五島列島福江島の鬼岳火山群基底で発見された 約 40 万年前の寒冷期の海成層

長岡信治*松岡數充**松島義章**

Marine Sediments at *ca.* 0.4 Ma Indicating Cold Condition Beneath Onidake Volcanoes of the Goto Islands, Western Japan

Shinji NAGAOKA *, Kazumi MATSUOKA ** and Yoshiaki MATSUSHIMA ***

Abstract

Miono Formation consisting of Pleistocene marine silty sands occurs from -72.5 to -75.7 m a.s.l. at the base of Onidake volocanics. The K-Ar dating for basaltic lavas overlaying and underlying the Miono Formation indicates that its age is *ca.* 0.4 Ma. The molluscan fossils of the formation show that it deposited on inner-bay muddy bottom with 5 to 10 m depth. The sediments include pollen and dinoflagellate cyst assemblages showing cool-environment. Assuming the Quaternary tectonics has probably been stable around the Goto Islands, the Miono Formation was deposited in a glacial stage around *ca.* 0.4 Ma with a sea-level 60 to 70 m below that in the present and cool environment.

Key words : Pleistocene, marine sediments, Onidake volcanoes, Goto Islands, K-Ar age, glacial stage, sea-level

キーワード:更新世,海成層,鬼岳火山,五島列島,K-Ar 年代,氷期,海水準変動

I.はじめに

九州西方,五島列島南部の福江島には,第四紀 単成火山が多く存在する。特に島の東部には,中 心の鬼岳をはじめ,その周辺に火ノ岳,城岳,箕 岳,臼岳等の11以上の玄武岩質単成火山が集中し (松井ほか,1977;河田ほか,1994;長岡ほか, 2002など),鬼岳火山群を形成している(長岡ほ か,2002)。1994年2月,鬼岳の北麓にある福江 市三尾野町の運動公園建設現場で水源確保のため の機械ボーリングが行われた(北緯32°40'59", 東経128°50'17",日本測地系,図1のX1地点)。 その際,第四紀中後期の玄武岩質溶岩類の基底付 近から海成層が発見された。この海成層は,貝化 石などを豊富に含んでおり,西九州の第四紀の古 環境を考える上で重要なデータを提供するものと 期待される。そこで,筆者らは,鬼岳火山の下に ある海成層の堆積環境や時代を明らかにするため に,含まれる貝化石やパリノモルフ(花粉,渦鞭 毛藻)の分析と海成層の上下にある玄武岩のK-Ar

^{*} 長崎大学教育学部地理学教室

^{**} 長崎大学水産学部沿岸環境学研究室

^{***} 神奈川県立生命の星・地球博物館

^{*} Department of Geography, Faculty of Education, Nagasaki University

^{**} Laboratory of Coastal Environmental Sciences, Faculty of Fisheries, Nagasaki University

^{***} Kanagawa Prefectural Museum of Natural History

図 1 ボーリング地点図. Borehole X はボーリング地点, EST-3 は海底表層堆積物採取地点. (国土地理院発行の 25,000 の1 地形図「五島福江」を使用)

Fig. 1 Locality of the boring site.

Borehole X : boring site, EST-3 : sampling site of surface sediment for dinoflagellates cyst analysis in Fig. 4.

年代測定を行った。本稿ではその結果を報告する。 なお,地質記載は長岡と松岡が,貝化石の分析は 松島が,花粉と渦鞭毛藻の分析は松岡が,全体の まとめは長岡が,それぞれ行った。また,K-Ar年 代は蒜山原地質年代学研究所に依頼した。

II.ボーリング地点と試料の層序

ボーリングは 掘削孔径 200 mm と 150 mm で, 鬼岳火山の北の標高 52 m の溶岩台地上の X1 地点 で行われた(図1)。なお,この標高は福江市発行 の1/2500 地形図から読みとったために,±1 m の誤差を持ち,以下の堆積物記載の深度も同様の 誤差を含んでいると考えられる。コアは長さ 140.4 m で, ほぼ 100%回収された(図2)。コア 試料に認められた層序は下位から以下のようであ る。

1) 五島層群(標高 - 88.4 ~ - 84 m)

コア最下部にある中新世堆積岩で,本地域では 第四紀火山岩類の基盤をなしている。コア試料で は,厚さ4m以上の黄褐色の均質な中粒の固結し た砂岩である。全体に風化し脆弱化していること から,上位のBL-1に覆われる以前に,地表に長 期間露出していたと考えられる。

2) 玄武岩質溶岩 1: BL-1(標高 - 84 ~ - 75.7 m) 厚さ 5 m の暗灰色の緻密な玄武岩質溶岩である。 一部多孔質であるが,全体に均質で Flow breccia

図 2 X1 地点のボーリング柱状図(左)と三尾野層の柱状図の拡大(右). Fig. 2 Columnar section of X1 core and Miono Formation.

を伴わない。長岡ほか(2002)で大円寺溶岩と呼ばれたものに相当する。

3) 三尾野層(新称)(標高 - 75.7 ~ - 72.5 m) BL-1を直接覆う,厚さ 3.2 mの貝化石を豊富 に含む青灰色のやや固結したシルト質細~中粒砂 層である。全体に,ラミナなどは不明瞭で,塊状 で淘汰が悪い。下位より,厚さ 30 cmの玄武岩の 細礫を含む中粒砂層,厚さ 50 cmは淘汰のよいシ ルト~極細砂層,厚さ 40 cmの貝化石の多い不淘 汰なシルト~中粒砂層,厚さ 170 cmの貝化石お よび木片の多いシルト質細砂層,厚さ 30 cmの貝 化石を含む石灰質の中~細粒砂層に細分できる (図2右)。この地層に相当するものは周辺でこれ まで報告されていないことから,本層をボーリン グ地点付近の地名にちなみ「三尾野層」と命名する。

4) 玄武岩質溶岩 2:BL-2 (標高 - 72.5 ~ 8 m) 厚さ 64 mの厚い玄武岩質溶岩である。最上部 5 m は Flow breccia である。下位の三尾野層との 境界には土壌などの発達はなく直接接している。 しかしながら,基底には水冷破砕やガラス質の急 冷縁などの急冷構造が見られないことから,BL-2 は乾陸上堆積であり,三尾野層との間にはある程 度の時間間隙が存在すると考えられる。この溶岩 は福江市街地の標高10m以下に広く分布する木 場溶岩(長岡ほか,2002)に連続することから, 同溶岩に対比されると考えられる。

5) 玄武岩質溶岩 3: BL-3(標高 - 8 ~ 7 m)

BL-3 は,厚さ15 mの暗灰色の玄武岩質溶岩で ある。下位のBL-2 との間には土壌などの時間間 隙を示す証拠はなく連続的に堆積していることか ら,BL-3 も BL-2 同様に木場溶岩に対比されると 考えられる。最上部5mは破砕されたFlow breccia となっている。このFlow breccia は赤褐 色を呈し粘土化し,風化されていることから,BL- 3と上位の BL-4 の間には時間間隙が推定される。

6) 玄武岩質溶岩 4: BL-4(標高 7~40 m)

厚さ33mの暗灰色の玄武岩質溶岩である。BL-4の最上部は厚さ6mのFlow brecciaとなってい る。上位のBL-5が鬼岳火山の噴出物(松井ほか, 1977;河田ほか,1994;長岡ほか,2002)に対比 されることから,それに連続的に覆われるこの溶 岩も同火山に属するものと考えられるが,同火山 の多数の溶岩流のどのユニットに対比されるかは 不明である。

7) 玄武岩質溶岩 5: BL-5 (標高 40 ~ 52 m)

厚さ12mの暗灰色の玄武岩質溶岩で、最上部に 厚さ4mのflow brecciaを伴う。BL-5とBL-4 の間には、風化帯や土壌は見られず、BL-5はBL-4 を連続的に覆っている。BL-5は表層にあり、陸 上の鬼岳溶岩1(長岡ほか、2002)の分布域内に あるので、同溶岩に対比される。土壌の¹⁴C年代 測定から、鬼岳溶岩1を含む鬼岳火山の噴火年代 は、約1万8千年前と推定されている(長岡ほか、 2002)。

III.三尾野層の化石と堆積環境

三尾野層の堆積環境を推定するために貝化石, 花粉化石,渦鞭毛藻シスト化石の分析を行った。

1)貝化石

貝化石は,前章の層相の異なるユニットごとに 採取された。特に,下部には多く含まれていた。 しかし,構成種は層準ごとに大きく異なっていな いこと,統計的に処理できるサンプル数に達しな かったので,ここでは一括して構成種を記載した。 三尾野層全体に含まれる貝化石は、腹足類が9種、 二枚貝類が 12 種の計 21 種であったが , 種名まで 同定できたのは,腹足類の5種と二枚貝類の7種, 計12種である(表1)。この12種はいずれも現生 種であり,その生態的特徴から見ると水深の小さ な 内 湾 の 泥 底 に 生 息 し て い る Dosinella penicillata ウラカガミ, Paphia undulata イヨス ダレ, Scapharca broughtoniiアカガイ, Fulvia mutica トリガイ, Anodontia stearnsiana イセシ ラガイなどの内湾泥底群集構成種(松島,1984) が目立ち,そこへ主に内湾砂質底に多い Niotha

表1 三尾野層の貝化石リスト.

Table 1 List of molluscan fossils of M	Miono Formation.
--	------------------

	Frequency		
Gastropoda			
Lunella coronata coreensis	few		
<i>Epitonium</i> sp.	few		
Crepidula gravispinosa	few		
Neverita sp.	few		
Niotha livescens	common		
Hinia festiva	common		
Reticunassa acutidentata	few		
<i>Siphonalia</i> sp.	few		
Inquisitor sp.	few		
Pelecypoda			
Striarca symmetrica	few		
<i>Barabatia</i> sp.	few		
Arca sp.	few		
Scapharca broughtonii	common		
Pecten sp.	few		
<i>Ostrea</i> sp.	few		
Pillucina pisidium	few		
Anodontia stearnsiana	common		
Fulvia mutica	common		
<i>Fulvia</i> sp.	few		
Dosinella penicillata	common		
Paphia undulata	abundant		

livescens ムシロガイ, Hinia festiva アラムシロと, さらに沿岸の岩礫底に生息する Striarca symmetrica ミミエガイ, Lunella coronata coreensis スガイ, Crepidula gravispinosa アワブネ, Reticunassa acutidentata ヒメムシロなどの貝殻 が混じり合って堆積している。その貝殻は破損や 摩滅しているものが多く,保存状態は全体にあま り良くない。したがって,正確な堆積環境を推定 することは難しい。しかし,多くの貝殻の保存が 悪い中で,唯一,内湾泥底群集の主要構成種であ る Paphia undulata は,保存のよい合弁殻が多数 産出し,現地性堆積を示す。これらのことから, 本地点は水深5~10 mの上部浅海帯の内湾底で, 近くの岩礫海岸から砂や貝殻が運ばれて堆積する 環境であったと推定される。

Fig. 3 Pollen diagram of Miono Formation.

2)花粉化石

花粉分析用試料は,試料 3-1a を最上部の-72.5 m付近から,試料 3-1b を上部の-72.8 m付近か ら,試料 3-4を下部の-74.5 m付近からそれぞれ 採取した(図2)。

花粉・胞子群集は Abies, Pinus, Tsuga などの 針葉樹花粉が優占し,草本花粉やシダ植物胞子は 極めて少ない。広葉樹では Quercus (Lepidobalanus), Fagus, Ulmus-Zelkova など落葉性樹 種がやや多産するのに対して Quercus (Cyclobalanopsis) や Castanopsis, Myrica など暖温帯 性の照葉樹は少ない(図3)。貝化石群集からは沿 岸内湾性の堆積場が推定されていることから,こ れらの針葉樹や落葉広葉樹は長距離の運搬によっ て搬入されたのではなく,堆積場の近傍に生育し ていたと判断できる。下部では Pinus の他, Quercus (Lepidobalanus), Fagus, Ulmus-Zelkova が 産するが,上部の 3-1a と 3-1b では Abies, Tsuga などの針葉樹種が優占するので,上部の方がより 寒冷化した気候を反映している可能性がある。

3) 渦鞭毛藻シスト化石

渦鞭毛藻シスト化石分析も花粉と同じ三つの層 準で行った。優占グループは独立栄養性の Spiniferites bulloideus, Spiniferites ramosus, Operculodinium centrocarpum sensu Wall and Dale,と従属栄養性の Brigantedinium spp. であ る。その他,独立栄養種では Lingulodinium machaerophorum や Scrippsiella trochoidea が, 従属栄養種では Selenopemphix nephroides, Selenopemphix quanta が多い。全ての試料で O. *centrocarpum*の産出頻度が極めて高い(図4)。 Matsuoka (2000) は福江島南東方海域 (図1の EST-3地点)の表層堆積物には Spiniterites bulloideus P Spiniterites hyperacanthus, B. spp. が優占する渦鞭毛藻シスト群集を報告してい るが,その群集は三尾野層の渦鞭毛藻シスト群集 と異なっている(図4)。三尾野層に見られる O. centrocarpum が優占し, Spiniferites spp. や Brigantedinium spp. も多産する群集は,暖流と寒流 の混合域である現在の三陸沖の表層堆積物に認め られる (Matsuoka, 1976)。これとほぼ同様の渦 鞭毛藻シスト群集は男女海盆海底堆積物の AT 火 山灰降下層準にも認められ,それは現在のような 対馬暖流の影響下ではなく,寒流系水塊の影響下 での堆積であると推定している (Matsuoka, 2000)。三尾野層の堆積域も現在のような対馬暖 流のみの影響下にあるのとは異なり,おそらく日 本海からの寒流が五島沖まで南下していた環境で あったと考えられる。

IV.三尾野層の年代

三尾野層の年代については,長岡ほか(1996) は含まれる貝化石の¹⁴C年代測定を行い,三尾野 層は40,000 yrBPより古いという結果を得ている。

図 4 三尾野層の渦鞭毛藻ダイアグラム. EST-3 は福江島南方の表層堆積物の結果.

表 2 玄武岩類の K-Ar 年代測定データ.

Table 2 K-Ar	Dating of	f the	basaltic	lavas.
--------------	-----------	-------	----------	--------

Sample	K	⁴⁰ Ar	K-Ar age	Non Rad.
name	(wt.%)	(10 ⁻⁸ ccSTP/g)	(Ma)	Ar(%)
BL 2	1.212 ± 0.024	1.75 ± 0.37	0.37 ± 0.08	93.3
(Koba Lava)		1.76 ± 0.35	0.38 ± 0.08	92.7
BL 1	1.192 ± 0.024	1.94 ± 0.43	0.42 ± 0.09	93.3
(Daienji Lava)		1.58 ± 0.39	0.34 ± 0.08	94.1

今回,三尾野層下位の標高 - 76.0 m 付近の玄武岩 BL-1 と上位の標高 - 73.0 m 付近の玄武岩 BL-2 の2層準について全岩試料のK-Ar 年代測定を 行った。測定は各試料2回行い,その結果,BL-1 から0.34 ± 0.08 Ma と0.42 ± 0.09 Ma, BL-2 から0.37 ± 0.08 Ma と0.38 ± 0.08 MaのK-Ar 年 代値が得られた(表2)。BL-2は,二つの値がよ く一致しているが,一方,BL-1については二つの 値があまり一致していない。その原因の詳細は不 明であり,再検討の必要もあるが,現時点では BL-1とBL-2の噴出年代は30万 ~ 50万年前と推 定される。よってBL-1とBL-2の間にある三尾野 層の年代は,約40万年前と推定される。

V.結 論

三尾野層の分布高度 - 75.7 ~ - 72.5 m と貝化 石の示す堆積環境の水深から,堆積当時の相対的 海面高度は - 70 ~ - 60 m と推定される。ハイド ロアイソスタシーの影響が顕著なことや海成段丘 が未発達なことから,五島列島の第四紀テクトニ クスは安定的と考えられている(Nagaoka *et al.*, 1996;長岡,2001)。したがって,この高度は堆積 当時の海面高度とほぼ一致しているとみなせるで あろう。また,本層の花粉および渦鞭毛藻シスト 化石は,総じて現在より寒冷な環境を示している。 これらのことから,三尾野層は海面が現在より 60 ~ 70 m 以上低下していた寒冷な氷期に堆積した 海成層と推定される。

Fig. 4 Dinoflagellate cyst diagram of Miono Formation. EST-3 : Recent surface sediment off Fukue Island, the East China Sea.

分布高度や化石,年代測定から,三尾野層は約 40 万年前,現在より低海面で寒冷な時期の内湾性 海成層と結論できる。約40万年前の三尾野層と 約2万5千年前の男女海盆堆積物と異なった堆積 年代にも関わらず,類似した寒冷気候を示す微化 石群集が出現することは,東シナ海東部の環境が 温暖化と寒冷化の周期的な変化に対応していたこ とを示しているといえる。年代から見て,三尾野 層は約34万年前の海洋酸素同位体ステージ10あ るいは約44万年前のステージ12(Shackleton, 1987; Rohling et al., 1998) などに対比できると 考えられる。ステージ10の海面低下量はおよそ 122~134mの間,ステージ2より大規模な氷期 と言われているステージ 12 のそれは約 139 m と されている(Rohling et al., 1998)。しかし,三尾 野層の花粉および渦鞭毛藻化石は, 堆積時の気候 が,現在より相対的に寒冷であることを示してい るが,三尾野層が示す-60~-70mの海水準は おそらく最大海水準低下期ではないこと,上下に ある玄武岩質溶岩の K-Ar 年代値の誤差が 10 万年 以上あることなどから,現時点では三尾野層がど ちらのステージに対比できるか判断できない。な お,このような氷期の海成層が保存されたのは, 三尾野層が堆積直後にBL-2の厚い溶岩流に覆わ れ,浸食から保護されたためと考えられる。

VI.ま と め

五島列島福江島の鬼岳火山群北部で行われた ボーリング試料の玄武岩基底付近の標高 - 75.7 ~ - 72.5 m から海成層を三尾野層として記載した。 三尾野層は,厚さ3.2 m のシルト質砂層で,含ま れる貝化石は浅い内湾底の堆積環境を示す。花粉 化石は Abies や Picea などの針葉樹を主体とし, 現在より寒冷な気候を示している。渦鞭毛藻化石 は,現在のような対馬暖流の影響下にある五島列 島付近の海域とは異なり,北上する暖流と日本海 から南下していたと見られる寒流が混合するよう な海況を示している。このような事実から,海面 が現在より60 ~ 70 m ほど低下した寒冷な時期に 形成された地層と推定される。また,上下の玄武 岩の K-Ar 年代から,三尾野層の年代は約40万年 前と推定された。

謝辞

福江市役所からはボーリングコアの提供を受けた。ま た,長崎大学名誉教授の鎌田泰彦博士には,以前採取さ れたコアや現地の情報などを提供いただいた。記して謝 意を表します。なお現地調査で大変お世話になった福江 市役所の中島栄一氏は,残念ながら2003年9月に亡く なられた。感謝と同時にここに謹んでご冥福をお祈り申 し上げます。

文 献

- 河田清雄・鎌田泰彦・松井和典(1994)「福江」図幅地 域の地質.地域地質研究報告(5万分の1地質図幅), 地質調査所.
- 松井和典・鎌田泰彦・倉沢 一(1977)「富江」図幅地 域の地質.地域地質研究報告(5万分の1地質図幅), 地質調査所.
- Matsuoka, K. (1976). Recent thecate and fossilized dinoflagellates off Hachinohe coast north-eastern Japan. Bull. Seto Marine Biological Laboratory, Kyoto University, 33, 351 369.
- Matsuoka, K. (2000) Paleocenanographic events in the East China Sea during the latest Pleistocene to Holocene. Proceedings of the 5th International Symposium "Marine Environmental Study on the East China Sea and Yellow Sea" 9 18, Cheju National University, Cheju, Korea.
- 松島義章(1984)、日本列島における後氷期の浅海性貝 類群集 特に環境変遷に伴うその時間・空間的変遷 . 神奈川県立博物館研究報告(自然科学),15,37109.
- 長岡信治(2001)大地形の発達史.町田 洋・太田陽 子・河名俊男・森脇 広・長岡信治編:日本の地形7 「九州・南西諸島」.東京大学出版会,287-298.
- 長岡信治・松岡数充・松島義章・奥野 充・中村俊夫 (1996):五島列島鬼岳火山群基底の海成更新統.名 古屋大学加速器質量分析計業績報告書,VII,243 251.
- Nagaoka, S., Yokoyama, Y., Nakada, M. and Maeda, Y. (1996) Holocene sea-level change in the Goto Islands, Japan. *Geogr. Repts. Tokyo Metropolitan Univ.*, **31**, 11 18.
- 長岡信治・古山勝彦・新井房夫・松岡數充(2002)五 島列島南部の鬼岳単成火山群の噴火史.日本第四紀学 会講演要旨集,32,124 125.
- Rohling, E.L., Fenton, M., Jorissen, F., Bertrand, P., Ganssen, G. and Caulet, J.P. (1998) Magnitudes of sea-level lowstands of the past 500,000 years. *Nature*, **394**, 162 165.
- Shackleton, N.J. (1987) Oxygen isotopes, ice volume and sealevel. *Quaternary Sci. Rev.*, 6, 183–190.

(2003年5月15日受付,2003年10月27日受理)