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Abstract

The relation between the Hamada and the Boozer magnetic coordinate system is clari-
fied by deriving them from a general magnetic field coordinate system. The coordinate
transformation from the Hamada to the Boozer coordinate system is performed using a
transformation function, which is easily calculated with the knowledge of the magnetic
field strength only. In non-axisymmetric systems, the Fourter spectrum of the magnetic
field strength |}§ | in the Hamada coordinate system is broader than that in the Boozer coor-
dinate system and the leading modes of |J§ }in the Hamada coordinate system significantly
deviate from a simple model field in comparison with the Boozer coordinate system. The
Boozer coordinate system is suitable for numerical calculations, especially, for neoclassical

and orbit calculations in non-axisymmetric systems.
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§1. Introduction

A suitable choice of the magnetic coordinate system is important to derive and describe
analytical expressions of MHD stabilities etc., especially in non-axisymmetric toroidal 5¥s-
tems. The Hamada®? and the Boozer? coordinate system are often used for studies on
MHD stabilities,® orbit equations,? and neoclassical theories.%5 When these magnetic co-
ordinate systems are utilized for numerical calculations of them, Fourier spectra in poloidal
and toroidal directions are required to be as narrow as possible to obtain highly accurate
results with less labor. For this requirement it may be necessary to transform a coordi-
nate system to another one according to the situation under consideration. Tt is useful to
understand properties of the magnetic coordinate systems from a view point of numerical
tractability.

The purposes of this paper are 1) to clarify the relation beiween the Hamada and
Boozer coordinate systems, 2) to obtain a coordinate transformation formula between
them, and 3) to investigate the numerical tractability of both coordinate systems. Through
derivation of the general magnetic coordinate system, we can relate the Hamada coordinate
system with the Boozer coordinate system by a transformation function, which is easily
obtained with knowledge of the magnetic field strength only. The Fourier spectrum of the
magnetic field strength |§[ in the Hamada coordinate system is broader than that in the
Boozer coordinate system and the leading modes of |,§| in the Hamada coordinate system
significantly deviate from a simple model field used in neoclassical and orbit calculations
in comparison with the Boozer coordinate system. Thus, the Boozer coordinate system is
suitable for numerical calculations, especially, neoclassical and orbit calculations in non-
axisymmetric systems.

The organization of this paper is as follows. Expressions of equilibrium quantities in a
general magnetic coordinate system are given in §.2. General relations holding regardless
of a choice of any magnetic coordinate system are also given. Section 3 gives the coordinate
transformations from a general magnetic coordinate system to the Hamada or the Boozer
coordinate system. An approach to construct the Hamada or the Boozer coordinate system
due to the coordinate transformation with limited information and one due to the field line

tracing are discussed. Relation between the Hamada and the Boozer coordinate system is
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shown in §.4 by introducing a transformation function. The numerical tractability is also

discussed. Section 5 is devoted to conclusion.

§2. Expressions of equilibrium quantities in a general magnetic coordinate sys-

fem

An MHD equilibrium is given by

VP = JxB, (1)
J = vxB, ()

<
oo}

I
o
=

These equations lead to

v-J =0, (4)
B-VP = 0 (5)
j.-vpP = o0 (6)

We assume that the toroidal MHD equilibsium given by Eqs.{1)-(6) has nested magnetic

flux surface having a single magnetic axis, each of which is specified by p:
P=P(p). @

From Eqs.(3), (5), and (7), there is a potential function v such that

B=VpxVu. (8)
Similarly, from Egs.(4), (6), and (7), we can introduce a potential function w as follows:

J =Vu x Vp. (9)
By using Egs.(2) and (9), another expression of B is obtained by introducingv a function u:

B=Vu+wVp. (10)
Due to Eqs.(7), (8), and (9}, Eq.(1) becomes
P

—pzé'Vw=j-Vv. (11}

="



Also, from Eqs.(8)-(10), we see

B-B = B-wy, (12)
i-B =1Jvau (13)

Each flux surface specified by p = const is doubly periodic both in poloidal and toroidal
directions. Let § and ¢ be the poloidal and toroidal angle variables in a magnetic coordinate
system {p, &, ), respectively, where D(6, ¢) = [0, 2x). The functions «, v, and w must give
single-valued B and J for the angle variables § and (. Therefore, we can put them as

follows:
_ ddp, dop,
v = dﬂ §— dp C + ?J(p, 91 C)a (14)
_ dlr, dlp,
u= ITG + IPC + ﬁ(p, 9, C) (16)

where 4, 9, and @ are periodic functions with respect to § and ¢ with the period 27,
27®1(p) and 27®p(p) are the toroidal and poloidal flux inside a flux surface p. 2717(p)
is the toroidal current inside the flux surface p and 27/p(p) is the poloidal current outside
the flux surface p.

Here, we will investigate properties of MHD equilibrium, which hold regardless of a
choice of any magnetic coordinate system. Substitution of Eqs.(15) and (16), respectively,
into Egs.(11) and (12) yields

dP  dir « dlp =
2 42Tph. ZFp.
5+, 0 Ve P AALS (17)

|BP - IzB- V0 - I8 - V. (18)

B.v

&
Il

o ofl

Y

&t
!

These equations are called the magnetic differential equation.®) The magnetic differential

equation on an unknown single-valued periodic function F:
B-VF=S§ (19)

has the following necessary-sufficient condition (solvability condition) with respect to the

single-valued periodic function 5:7

f Sdr = 0, for a volume enclosed by a flux surface, (20)
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!
f S % = 0, for a closed field line (21)

where d7 and dl are a volume element and a line element along a closed magnetic field line,
respectively. These conditions ensure the existence of an bounded single-valued periedic
solution F. Thus, in order for a magnetic coordinate system (p, 8, () to exist and express
an MUD equilibrium just as Eqs.(8)-(16), the solvability conditions for Eqs.(17) and (18)
must be satisfied. The solvability conditions for Eq.(17) gives the {ollowing equations:

P y[dlpd®r | dlzd®p) . ,der [dlp | dly

w = e [dV W W dV] A raarak (2)
a _ N7
B~ 2rddyg

where V is the volume inside a flux surface p, ¢ = d®p/d®r is the rotational transform,
and N is the number of rotation in the toroidal direction for a closed magnetic field line.

Similarly, the solvability conditions for Eq.(18) gives

(1BR) = @PSE [lp+en],
f Bdl = 2N [Ip++ly)
where the flux-surface average:
(4) = % ] Adr (24)

have been used.

Equation (8) indicates that a magnetic field line is determined as the intersection of
a flux surface: p = const with a surface: v = const. Then, as is clear from Eq.(14) in a
magnetic coordinate system where ¥ vanishes, magnetic field lines are expressed as straight
lines. Similarly, from Fqs.(9) and (15) current lines are expressed as straight lines in a
magnetic coordinates without @. An adequate coordinate transformation with respect to
periodic coordinates makes &, 9, and @ vanish up to two of them. Especially, we will
consider the transformation which vanishes two of %, ¥, and @. The properties of these
magnetic coordinate systems are as follows.

A) a magnetic coordinate system with # = & = 0.
In this coordinate system, both magnetic field lines and current lines are straight. The
Jacobian is a surface quantity as understood from in Eq.(11). This coordinate system cor-

responds to the Hamada coordinate.



B) a magnetic coordinate system with & = & = 0.
In this coordinate system, Only magnetic field lines are straight. The Jacobian is expressed
by both surface quantities and |B|? as understood from Eq.(12). This coordinate system
corresponds to the Boozer coordinate.

C) a magnetic coordinate system with & = 7 = 0.
In this coordinate system, Only current lines are straight. The Jacobian is expressed by

both surface quantities and B - J as understood from Eq.(13).

§3. Coordinate transformations from a general magnetic coordinate system to

the Hamada and the Boozer coordinate system
A) Transformation to the Hamada coordinate system

We perform the coordinate transformation from the magnetic coordinate system (p,8,¢)
to the Hamada magnetic coordinate system (p, 8y, (7). Since 4 and @ vanish in the Hamada

coordinate system, we will consider the following transformation:

ddr d®p
THH - _"C{_CH,
y o iy ()
T T A dp

The inverse transformation is given by

-1
=0 ()75 4 drg

P (26)
do
= ¢ t 50
where
= T ird
dp | dp ¢ dp

Note that the function G is a periodic function of 6 and ¢. Introducing a periodic function

%y as follows

u = Ity + IpCy + up(fy,Ca), (28)
we see 1
. . dor\ dd
Uy = u—IT (d_pT) v - d_pT(IP +tIT) G (29)




Substituting Eqs.(25) and (28) into Eqs(8)-(10), we obtain the expressions of B and J in

the Hamada coordinate system.

. d® o

B **&“;)va X V@H - d—PVp X VCH,

- dlz dlp

J = — ¢ — 30
depXVH + dpvvagﬂ, (30)

B = I:V8y + IpViy + Vig.

Substituting Eq.(25) into Eq.(11) and using Eq.(22), we can obtain the Jacobian of the

Hamada coordinate system:

1 1 dv
Vam = Vo V8 xV(y  (2r)idp

(31)

Thus, we can obtain the expressions of B, J, and the Jacobian in the Hamada coordinate
system. The poloidal and toroidal angles and @y are given by Eqs.(26) and (29) in terms
of p, 8, and (, respectively.

Hereafter, we will show some useful relations and give other methods to construct
the Hamada coordinates. The Jacobian in the Hamada coordinates /gy is related with
V7= (Vp- V8 x V()™ in the (p,8,(} coordinate system by using Eq.(26):

; 11 de)T) ~ 99
B-VG=——-— 114 |——1] —=|- 32
o [ (% ae] )
Substitution of Eqs.(25) and (28) into Eq.(12) and usage of Eq.(23) give
B-Vig =|BP - (BP). (33)

Thus, we can understand that even if we do not know some of information on the (p, 6, {)
coordinate system, we can construct the Hamada coordinate system as long as we can see
V3, ¥, and |B{. Indeed, solving Eq.(32) gives the function G(g,8,(). The functions G
and 7 allow us to obtain 85(p,8,() and (x(p,d,() through Eq.(26). Solving Eq.(33), we
can see fig(p,8,¢) and, consequently, &x{p,bx,{n)-

Moreover, from Eq.(30) we see

~ de = dd '
. =(2r)rP=2= B. = (2rP =L
B VBH (271’) v s B VCH (271') v . (34)



As has been shown in Ref.1, the field line integral of Eq.(34)

ddr ¢ dl

(g = (2r)° v IE—I (35)

can construct the Hamada coordinate system. Here, we will show a usefull method com-
bined with the algorithm given in Refs. 8 and 9. Using the field line integral given by
Eq.(35) and the periodicity, we can see A(¢),(q) = T Am (%) exp(iln + ¢emCy) where A
is an any scalar periodic function such as |§[, R, ¢, and Z ( (R, ¢, Z) is the cylindrical
coordinates ). Then, the Fourier integral of A(y, (y) together with an adequate window
function gives the Fourier amplitude A,,,. The function @ is also obtained by the field
line integral of Eq.(33).

B) Transformation to the Boozer coordinate system

Since ¥ and @ vanish in the Boozer coordinate system (p, 65, (5), we will consider the

following coordinate transformation:

dd d@pC
v o= —— - —(g,

dp % T dp P (36)
u = Ipfg + Ip{(p.

The inverse transformation is given by

ddp\ L)
s =9-+(Ei) P+ —7G,
P dqf (37)
CB = C + d—TG
1Y
where .
i)
&(%f) §—
Glp, 0,0y = - 38
(P: :C) @E[IP_FJ,[T] ( )
dp

Note that the inverse transformation of the angles has the same form as that in the Hamada

coordinate system except for the definition of G. Introducing a periodic function & p:

dl drl _
w o= —d—; fp — d—:CB + wg(95,(a), (39
we have
. dlp _ d®r (dlp dir
g = o + o, + o [dp +¢ ” G. (40)




Substituting Eqgs.(36) and (39) into Eqs(8)-(10), we obtain the expressions of Band Jin

the Boozer coordinate system.

R B

B = d—;Vp x Vig — d—Pvvagﬂ,

j = dTvvaeB + —divvacg + Viig x Vp, (41)
B = I;V8g + IpVis + B5Vp.

Substituting Eq.{36) into Eq.(12) and using Eq.(23), we can obtain the Jacobian of the

Boozer coordinate system:

- 1 40 Ip+elp
Ve = Vp-VlgxV(s  dp |BJ?

(42)

We can obiain the expressions of é, J , and the Jacobian in the Boozer coordinate system.
The poloidal and toroidal angles and @y are given by Eqs.{37) and (40) in terms of p, 6,
and (, respectively.

The Jacobian in the Boozer coordinate system /g is related with /g in the (p, 6, ()
coordinate system by using Eq.(37):

11 d@r)“ 0%
B.veo=——— 1+ (ZZ) 2. 43
Y { (%) % )
We see that Eq.(43) is the same as Eq.(32) in the Hamada coordinate system by exchanging
/75 for \/gg . Substitution of Eqs.(36) and (39) into Eq.(11) and usage of Eqs.(22) and

(23) give 3
_ B
il (4‘”

As long as /g, #, and |BJ? are given, the Boozer coordinate system can be constructed by

= dP
BV'lI?B = —
dp

solving Eqs.(43) and (44), as well as the case in the Hamada coordinate system.
As well as in the Hamada coordinate system, from Eq.(41) we have

dor |BP
v {1Br)

The Boozer coordinate system can also be constructed by field line integrals of Eqs.{45)
and (44).2%

B-VG=( = (45)



§4. Relation between the Hamada and the Boozer coordinate system

As has been shown in the previous section, the coordinate transformation from the
magnetic coordinate system (p,5, {) to the Hamada or the Boozer coordinate system can
be performed by solving Eqs.(32) and (33) or Eqs.(43) and (44), if the Jacobian /7, | BJ?,
and © are known in the (g, 8, () system. Therefore, the coordinate transformation between

magnetic coordinate systems where magnetic field lines are straight: (# = 0) are done as

follows:
en = pulp),
d®
By = g + d—PG, (46)
d
o= (+ =G
£

where the coordinate transformation from the (p, 4, ¢) system to the (py, 8y, Cy) system is
considered. The transformation function G(p, 8, () is determined by the following equation:

= de - 1 1
Bvg=|] —_— 47
(dp) NI/ “

where \/gy = (Vpn-V8y x V({x) ™" is the Jacobian of the new magnetic coordinate system.
Hence, according to the choice of new Jacobian /gy the transformation function G is de-
termined by Eq.(47), which gives the angles in the new coordinate system through Eq.(46).
Here, let us consider the coordinate transformation from the Boozer to the Hamada coor-

dinate system putting py = py and p = pp. In this case, Eq.(47) becomes

R Elk
B-vG= (P21~ (156) (48)
or ( . )
8 2\, [(BF
(%-H%) G= {—IB'P - 1} (49)
and Eq.(46) becomes
pr = pu(ps),
by = 6z + +G, (50)
g = s + G.
From Egs.(49) and (50) we can easily show
BHy CH) (lBIz)
0(6s5,(s)  |B]2 5
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Eqs.(49) to (51) are very useful to transform expressions in the Hamada coordinate system
to those in the Boozer coordinate system. Using Eqs.(49) and (50) we will consider a

lazge-aspect ratio low-f helical plasma, in which we can put
|Bl = By[1 — e:cos bz — encos(Lop — M ()] (52)

where ¢; (€ 1) and &;, (€ 1) are an aspect ratio and a helical ripple, respectively, and L
and M are the polarity and the toroidal pitch number of helical coils, respectively. Up to
1st order of &; and ¢4, (|§|2> = B? and solving Eq.(49) we see

25t . 2Eh
G=""tsing
S SOt

sin(L6g — M{5). (53)

By using this result, Eq.(50) becomes

2
Gy = 65 + 2sinfp + ———sin(Los — M(s),
¢eL-M
2e: . 2ey, . (54)
(g = (g + —:511193 + ¢L—MSIH(L€B_MCE)'

The result of a large-aspect ratio low-§ tokamak plasma is obtained by setting e =
0. To see the difference of angles in both coordinates, let us consider the angle « be-
tween the surface of (g = const and the surface of (g = const. From Eq.(54) tana =
d(R(s)/d(rsin 85) ~ —2/+ near the magnetic axis where &; 3> £5,. Even near the magnetic
axis, the gradient of the angle grid in the Hamada coordinates is large and this result is
due to the toroidicity. Away from the magnetic axis, tana ~ —2/¢ + 2¢,, L/(e,M) around
85,{g ~ 0 and the contribution of ¢, becomes large. For the Fourier spectrum of the
magnetic field strength in the Hamada coordinate system, from solving Eq.(54) for 65 and
(5 and substituting them into Eq.{52), the factor 2Me./+ before sinfy in the cosine func-
tion may be order unity except for the magnetic axis, and the Fourier specirum becomes
much broader. Hence, the Fourier spectra of |B| in both coordinate systems have a large
difference, especially in the periphery.

Figure 1 shows Fourier spectra of ]é] in both the Boozer ({a) and (c)) and the Hamada
((b) and (d)) coordinate system. Figs.1-(a) ~ (b) and 1-{c) ~ (d) correspond to a flux
surface near the magnetic axis and a flux surface in the periphery, respéctively. As a mag-

netic field an LHD vacuum magnetic field is used where L = —2, M = —10, the vacuum
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magnetic axis Is not shifted, and the torcidally-averaged magnetic surfaces are horizontally
elongated. As is seen from Figs.1-(a) ~ (b), near the magnetic axis the difference of the
Fourier spectra is small between the two coordinate systems and similar to those of the
model magnetic field given by Eq.(52). However, in the periphery, as is indicated in Figs.1-
(c} ~ (d), the Fourier spectrum in the Hamada coordinate system is much broader than
that in the Boozer coordinate system and the leading modes in the Hamada coordinate
system are signiﬁcmtly different from those of the model field. In the Boozer coordinate
system leading modes are closer to those of the model field. This is due to the difference
of angle grids as shown in Figs.2-(a) ~ (c), where the poloidal and toroidal angle grids are
shown on four different flux surfaces. The magnetic coordinate system shown in Fig.2-(a)
is the coordinate system where the toroidal angle is one of the cylindrical coordinates, used
in the MAGN code.’” The magnetic coordinate systems shown in Figs.2-(b) and (c) are
the Boozer and the Hamada coordinate system, respectively. The angle grids of the Boozer
coordinate system are similar to those of the MAGN coordinate system, whereas the angle
grids of the Hamada coordinate system are significantly different from those of the Boozer
and the MAGN coordinate system.

Hence, the Boozer coordinate system is suitable for numerical calculations, especially,
for orbit and neoclassical calculations where only lﬁ] is needed except for surface quanti-
ties, because the Fourier spectrum broadness of |§] is smaller than that in the Hamada

coordinate system and the Fourier spectrum is similar to that of a simple model field.

§5. Conclusion

By clarifying the relation between the Hamada and the Boozer magnetic coordinate
systems, the coordinate transformation formula from the former to the latter has been de-
rived. Only one transformation function is needed, which is easily calculated with knowl-
edge of the magnetic field strength [B]. It has been shown that the Boozer coordinate
system is suitable for numerical calculations, especially, for neoclassical and orbit calcula-
tions, because the Fourier spectrum of |B] is not broad and the leading modes are similar
to a model magnetic field used in neoclassical and orbit calculations. It has been also

indicated that the Hamada coordinate system can be obtained by the field line integral as
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well as the Boozer coordinate system.%®) The former needs the integral of 1/|B| and the

latter needs that of |B|.
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Figure Captions

Fig.1 Fourier spectra of |B| in both the Boozer and the Hamada coordinate system on a
flux surface near the magnetic axis ({a) and (b)}, and on a flux surface in the periphery
((c) and (d)), respectively.

Fig.2 The poloidal and toroidal angle grids in four different flux surfaces (a) in the coordi-
nate system used in the MAGN code, (b) in the Boozer coordinate system, and {c) in the

Hamada coordinate system.
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