スピンバルブGMR膜を用いた回転角センサーの特性

Characteristics of Magnetic Rotation Angle Sensors with Spin-Valve GMR Films

阿部泰典* 小野友樹* 相牟田 京平** Yasunori Abe Tomoki Ono Kyohei Aimuta 岡田泰行** 川井 哲郎*** Yasuyuki Okada Tetsuroh Kawai

スピンバルブGMR (Giant Magneto Resistance:巨大磁気抵抗効果)膜を用い,耐熱性に優れ た回転角センサーを開発した。感磁膜として,ピン層(固定層)には積層フェリ磁性交換膜を用い たシンセティック(Synthetic)型スピンバルブGMR膜を採用した。この膜の磁気抵抗変化率は 8.5%であり,温度特性は590Kまでほとんど変化せず,反強磁性膜を用いたスピンバルブGMR膜 よりも優れていることがわかった。本回転角センサーは,それぞれのピン層の磁化方向が直交する ように配置した2組のホイートストンブリッジ(Wheatstone bridge)で構成される。その角度検 出精度は,ブリッジのオフセット補正後は453Kまで±0.5度以下であった。2極着磁したNd-Fe-B 磁石と組み合わせたところ10mT以上の磁界で角度誤差1度以下が得られた。

A magnetic rotation angle sensor fabricated using spin-valve GMR (SV-GMR) films has been developed. A synthetic-anti-ferromagnetic layer is used in the sensing film as the pinned layer without any anti-ferromagnetic materials. This film showed a flat temperature coefficient of magnetoresistance (MR) up to 590 K. The MR ratio of the film was 8.5 %, more than twice that of conventional anisotropic magnetoresistive (AMR) film. The magnetic rotation angle sensor, comprising a pair of Wheatstone bridges with pinned directions rectangular to each other, had less than a 0.5° angle error up to 453 K after the bridge offsets and output amplitudes had been compensated by applying a rotating 30 mT external magnetic field. Using with a Nd-Fe-B magnet magnetized diametrically, the sensor had an angle error of less than 1.0° when a field of 10 mT or more was applied.

• Key Word : GMR, magnetic sensor, synthetic anti-ferromagnetic film • R&D Stage : Prototype

1. 緒 言

磁気式回転角センサーは、測定対象物の回転を非接触で 測定できるため、信頼性に優れており、すでにAMR (Anisotropic Magnetoresistance: 異方性磁気抵抗) 膜を 採用したものが実用化されている。この回転角センサーを 広い温度範囲で使用するには、感度や温度特性の改良が求 められている。

スピンバルブGMR膜 (Spin-Valve Giant Magnetoresistive film) はAMR膜よりも大きな磁気抵抗効果と小さな温度 依存性を示し,現用のAMR膜を採用した回転角センサー に置き換わる可能性がある¹⁾。

D. Hammerschmidtらはすでに自動車用途のスピンバル ブGMRセンサーを発表している²⁾。この例のようにピン層 に反強磁性膜を採用したセンサーの温度特性は,反強磁性 膜のブロッキング温度の制約を受ける。

筆者らはより優れた温度特性を得るためには、反強磁性 膜を使わないスピンバルブ膜の適用が好ましいと考え、ピ ン層に積層フェリ磁性交換膜を用いたシンセティック型ス ピンバルブGMR膜(以下単にSV-GMR膜と記す)を採用 した回転角センサーの特性について検討した。

SV-GMR膜を用いた回転角センサーの動作 原理とその構成

SV-GMR膜を用いた回転角センサーの動作原理を図1に 示す。SV-GMR膜はピン層(固定層),導電層,フリー層 (自由層)を積層した構造である。30 mTの回転磁界を

^{*} 日立金属株式会社 情報部品カンパニー

^{**} 目立金属株式会社 先端エレクトロニクス研究所

^{***}日立金属株式会社 新事業開発センター

Information System Components Company, Hitachi Metals, Ltd.

^{**} Advanced Electronic Research Laboratory, Hitachi Metals, Ltd.

 $[\]ast \ast \ast$ New Business Development Center, Hitachi Metals, Ltd.

図1 SV-GMR回転角センサーの動作原理 Fig. 1 Working principle of angle sensor using SV-GMR

SV-GMR膜に印加すると、フリー層の磁化はその印加磁界 の方向に回転する。したがって、ピン層とフリー層の磁化 の角度がSV-GMR膜の抵抗変化を引き起こす。

すなわちこの抵抗変化は次式で記述される。

$$R(T) = R_{min}(T) + \frac{\Delta R_m(T)}{2} \left[1 - \cos\left(\theta_f - \theta_p\right) \right] \quad (1)$$

ここで、抵抗R(T) は温度(T)の関数であり、R_{min}(T) はフリー層とピン層の磁化の方向が平行なときの抵抗、 $\Delta R_m(T)$ は磁気抵抗、 $\theta_f \ge \theta_p$ はそれぞれフリー層と固 定層の磁化方向の角度である。

このセンサーの特徴は(1)式に示すように,抵抗変化は 印加する磁界の方向だけに依存し,磁界の強さには依存し ないことである。

作製した回転角センサーのブリッジ構成を図2に示す。 図に示すようにピン層の方向が互いに直交する2組のホイー トストンブリッジからなり,合計8個の抵抗で構成されて いる³⁾。1組のブリッジがCOS信号を出力し,もう1組が SIN信号を出力する。図中の矢印はピン層の磁化の方向を 示す。図2中の $R_1 \ge R_2$,あるいは $R_3 \ge R_4$ は、ピン層の方 向が互いに反平行となるように構成した。このブリッジ構 成により、(2) 式~(4) 式に示すように、1組のブリッジ (COSブリッジ)から信号出力 V_{cos} ,もう1組のブリッジ (SINブリッジ)から信号出力 V_{sin} が得られ、それらの比を 逆正接演算することにより、温度依存性の少ない回転角信 号が得られる。

$$\theta_{\text{sens}} = \arctan\left(\frac{V_{\text{sin}}}{V_{\cos}}\right)$$
(2)

$$V_{cos} = V_{cc} \times \left(\frac{R_4 (T)}{R_3 (T) + R_4 (T)} - \frac{R_2 (T)}{R_1 (T) + R_2 (T)} \right) \quad (3)$$

$$V_{sin} = V_{cc} \times \left(\frac{R_8 (T)}{R_7 (T) + R_8 (T)} - \frac{R_6 (T)}{R_5 (T) + R_6 (T)} \right) \quad (4)$$

ここで、Vccはブリッジに印加する電圧、R_i(T)(_i = 1~ 8)は_i = 1~4がCOSブリッジ、_i = 5~8がSINブリッジ の抵抗であり、いずれも温度Tの関数である。 θ_{sens} が検 出する回転角度である。この角度が印加した磁界の方向と 等しい場合、角度誤差は発生しない。

よく知られているように,実際のブリッジではブリッジ ごとの抵抗のアンバランスにより多少のオフセットが生じ る。そのため,精度よく回転角を検出するためには,オフ セットの補正や出力の振幅補正が必要である。

オフセットは,図3に示すように信号出力の1/2の電圧 と0mVの差として得られる。

また,実用的見地からはオフセット補正を簡略化できる ことが望ましい。そこで,室温でいったんオフセット補正 を行えば,低温でも高温でも追加のオフセット補正を行わ ずに角度誤差1度以下が達成できるように,ブリッジを構 成するSV-GMR 膜の抵抗の温度依存性を適正化した。こ の詳細はデータを示して後述する。

図 2 SV-GMR センサーのブリッジ構成 Fig. 2 Bridge configuration of SV-GMR sensor

図3 オフセットの定義 Fig. 3 A definition of offset

3. 実験方法

SV-GMR 膜はSi 基板上にDCマグネトロンスパッタ法 で作製した⁴⁾。ピン層には反強磁性膜を使用せず, Co-Fe/Ru/Co-Feの構成からなる積層フェリ磁性交換膜を 用いた。SV-GMR 膜の構成例を層順に記述すると,(基板) /(下地層)/Co-Fe(2.1 nm)/Ru(0.4 nm)/Co-Fe(2.0 nm) /Cu(2.2 nm)/Co-Fe(1.0 nm)/Ni-Fe(4.0 nm)/(保護層) である。ピン層の磁化の初期方向は磁場中スパッタした Co-Fe層の磁化の方向になっている。2組のブリッジから なる回転角センサーは通常のフォトリソグラフィの方法で 形成した。ここで,図2に示したようにピン層の磁化の 方向は、2組のブリッジ間では互いに直交するように,ブ リッジ内の2個の抵抗素子間では反平行になるように形成 した。このようにブリッジを構成し,(1)~(4)式に示し た演算を行うことで,優れた温度特性が得られる³⁾。

回転角の測定にあたっては互いに直交する2対のヘルム ホルツコイルを使用して30 mTの回転磁界を印加し,室温 から453 Kまで温度を変化させて行った。ブリッジに印加 した電圧は5 Vとした。

また,実用的な応用も考慮して,2極着磁した永久磁石 を用いた回転角の測定も合わせて行った。

4. 結果と考察

4.1 SV-GMR膜の特性

センサーに使用したSV-GMR膜の特性例を図4に示す。 磁気抵抗変化率一印加磁界ヒステリシス(MR-hysteresis) のマイナーループは印加磁界5 kA/mでのフリー層の磁気 特性を示す。精度よく回転角を検出するためには(1)式 で示したようにフリー層が外部回転磁界に同期して回転す る必要がある。

しかし、実際はピン層とフリー層との間に働く層間結合 磁界 $(H_{int})^{5}$ やフリー層の異方性磁界 (H_k) が存在し、 これらが回転角の検出精度を低下させる。そのため本実験 では図4のマイナーループに示すように、フリー層の保磁 力 (H_c) ,誘導磁気異方性磁界 (H_k) ,ピン層とフリー層 との層間結合磁界 (H_{int}) が小さくなるようにSV-GMR膜 を作製した。メジャーループは印加磁界240 kA/mで測 定した。本測定はピン層の外部磁界に対する安定性を示し ている。精度よく回転角を検出するためには、外部回転磁 界を印加した場合も、ピン層の方向が初期に設定した方向 に保たれている必要がある。図4のメジャーループから、 200 kA/m以下の磁場範囲ではピン層の向きが初期磁化の 方向に保たれていることがわかる。このSV-GMR膜の磁気 抵抗変化率 (MR比) は8.5%であった。

また、図5にこのSV-GMR膜の磁気抵抗変化率の温 度依存性を反強磁性膜を使ったSV-GMR膜と比較して示 す。このSV-GMR膜のMR比は590Kまでほとんど変化せ ず、比較としたPtMn反強磁性膜をピン層に使ったものよ りも温度特性が優れている。

図 5 磁気抵抗変化率の温度依存性 Fig. 5 Temperature dependence of magnetoresistance

4.2 回転角センサーの特性

本センサーをヘルムホルツコイルを用いた30 mTの一様 回転磁界中に置き,室温と453 Kで測定した結果を図6に 示す。図6にはセンサー出力V_{cos},V_{sin}およびそれらの出 力を理想的な正弦波曲線と比較したずれを示した。また. 図7には、その回転角誤差、ヒステリスに起因する誤差を 示した。センサー出力Vcos, Vsin はほぼ正弦波に近く, 室 温, 453 Kともに、その正弦波からのずれは0.5 %以下で あった。出力の振幅は室温で200 mVであり、453 Kでは 出力は125 mVまで低下した。したがって、その温度係数 は-0.25 %である。オフセットと出力振幅を補正した後の 角度誤差は室温, 453 Kともに±0.5度以下であった。こ のように精度よく回転角を検出できたのは、図4に示した ように,層間結合磁界(H_{int})やフリー層の異方性磁界 (H_k)を低減した効果と考えられる。また、ヒステリシス に起因する誤差も室温,453 Kともに±0.5度以下であっ た。この誤差を抑制できた一因として、図4に示したフ リー層の保磁力(H_c)を小さく抑えたことが挙げられる。 また,角度誤差の設定角度依存性は,室温でも453 Kでも 類似の波形を示しており、453 Kまでは回転角測定の原理 に変化が生じていないことを示している。

次に2極着磁したNdFeB磁石を使い,磁石とセンサー間 の距離を変化させて,回転角を測定した。図8(a)に示 すように,センサーを回転する磁石の中央に対向させて配 置した。したがって,磁石の回転に対応してほぼ一様な回 転磁界がセンサーに印加されることになる。図8(b)に 示すように磁石とセンサー間の距離を変えることにより, センサーに印加される磁界の強さが変わる。5 mmでは

図 6 SV-GMRセンサーの特性 (a) 室温 (b) 453 K Fig. 6 SV-GMR sensor operation at (a) room temperature and (b)

453 K

2.0 (a) 1.5 1.0 Angle error (degree) Frror 0.5 0.0 -0.5 Hysteresis error -1.0 -1.5 -2.0 0 45 90 135 180 225 270 315 360 2.0 (b) 1.5 1.0 (degree) Error 0.5 error 0.0 -0.5 Anale Hysteresis error -1.0 -1.5 -2.0 0 45 90 135 180 225 270 315 360 Setting angle (degree)

図 7 SV-GMRセンサーの角度誤差(a)室温(b)453 K Fig. 7 Angle error SV-GMR sensor operated at (a) room temperature and (b) 453 K

図8 Nd-Fe-B磁石を使ったSV-GMRセンサーの評価方法 (a) Nd-Fe-B磁石とSV-GMRセンサーの配置(b)磁界強度の距 離依存性

Fig. 8 Evaluation method of SV-GMR sensor using a Nd-Fe-B magnet (a) an arrangement of a couple of Nd-Fe-B magnet and SV-GMR sensor and (b) magnetic field intensity 35 mT, 10 mmでは10 mTである。図9には回転角誤差 と印加磁界の強さとの関係を示す。印加磁界が10 mTの 場合の角度誤差は±0.9度になっており,やや大きい。し かし,磁界の強さが増すにつれて精度は向上し,20 mT以 上では±0.5度以下となっている。10 mTで角度誤差が ±0.9度あった原因は,この強さの磁界ではフリー層が 十分には飽和していなかったためと考えられる。一方, 20 mT以上ではフリー層が飽和し,フリー層の磁化の方向 と印加磁界の方向がほぼ一致する状態になったと考えられ る。以上の測定結果から,このセンサーを使用して高精度 で回転角を検出するためには20 mT以上の印加磁界が必 要なことがわかる。

図 9 SV-GMRセンサーの測定精度の磁界依存性

Fig. 9 Magnetic field dependency of angle accuracy of SV-GMR sensor

実用的な見地からは、出力の補正(オフセット補正、振 幅補正)を簡略化することが望ましい。すなわち、室温で いったん補正すると、温度を変化させても補正を必要とし ないセンサーが求められる。

そこで、室温でブリッジ補正した場合に233 Kから423 K の範囲でセンサーの角度精度がどのように変化するかを 評価した。なお、センサーそのものの本質的な角度精度は 図7に示したように±0.5度以下である。図10に測定結果 を示す。室温では±0.5度以下であった角度誤差が低温側、 高温側ともに大きくなった。しかし、その角度誤差は±1 度以下であり、実用的な範囲内であった。また、423 Kで の角度誤差の設定角度に対する依存性は、図11 (a) に示 すように1周期性であった。

温度変化させた場合に角度誤差が増加する主な原因は, ブリッジのオフセットの温度依存性と推定される。

オフセットがある場合,検出される回転角θは次式と なる。

$$\theta = \arctan\left(\frac{V_{\rm sin} + V_{\rm off}}{V_{\rm cos} + V_{\rm off}}\right) \tag{5}$$

図10 SV-GMR センサーの角度誤差の温度特性 Fig. 10 Temperature dependence of angle error of SV-GMR sensor

図11 角度誤差の設定角度依存性

 (a) experimental result at 423 K
 (b) calculated result under 400 mV amplitude and 1 mV offset

(5) 式を使って角度誤差の設定角度依存性を計算した。 結果を図11 (b) に示す。このようにオフセットがある場 合,角度誤差は1周期性となる。

したがって,実用的な見地からは,要求される温度範囲 内で,オフセットの温度依存性が1mV以下になるように, 精度よくブリッジを構成する必要がある。

5. 結 言

ピン層に積層フェリ磁性交換膜を用いたシンセティック 型SV-GMR膜を採用した回転角センサーの特性を評価 した。

ピン層の磁化の方向が直交するように配置した2組の ホイートストンブリッジからなる構成にしたところ,室温 から453 Kまでの温度範囲で角度誤差 ± 0.5度以下の回転 角検出精度があることがわかった。また,2極着磁した 磁石を回転させ,センサーと対向する配置にした場合, 20 mT以上の磁界がセンサーに印加されていれば,角度誤 差 ± 0.5度以下が得られた。

さらに、実用的な見地から、いったん室温でブリッジ補 正を行えば、追加の補正なしに233~423 Kの温度範囲で、 このセンサーの角度誤差が±1度以下になることを示し た。このためには、ブリッジのオフセットを対象となる温 度範囲で1 mV以下に抑制することを要する。

6. 謝辞

本実験に際して,SV-GMR膜の作製方法に関してご指導 いただいた,株式会社日立製作所 中央研究所 中本一広 博士,星屋裕之氏,目黒賢一氏に厚く感謝いたします。

引用文献

- 1) H.Wakiwaka: J.Magn.Soc.Jpn., 28, pp.825-833 (2004).
- 2) D.Hammerschmidt et al.: SAE 2005 World Congress & Exhibition (2005-01-0462).
- 3) Japan PAT pending (2001-159542).
- 4) Y.Okada et al.: J.Magn.Soc.Jpn., 32, 285 (2008)
- 5) S.S.P.Parkin et al.: Phys.Rev.Lett., 66, 2152 (1991)

阿部泰典 Yasunori Abe 日立金属株式会社 情報部品カンパニー

小野 友樹 Tomoki Ono 日立金属株式会社 情報部品カンパニー

相牟田 京平 Kyohei Aimuta 日立金属株式会社 先端エレクトロニクス研究所

岡田 泰行 Yasuyuki Okada 日立金属株式会社 先端エレクトロニクス研究所

川井 哲郎 Tetsuroh Kawai 日立金属株式会社 新事業開発センター