THE DYNAMIC STABILITY IMPROVEMENT OF
MULTIMACHINE POWER SYSTEMS BY
MULTILEVEL OPTIMAL CONTROL
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The use of supplementary stabilizing signal to improve the dynamic stability of multimachine power system is well known. This paper

propose multilevel optimal control scheme (strategies) for interconnected power systems. A large —scale power system may be viewed as

an interconnection of several lower—order subsystems, with possible change of interconnection pattern during operation. A multilevel

optimal control is proposed for optimization of large —scale systems composed of a number of subsystems. Local controller are used to

optimize each subsystem, ignoring the interconnection. Then, a global controller may be applied to minimize the effect of interconnections

and improve the performance of the overall system. An optimal state feedback control and robust pole placement are also presented for a

comparison. The results for a multimachine power system consisting of two machines show the effectiveness of the control strategies.
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1. Introduction

Power system have been growing in size and
com — plexity with increasing interconnections
between systems. An increase in the damping of
the system response is desirable, not only because
it reduces the fluctuations in the controlled variables
and hence improving the quality of the electric
service, but mainly because this damping is translated
into an increase in the power transmission stability
limits. Higher stability limits bring significant
economic savings as the need for the expansion of
the transmission system can be postponed.

Supplementary excitation control, commonly
referred to as power system stabilizer (PSS), has
become an important means to enhance the damping
of low —frequency oscillations in the range 0.5 to 2
Hz, i.e. dynamic or steady —state stability of power
systems' *'. Rapid attenuation of the transient process
in the con —trolled power system can be achieved
by determining the best optimal supplementary
signal in the excitation control system®. It has been
widely recognized that excitation control not only
effects, but may improve significantly the dynamic
stability of the power system. Many papers have

been published on the subject but the most of them
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was either no use of the measurable variable states
or they were limited to single machine systems
connected to infinite busbars. A multimachine
power system could consist of many types of power
stations like hydro power station, thermal power
station, etc, which have different characteristics.
In this paper the power system is decomposed into
subsystems. A subsystem could be a generator or
group of generators. The advantage of this method
is that each subsystem could be optimized with its
own criteria.

The control strategy proposed here is applied to
three bus, two machine system. The result of the
study are presented to demonstrate the effectiveness
of the multilevel optimal control. A comparison
between the performance of the proposed controller
and that optimal state feedback control and robust

pole placement is also included.

2. State Space Modeling of Power System
Dynamic

Electric power systems are non — linear system
and for any large disturbance the techniques of
non — linear systems analysis such as simulation
and Liapunov based energy methods are needed in
order to model large power system disturbances.

For relatively small disturbances well established
linear techniques may be used for analysis the dynamic
of power system. These techniques are usually

applied to a linear state space model of the power
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system as expressed by (1) and (2),

x=Ax+Bu (1)
y=Cx (2)

where v and u are vectors of outputs and input
respectively. x is the system state vector, and the
matrices A, B, and C are constant under the assumption
of system linearity and stationarity. We shall choose

the control signal to be,
u=—Kx (3

This means that the control signal is determined by
an instantaneous state, such a scheme is called
state feedback. The matrix K is called the state
feedback gain matrix.

Figure 1, shows the system defined by equation
(1), with state feedback. This is closed —loop control
system, because the state x is feedback to the control
signal u.

Substituting equation (3) into equation (1) gives
x(t)=(A—BK)x(t)
The solution of this equation is given by
x(t) =e™ ™'x(0) )

where x(0) is the initial state caused by external
disturbances. The stability and transient response
characteristics are determined by the eigenvalues of
matrix A —BK. If matrix K is chosen properly,
the matrix A —BK can be made an asymptotically
stable matrix, and for all x(0) #0 it is possible to
make x(t) approach 0 as t approaches infinity. The
eigenvalues of matrix A—BK are called the regulator
poles. If these regulator poles are placed in the
left—half s plane, then x(t) approaches 0 as t approach

infinity.

Figure 1 Closed-Loop Control System with u=-Kx

3. Control Strategy

3.1. Multilevel Optimal Control
A multimachine interconnected system S can be

described by linear model of the form,
S:x=Ax+Bu (5)

where x is an n—dimensional state vector and u is
an m—dimensional control vector. A and B are constant
matrices of appropriate dimensions. The system in
equation (5) can be considered to be composed of N
interconnected subsystems, each subsystem S;,
being described as
Si:

).(i:A;X;-I-B;umLh;(X) i:1,2,"',N (6)

such that,

N

h(x)= Z % (7)

i#j

The total optimal control is given by :
ui— UH’ uf (8>

Figure 2, show the communication network
required for the exchange of information using such
a hierarchi—cal technique. The state of individual
subsystems are required to be transmitted to the
second level controller for computing the global
control law. These signal are then sent to the respective
subsystems for modifying the locally computed

control signal .
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Ul is a local feedback control vector assuming no
interactions between subsystem S, i.e.,h(x)=0.

Ut represent a; global control signal that compensates
for the effect of the presence of coupling.

The performance of each subsystem is measured

when the quadratic cost,
1 oo
= Ef«xw;zm (u) Raulpdt ©
0

attains is minimum value when an optimal control
Ul is applied to each subsystem. Q: and R; are symmetric
positive semidefinite and positive definite matrices,
respectively.

The optimal u! minimizing equation (9) can be

determined as,

u = —Kix W)
Ki =R, 'B'P, @y

where P is solution of Riccati equation *
(Ai)TPi+PiAiVPiBiRirI(Bi)TP1+Qi:0 (12)

The global signal u*is determined such that,

Buw+Cx=0 @3
where
And,

u = —B Cx ()

where B’ is the pseudo—-inverse of B, defined as

B = [B'B] 'B"
Thus

u* = [B'B]"'C, i)
where G = B'C = [B"B] 'B'Cis so called the global

gain matrix.

3.2 Optimal State Feedback Control
Find u* (t) =-Gx(t) that minimizes the performance

index,

= ‘;‘J‘D{O(XT(O.Q.X(U+UT(O.R.u(t)}dt a7
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Subject to the dynamic equality constraint
x(t) =Ax(t) + Bu(®) ; x(0)=x, 19

where x(t) €R" is the state vector; u(t) ER" is the
control vector; AER™ is the system matrix;
B&R™™ is the input matrix; QER™ is a positive—se
midefinite state weighting matrix; and RER™ is a
positive—definite control weighting matrix. Itis
well known that the optimal control u*(t), and
hence the feedback gain G, exist provided that the
pairs (A,B), (A,Q"?) are completely controllable
and observable, respectively. The feedback gain

matrix is given by
G=—R'B'P 19

where K is the (nxn) positive—definite solution of

the Riccati equation
P.A+AT.P-P.B.RLB".P+Q =0 oY)

where the superscript T denotes the transpose of a
matrix. The static Riccati equation given in equation

@0 can be solved in closed form.

3.3 Robust Pole Placement
We considered the eigenvalue allocation (pole

placement) problem for the controllable system,
;( —= Ax+Bu en

where A€Rnxn, B&Rnxmand xERn , u€Rm
are the state and the input of the system, respectively.
If we use state feedback, that is, if weset u = -
Fx+v where FER™ , and vER"is a new external

input, equation €1) becomes,
x = (A—BF)x+Bv )

and the problem is to allocate any set of eigenvalues
to closed-loop matrix A — BF by choosing the gain
matrix F. This problem has a solution if and only if

19 and tools (e. g.

€1 is controllable. Many papers
MATLAB) proposed the solution numeric of the
problem.

From the eigenvalues of matrix A in open-loop
system, it can be effected the following pole placement
procedure to achieve a robust pole placement.

1. Unstable poles of A are replaced with their

symmetric.
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2. Complex pole under damped are removed to a

specific damped .

3. Poles too slow (in the right of aimaginary

axis chosen) are removed in this vertical.

4 . The rest poles remain in their places.

5. A pole could be removed several successive

transformations.

4. Simulation Results

To assess the proposed method in the case of

multimachine system

. The system shown in the

Figure 3, taken from®, is studied.

Machine 1 @—————‘{%&‘\_}a

4+

ma

[y
m
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Load

R S

Figure 3 Multimachine System

The model given in® is
).< — Ax+Bu

where

XT :I: A(l)l AﬁlAeqlAepm szAaerquemzj
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In the robust pole placement simulations, it is desired

to remove the original eigenvalues in the sets, of

eigenvalues K1 and K2

, as shown in Table 1. Here

it is desired to improve the dynamic performances

of the power system of the form as shown in Figure

4.

The dynamic responses of the angular frequencies
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Speed deviation of machine—1

the mechanical torque of machine 1 are shown in
Figure 5.

The overall system eigenvalues are given in Table
2. It is shown, that the relative stability of the proposed
method is much better than others.

The dynamic responses of the angular frequencies
to a 5% change in the mechanic torque of machine 1

and machine 2 are shown in Figure 6 and 7, respectively.

Table 1 System Eigenvalues and Desired Eigenvalues

Open—Loop K1 K2

—25.1741+j67.8187 | -25.1741+j67.8187 | -25.1741+j67.8187

—25.2329+3j30.3073 | —25.2329+j30.3073 | -25.2329+3j30.3073

—0.0904 +j9.8430 | —2.0904+£j9.8430 ~4.0904 +39.8430

—0.0006 ~2.0006 ~-4.0006
—0.2443 —2.2443 -4.2443
K1 & K2 Desired Eigenvalues
Table 2 System Eigenvalues.
Open-Loop Optimal Control Multilevel Control

—25.1741+67.8187
—25.2329+j330.3073
—-0.0904+j9.8430
-0.0006

—25.4947+367.9481
—25.7861+j30.7483
-2.1329+j10.1152

-3.3733+%j3.1807

—-25.2335+364.4124
—25.1817+j37.0836
-4.8862+]11.4038

-5.4999+j3.7619
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Figure 6 Dynamic Response of the Angular
Frequencies to a 5% Change in the
Mechanical Torque of Machine 1.
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Figure 7 Dynamic Response of the Angular
Frequencies to a 5% Change in the
Mechanical Torque of Machine 2.
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5. Conclusions

The Multilevel optimal control for a multimachine
power systems as well as optimal state feedback
control and robust pole placement have been presented
The control configurations consist two levels,
where optimization is carried out on both the subsystem
and overall system level. On the subsystem level,
local controllers are chosen to optimize subsystem
performance indices, totally disregarding the
interconnections among the subsystems. On the
overall system level, a global controllers is implemented
to minimize the effects of interconnections.

The simulation results showed that dynamic
responses of multimachine have been improved
with multilevel control as well as optimal control.
The robust pole placement required a large signal
control to obtain a similar performance with optimal

control.
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Appendix

List of Symbols

9]

OR AP O =2 w x OWw

System matrix

Control matrix

Output matrix

state vector

Output vector

Control vector

Performance index

Weighting matrix for state variable
Weighting matrix for controls signal

=)

Feedback gain matrix

Solution of the linear matrix Riccati
equation

Linearized incremental quantity
Angular frequency (velocity)
Torque angle

o

r

g—axis component voltage behind
transient reactance
Equivalent excitation voltage
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