then since
linll(x + Dg(x) = 217%, liml(x + g(x) =0, lirrll h(x)=0, liml(x + Dh(x) =0,

it follows from Lemma A in Appendix that
1 & 1 1 &
— Y g@)y=-—i* (modZ), — > h@)=0 (modZ).
p k=1 p p k=1

References

1) Bando, S. An obstruction for Chern class forms to be harmonic, preprint (1983).

2) Calabi, E. Extremal Kdahler metrics I, Differential geometry and complex analysis, (I. Chavel and H.M. Farkas eds.), 95-114, Springer-Verlag,
Berline-Heidelberg-New York, (1985).

3) Futaki, A. On compact Kéhler manifold of constant scalar curvature, Proc. Japan Acad., Ser. A, 59, 401-402 (1983).

4) Futaki, A and Tsuboi, K. Fixed point formula for characters of automorphism groups associated with Kahler classes, Math. Res. Letters. 8, 495-507



5)
6)
7
8)
9)
10)

Constant scalar curvature 27

(2001).

Kazdan, J and Warner, F. Prescribing curvatures, Proc. of Symp. in Pure Math. 27, 309-319 (1975).

Lawson, H.B. and Michelsohn, M. Spin Geometry, Princeton Mathematical Series, 37 (1986).

Lichnerowicz, A. Sur les transformations analytiques d’une variété Kdhlerienne compacte, Colloque Geom. Diff. Global, Bruxelles, 11-26 (1958).
Lichnerowicz, A. Isométrie et transformations analytiques d’une variété Kiihlerienne compacte, Bull. Soc. Math. France 87, 427-437 (1959).
Nakagawa, Y, The Bando-Calabi-Futaki character and its lifting to a group character, Math. Ann. 325 (2003), 31-53.

Tsuboi, K. The lifted Futaki invariants and the Spin®-Dirac operators, Osaka J. Math. 32, 207-225 (1995).

AN T —MES—F—EHELEF OEFZSHEEDO BCFEHMEHICOWT
HHE—
(CRREE K F R R SR M e BRI 2 R
COFXIZBWT, BCFEMBEEZHWA I LICL - T, BESN Ry JHEIH LFDOFR y VHHICE T

NE7 =7 —FIHIET2EAN 7 - — 7 —FEEHFEL2VEREREOBL 52 5. 72, &
ANT—WHET— 7 —FHBEHFETIRESHREVERUKROBCAME G 2FOLE, ZOHCHAE
BOEERES IS BHMMFEHEGZ 5.
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