解説

カーボンナノチューブ類への気体吸着

村田克之,田中秀樹,金子克美

(受取日: 2001年10月2日, 受理日: 2001年11月1日)

Gas Adsorption on Carbon Nanotubulites

Katsuyuki Murata, Hideki Tanaka, and Katsumi Kaneko

(Received October 2, 2001; Accepted November 1, 2001)

The physical adsorption of vapor and supercritical gases on carbon nanotubulites is described. The molecular interaction potential between carbon nanotubulite assembly and a molecule is shown. The carbon nanotubulite has potential profiles different from activated carbons, indicating its characteristic adsorption property. A favorable adsorption characteristic of the carbon nanotubulites for supercritical methane is discussed.

1. はじめに

近年,おもに水素貯蔵の問題との関連から,カーボンナ ノチューブへの分子吸着に関心が集まっている。またナノ サイズ領域の科学も,多くの関心が寄せられつつある研究 分野であり,カーボンナノチューブ類への分子吸着はこの ような観点からも興味深い。本稿では,カーボンナノチュ ーブ類,特に単層カーボンナノホーン(single wall carbon nanohorn: SWNH)⁽⁾や単層カーボンナノチューブ(single wall carbon nanotube: SWNT)²⁾への物理吸着について, 実験,ボテンシャル計算および密度汎関数理論(DFT)法 の研究を紹介する。これらの研究にはナノスペース中にお ける分子吸着のあり方がよく表われている。

SWNHは最近, 飯島らによって開発された, SWNTとよ く似た物質である。SWNHは無触媒, 高収率で合成される ため,高純度のサンプルが容易に手に入るという点で非常 に研究に適している。^{1,3)} SWNHのSWNTとの形状の違い は,SWNHは長さがおおよそ40 nmのチューブであり,そ の先端が角状になっている物質である点と,ダリア状の集 合体として存在する点である(Fig.1)。また,SWNHは, 熱処理によって簡単に,SWNH壁面に孔を開けることがで きる。SWNHへの気体吸着実験はSWNTに対するそれと 大きな違いがなく,むしろ高純度という特徴から,シミュ レーションや理論計算との整合性をみることに意義がある。

2. ミクロ細孔体への蒸気と超臨界気体の物理吸着

カーボンナノチューブ類への気体吸着研究のおもな目的 は,カーボンナノチューブ類のキャラクタリゼーション⁴⁾ とメタンや水素といったクリーンエネルギーとして期待さ れる2次エネルギー気体の貯蔵⁵⁻⁷⁾である。

まずはじめに,細孔について説明する。開孔 (open pore) は細孔径wに応じてTable 1のように分類される。このな かでウルトラミクロ孔だけはIUPACの分類®ではないが, よく用いられている。気体分子吸着で重要なのは,メソ孔, ミクロ孔,ウルトラミクロ孔であり,カーボンナノチュー ブ類を考える場合,特にメソ孔,ミクロ孔とウルトラミク ロ孔が関係する。細孔体のキャラクタリゼーションに用い られる77 K での窒素吸着の場合,吸着メカニズムはこれら の細孔の種類によって異なる。⁹⁾メソ孔における吸着は相対 圧(平衡圧力/飽和蒸気圧)が0.4以上の領域で毛管凝縮に よって進行する。このとき吸着層は液体とほぼ同じ状態で あると考えられている。一方,ミクロ孔への吸着は相対圧

Netsu Sokutei 28 (5) 2001

© 2001 The Japan Society of Calorimetry and Thermal Analysis.

Fig.1 Illustration of SWNH particle.

Table 1 Classification of open pore.

Classification	Pore width w (nm)	
macropore	50 < w	
mesopore	2 < w < 50	
micropore	w < 2	
ultramicropore	w < 0.7	

0.4 以下の領域で起こり,吸着メカニズムはミクロポアフィ リングと呼ばれる。吸着層は液体よりも構造性がある。10-12) ミクロ孔のうちウルトラミクロ孔については,77 K におい て窒素は,拡散障害のため細孔内部に入ることができず充 分な吸着が起こらない。しかし,常温では拡散障害も少な いので,ウルトラミクロ孔は深いポテンシャル井戸を持つ 強い吸着場として働き一定量の二酸化炭素等を吸着する。

一方,メタンや水素といった超臨界気体の吸着であるが, これらの気体は常温では臨界温度を超えているため液化し ない。つまり,吸着温度において安定な吸着層を形成でき ない。このためメソ孔にはほとんど吸着せず,高圧を印加 するとミクロ孔特にウルトラミクロ孔にミクロポアフィリ ング様の機構で吸着する。¹³⁾超臨界気体の高圧吸着は充分 研究されておらず,吸着層と吸着機構については充分には 解明されていない。

さらに,高圧気体吸着には概念上と実験上とに課題があ る。通常,吸着測定によって得られる値は表面過剰量 (surface excess mass)と呼ばれるものであるが,これは吸 着層にあるすべての分子数(絶対吸着量 absolute adsorbed amount)とは異なる。表面過剰量と絶対吸着量の違いは, Fig.2(a)に示される。^{14,15)}通常,蒸気の吸着の場合,吸着層 とバルクの密度差が大きく表面過剰量と絶対吸着量の違い は無視できるが,超臨界気体の吸着では吸着層の密度に対 してバルクの密度の大きさが無視できなくなり,結果とし て表面過剰量と絶対吸着量の違いも顕著となる。Fig.2(b) にDFT法で求めた超臨界気体の表面過剰量等温線と絶対吸

Fig.2 (a) Relationship between the surface excess mass:
(A) and absolute adsorbed amount (A + B). Here L is an interface between bulk gas phase and adsorbed layer. (b) The surface excess mass isotherm and absolute adsorption isotherm from DFT results. The system of DFT is as follow: adsorbed molecule: nitrogen, pore width: 2 times diameter against nitrogen molecule, and temperature: 295 K. (- - -) surface excess mass, (-) absolute adsorbed amount, and (--) bulk.

着量等温線を示した。ここでは,気体の非理想性を考慮し て,圧力の代わりにfugacityを用いている。絶対吸着量等 温線が単調増加の関数であるのに対して,表面過剰量等温 線は極大を持ち,場合によっては高圧域で負の吸着量をも つ。これは固体表面から無限遠での気体密度が表面近傍の それより大きいことを示している。一般に実験から絶対吸 着量を求めることや,吸着層の密度を求めることは困難で ある。¹⁶⁾

しかし表面過剰量が0になる圧力(F_c)において吸着層の密度とバルクの密度(ρ_{bulk})は釣り合うため,この一点のみ吸着層の平均密度(ρ_{ad})を決定することができる。 $^{14,15)}$ すなわち

$$\rho_{ad}(F_c) = \rho_{bulk} = \frac{\mathbf{M}F_c}{RT}$$
(1)

ここで, *M* は吸着分子の分子量, *R* は気体定数, *T* は吸着測 定の温度である。我々も絶対吸着量の算出法を提唱してい るが ^{14,15,17} まだまだ検討の余地が多く残されている。

吸着層の状態を知るのに吸着熱は良い知見を与える。蒸 気吸着の場合は熱量計を用いる直接測定と,異なる温度で 測定した吸着等温線からClausius-Clapeyron式を用いて求 める方法が広く行われている。⁹⁾ 直接測定によると,微分吸 着熱と積分吸着熱が得られ,Clausius-Clapeyron式からは, 等量吸着熱が求められる。Clausius-Clapeyron式の適用は 等量吸着熱を*qst*とすると,

$$q_{st} = R \left(\frac{\ln P}{T \cdot 1} \right)_N \tag{2}$$

と表される。⁹⁾一方,超臨界気体の高圧吸着の場合であるが, 吸着量も小さく実験から直接求めることが困難であるため, 蒸気吸着と同様にClausius-Clapeyron 式をそのまま適用する ことが多い。しかし,吸着量について表面過剰量と絶対吸着 量のどちらについて(2)式を適用するか等の課題がある。^{15,18)} 著者らは絶対吸着量について適用すべきであると考えてい るが,そもそも絶対吸着量自体,その決定が困難である。 また,明確に相転移を仮定するClausius-Clapeyron 式を液 相を持たない超臨界気体の吸着状態に適用することについ ても検証は充分ではない。最近,超臨界気体の高圧吸着に 対しても熱量計を用いて直接吸着熱を求めようという試み があり,その成果が期待される。

吸着熱はDFTからも求めることができる。DFTでは,密 度プロファイルρ(r)が求められるが,これを用いると積分 吸着熱q_{int}は以下のように表される。^{19,20)}

$$q_{\text{int}} = - d\mathbf{r}\rho(\mathbf{r})V_{ext}(\mathbf{r}) - \frac{1}{2} - d\mathbf{r}d\mathbf{r}'\rho(\mathbf{r})\rho(\mathbf{r}')\Phi_{att}(|\mathbf{r} - \mathbf{r}'|) + \frac{1}{2}RT d\mathbf{r}\rho(\mathbf{r})$$
(3)

ここで、 $V_{ext}(r)$ および $\Phi_{att}(|r - r'|)$ はそれぞれ,fluid-wall, fluid-fluid相互作用ポテンシャルである。右辺の第一項は, fluid-wall相互作用の寄与をあらわし,第二項はfluid-fluid 相互作用の寄与をあらわす。最後の項は理想気体の運動エ ネルギーから分配される項であるが,吸着状態では並進運 動の自由度が制限されるので,バルクと吸着層での差が 1/2RTとなる。

q_{int}とq_{st}との関係は次のようになる。

$$q_{st} = \left(\frac{q_{\text{int}}}{n}\right)_T + RT \tag{4}$$

Fig.3 Isosteric heat of adsorption from absolute adsorption of methane in tube of SWNH ((pore diameter)/(molecular diameter) = 4.4) at 303 K determined by DFT. () total, () fluid-wall interaction, and () fluid-fluid interaction.

DFTより求めたチューブ内側へのメタン吸着の等量吸着熱をFig.3 に示す。fluid-fluid相互作用の寄与がほぼ直線的に 増加するのに対して,fluid-wall相互作用は低圧部の吸着熱 12 kJ mol⁻¹であるサイトと高圧部の10 kJ mol⁻¹のサイト があり,吸着が進むにつれて,強いサイトへの吸着から弱 いサイトへの吸着へ移行していくのが解かる。この二つの 吸着サイトは次の節で述べる,サイトP_fとP_mに対応する。

分子間ポテンシャル計算からみたミクロポアフィ リングサイト

吸着サイトの強さを,分子-固体表面間の相互作用から 求めることができる。ここでは,チューブ状物質に適した, Steele-Bojan smooth walled cylinder potential^{21,22)}の概要 を説明する。このSteele-Bojan potential はLennard-Jones 12-6 potential を基礎にしている。同様な理論研究はStan らによっても行われている。^{23,24)} Steele-Bojan potentialで は,チューブの中と外の両方を取り扱うことができ,さら に単層のチューブ状物質だけではなく,多層のチューブ状 物質についてもポテンシャルを求めることができる。吸着 分子 - 炭素壁間の分子間ポテンシャル U_{sf} は次のように与え られる。

$$U_{sf} = 4\varepsilon_{sf} \left\{ \left(\frac{\sigma_{sf}}{r_{sf}} \right)^{12} - \left(\frac{\sigma_{sf}}{r_{sf}} \right)^{6} \right\}$$
(5)

ここで, $\varepsilon_{sf} \ge \sigma_{sf}$ はそれぞれ吸着分子-炭素原子間のサイト エネルギーとサイズパラメーターである。 r_{sf} は吸着分子-

Netsu Sokutei 28 (5) 2001

Fig.4 Relationship between a_0 , r_{sf} , R, and ϕ . (a) An adsorbed molecule is outside of SWNT; (b) An adsorbed molecule is inside of SWNT.

炭素原子間距離である。

分子間ボテンシャルを求めるとき,それぞれの吸着分子・炭素原子相互作用の和は,積分に置き換えることができる。各炭素層の半径を $a_0, a_1, a_2,...,$ とするここで $a_n = a_0 + n \times 0.34$ nm とすると

$$U_{sf} = 4\varepsilon_{sf}\rho_c \qquad dz \quad {}^{2\pi}a_n d\phi \left\{ \left(\frac{\sigma_{sf}}{r_{sf}}\right)^{12} \cdot \left(\frac{\sigma_{sf}}{r_{sf}}\right)^6 \right\} \qquad (6)$$

ここで, ρ_c は炭素層の2次元密度38.2 atoms nm-2であり, z はSWNHの軸方向からの距離である。 ϕ はSWNH軸 - 炭 素原子とSWNH軸 - 吸着分子のなす角度RはSWNH軸 -吸着分子間の距離である。これらは**Fig.4**に示される。式 (6)の積分計算を行うと,

$$U_{sf}(R) = 4\varepsilon_{sf} \rho_c \{ \sigma^{12}_{sf} I_6 - \sigma^{6}_{sf} I_3 \}$$
(7)

ここで I_3 および I_6 は超幾何関数 F^{25} を用いて次のように表される。シリンダー内側部分の積分は式(8)および(9)である。

$$I_{3} = \frac{3\pi^{2}}{4a^{4}_{n}(1-\beta^{2})^{4}} F(-3/2, -3/2, 1; \beta^{2})$$
(8)

$$I_6 = \frac{63\pi^2}{128a^{10}{}_n(1-\beta^2)^{10}} F(-9/2, -9/2, 1;\beta^2)$$
(9)

シリンダー外側部分の積分は式(10)および(11)のよう にあらわされる。

Distance from SWNH axid / nm

Fig.5 Interaction molecular potential profiles for the SWNT assembly having the trigonal structure.
(a) Illustration of arrangement of SWNTs; (b) Potential curves of nitrogen-SWNT. (···) contribution from SWNT A; (·-) contribution from SWNT B; (-) overall potential of SWNT assembly.

$$I_{3} = \frac{3\pi^{2}\delta^{5}}{4a^{4}_{n}(1-\delta^{2})^{4}} F(-3/2, -3/2, 1; \delta^{2})$$
(10)

$$I_6 = \frac{63\pi^2 \delta^{11}}{128a^{10}_n (1 - \delta^2)^{10}} F(-9/2, -9/2, 1; \delta^2)$$
(11)

故に,式(7)および式(8)-(11)がSteele-Bojan potential である。ここで新たに導入した二つの変数 $\beta \ge \delta$ はそれぞれ $R/a_n \ge a_n/R$ である。

SWNTもSWNHも単独の粒子よりも,束状などのアセンブリー構造を持ったものが重要である。ここでは,円筒部分が6方最密に並んだものと仮定すると,単層カーボンの場合,粒子間細孔における分子間ポテンシャル*U_{IC}(R)*は以下のようになる。

$$U_{IC}(R) = U_{sf}(R) + 2U_{sf}(S)$$
(12)

ここで

220

$$S = \left[\left(a_0 + \frac{d}{2} \right)^2 + \left\{ \left(a_0 + \frac{d}{2} \right) 3 - R \right\}^2 \right]^{\frac{1}{2}}$$
(13)

Netsu Sokutei 28 (5) 2001

解 説

Fig.6 Adsorption sites of SWNT assembly.

ここでdはSWNT層間距離である。ここで,dを0.4 nmと 仮定しa0を1 nm とした。窒素分子が吸着する場合のパラメ $- 9 - \varepsilon_{sf} = 54.01 \text{ K および} \sigma_{sf} = 0.3516 \text{ nm}$ を用いたと きのSWNT 集合体の分子間ポテンシャルプロファイルを決 定した。三つのSWNT (A, B, およびC)の三角形の配置 を仮定すると,分子間ポテンシャルプロファイルはFig.5の ようになる。 グラフの原点はFig.5(a)のSWNH(A),の中心 O_A.である。またX軸はO_AXライン上O_Aからの距離を示す。 Fig.5(b)の実線が窒素分子がO_AX ライン上にある場合の三 つのSWNHから受ける分子間ポテンシャルである。このグ ラフ上には二つのポテンシャルミニマムが存在する。一つ はSWNT(A)の内側の点Mであり,もう一つは三つの SWNTの間隙にある点Qである。点MはSWNH内側の鞍 点であり,そのポテンシャルの深さは-1220 K である。 SWNH内側のポテンシャルミニマムはOAOBライン上の点 N であり, そのポテンシャルの深さは - 1280 K である。-方, 点Qのポテンシャルの深さは-2190 K である。三つの SWNTからの分子間ポテンシャルの重ね合わせのため,点 Qのポテンシャルが最も深くなる。ここで,一点鎖線は SWNT(A)が存在せずSWNT(B)または(C)単独であるとき のO_AXライン上における分子間ポテンシャルである。 SWNT(B)または(C)からのポテンシャルの寄与は,原点O_A から0.7 nm ではほとんどない。点線はSWNT(A)単独での 分子間ポテンシャルである。SWNT(A)単独でのSWNT外 側のポテンシャルミニマムは内側よりも300 K浅い。 SWNT 間隙では点Qはこれら三つのポテンシャルの重ね合 わせのため、実線のように極めて深くなる。よって、 SWNH 集合体は三つのミクロポアフィリングサイト P_m , P_f , Qをもつ(Fig.6) 最も強い吸着サイトであるQは1次元的 であり吸着量が小さい。チューブ内側の強い吸着サイトP_f は窒素分子の単分子層形成領域であり0よりも多量のミク ロポアフィリングが起こる。一方弱い吸着サイトPmでは,

Fig.7 Nitrogen adsorption isotherms of open SWNH at 77 K. () total, () external space of SWNH, and () internal space of SWNH.

協同的なミクロポアフィリングが起こる。このように先端 の開いたSWNTのバンドルの場合,窒素蒸気のミクロポア フィリングは三つの吸着サイトを持つこととなる。超臨界 気体吸着では温度と圧力に依存するが強い吸着サイトのみ に吸着する場合があり,上の議論がそのまま適用できない ことが多い。

4. 超臨界気体吸着実験上の課題

気体分子吸着実験は通常,重量法または容量法を用いて 行う。⁹⁾ 重量法測定は,直接吸着量を測定するので非常に高 精度の測定が可能である。しかし高圧気体吸着実験の場合, 耐圧容器内にミクロ天秤を設置しなければならない。その ため,装置は複雑となり,装置自体高価なものとなってし まう。一方,容量法での測定装置はシンプルであるが,圧 力と状態方程式から間接的に吸着量を計算するため,温度 制御がきわめて重要である。⁷⁾ 重量法と容量法を比較すると 一般的には重量法の方が高精度であるとされている。水素 の吸着実験ではTGAやTPD-Massなどを用いて簡便な測定 をする例が多いが^{5.60} このような測定は意外に精度を出す のが難しくあまり一般的とはいえない。⁷⁾

吸着測定では,通常,前処理後に測定を行う。活性炭な どの炭素材料の場合,圧力1mPa以下,温度383Kで数時 間行うのが普通であるが,ナノチューブ状物質は強い吸着 サイトを持つので,もう少し高温が望ましい。

また,超臨界気体の高圧吸着測定,特に水素の場合は他の不純物分子に比べ吸着量が極端に小さい。そのため吸着 測定に用いる気体は高純度でなければならない。例えば, 著者らは99.99999%の純度の水素ガスを用いている。

Netsu Sokutei 28 (5) 2001

解 説

Table 2 Microporosity of SWNH assembly.

Specific surface area		Site space volume			
intra	interstitial	\mathbf{P}_{f}	\mathbf{P}_{m}	Q	
(m ² g ⁻¹)	$(m^2 g^{-1})$	(ml g · 1)	(ml g -1)	(ml g · 1)	
318	200	0.18	0.18	0.11	

Fig.8 Interaction potential profiles between SWNT assembly and an adsorbed molecule. Solid and dotted curves denote hydrogen and methane, respectively.

5. ナノチューブ類への蒸気吸着

Fig.7 に77 KでのSWNHの窒素吸着等温線を示す。 SWNHの一次粒子内の空間は完全に閉じているが 40693 K の加熱処理で,壁面に窒素分子が通過できる穴が開く。し たがって693 K で処理したSWNHの吸着等温線から, asgrownのSWNHの吸着等温線を差し引くとSWNH内部の 吸着等温線が得られる。このためSWNH 粒子の内側スペー スと他のサイトへの吸着を比較できる。22,26) SWNH 粒子外 側の吸着等温線はIUPACの分類でII型と呼ばれるもので, 相対圧0付近の鋭い立ち上がりは,SWNH粒子間空隙の強 い吸着サイトQへのミクロポアフィリングによる。一方そ の後のなだらかな増加は,SWNH先端のコーン部分で形成 される大きいミクロ孔及び集合粒子間の小さなメソ孔など の寄与によるものと考えられる。高相対圧での立ち上がり は,集合粒子間への毛管凝縮によるものである。SWNH内 部への吸着等温線はIUPACの分類でI型と呼ばれるもので あり,低相対0付近の鋭い立ち上がりは,コーン先端と強 いポテンシャル場を持つ単分子層サイト, P_f, へのミクロポ アフィリングであり, それ以後の吸着量増加は, 弱いサイ

Fig.9 Methane adsorption on open SWNH (), AX21
(), and P20 () at 303 K. (a) per weight and
(b) per pore volume.

トPmへの協同的なミクロポアフィリングである。^{26,27)} この 様子はグランドカノニカルモンテカルロ(GCMC)法によ る分子シミュレーションで明確に示されている。²⁷⁾

吸着測定より求めた細孔パラメーターはTable 2に示される。解析には,BET法ではなくSPE(subtracting pore effect)法^{28,29)}を採用した。ミクロ細孔性固体の場合,BET 法では被表面積を実際よりも大きく計算してしまうためで ある。Table 2から解かる様に,SWNHやSWNTは粒子間 に強い吸着サイトをもつが,その容量は小さい。一方粒子 内部には容量の大きな空間が存在するが,Pfに対応する強 い吸着サイトはそのうちの50%程度である。

6. ナノチューブ類への超臨界気体吸着

ここでは,ナノチューブ類へのメタン及び水素吸着につ いて紹介する。Fig.8にFig.5と同じ条件すなわちdを0.4 nmと仮定しa0を1 nmとしたときのメタン及び水素と SWNTとのポテンシャルプロファイルを示す。メタンは比 較的深いポテンシャルを持つが,水素は粒子間空隙でさえ, せいぜい - 1000 K のポテンシャルしか持たない。このため 物理吸着では水素の吸着量は大きくないと予測される。実 際に我々の検証では303 K ではSWNH, SWNT共に吸着量 は1 wt.% にも到達しない。近年報告されたSWNTやグラフ ァイトナノファイバーなどの大量の水素貯蔵は,不純物へ の化学吸着など他の要因を考える必要がありそうである。⁷⁾

一方メタン吸着であるが,ナノチューブ類は高比表面積 活性炭や活性炭素繊維と比較して細孔容量が小さいため, 単位重量当たりの吸着量はそれほど大きくは無い。Fig.9に 典型的な高比表面積活性炭 (AX21: pore volume 1.49 ml g⁻¹)と活性炭素繊維 (P-20: pore volume 1.08 ml g⁻¹)と の比較を示した。SWNH単位重量当たりのメタン吸着量は AX21の半分程度である。しかしながら単位細孔容量当た リのメタン吸着量は200 mg ml-1を超えるほど大きい (Fig.9(b))。このようにナノチューブ類が, メタンを高密度 に吸着できる理由は,細孔の形状と粒子の集合構造にある と考えられる。通常の活性炭類はミクログラファイトシー トにはさまれた,スリット状の細孔を持つ。このため細孔 径が大きくなると細孔中央部のポテンシャルが浅くなり, 特に超臨界気体吸着では、細孔中央部分には吸着が困難と なる。このようにスリット型細孔では細孔空間を充分有効 に活用できない。これに対して,シリンダー状の細孔を持 つナノチューブ類では,弱い吸着サイトPmが有効に使われ ているようである。30) この詳しいメカニズムは現在検討中 である。

7. おわりに

カーボンナノチューブ類はスリット型細孔を持つ活性炭 類とは異なった相互作用ポテンシャルを持っている。特に その違いは,超臨界気体に対して顕著である。この特異な 分子ポテンシャル構造は,実測されたカーボンナノチュー ブの超臨界メタンの吸着挙動に関連付けられる。つまり, 活性炭よりも大きなメタン吸着密度が実測されたのは,き わめて深いポテンシャルを持つ粒子間空隙サイトQの存在 とチューブ内へと通じるナノチューブの壁にある窓の存在 が大きく関わっていると考えられる。この特性を利用して, カーボンナノチューブ類がメタン吸着材として役立つよう になれば幸いである

文 献

- S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Takahashi, *Chem. Phys. Lett.* **309**, 165 (1999).
- 2) S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
- 3) S. Bandow, F. Kokai, K. Takahashi, M. Yudasaka,

L. C. Qin, and S. Iijima, Chem. Phys. Lett. 321, 514 (2000).

- K. Murata, K. Kaneko, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, *Chem. Phys. Lett.* 331, 14 (2000).
- A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, *Nature* 386, 377 (1997).
- P. Chen, X. Wu, J. Lin, and K. L. Tan, Science 285, 91 (1999).
- K. Murata, Y. Hanzawa, and K. Kaneko, Adv. Eng. Matel. in press.
- 8) IUPAC Commission on Colloid and Surface Chemistry Including Catalysis, *Pure Appl. Chem.* 57, 603 (1985).
- F. Rouquerol, J Rouquerol, and K. S. W. Sing, Adsorption by Powders and Porous Solids, Academic Press (1999).
- 10) K. Kaneko, Carbon 38, 287 (2000).
- 11) T. Iiyama, M. Ruike, and K. Kaneko, *Chem. Phys. Lett.* **331**, 359 (2001).
- T. Ohkubo and K. Kaneko, Colloid Surf. A187-188, 177 (2001).
- 13) K. Kaneko, K. Shimizu, and T. Suzuki, J. Chem. Phys. 97, 8705 (1992).
- 14) K. Murata and K. Kaneko, Chem. Phys. Lett. 321, 342 (2000).
- 15) K. Murata, M. El-Mustapha, and K. Kaneko, J. Chem. Phys. 114, 4196 (2001).
- D. M. Young and A. D. Crowell, *Physical Adsorption* of Gases, Butter-worth (1962).
- 17) K. Murata, J. Miyawaki, and K. Kaneko, *Carbon* in press.
- 18) M. M. K. Salem, P. Braeuer, M. v. Szombathely, M. Heuchel, P. Harting, K. Quitzsch, and M. Jaroniec, *Langmuir* 14, 3376 (1998).
- 19) H. Tanaka and K. Kaneko, *Bull. Cluster Sci. Tech.*4, 9 (2001).
- 20) J. P. Olivier, Studies in Surface Science and Catalysis 128 Characterization of Porous Solid V, K. K. Umger, G. Kreysa, and J. P. Baselt Ed., Elsevier, Amsterdam, p.81 (2000).
- 21) W. A. Steele and M. J. Bojan, Adv. Colloid Interface Sci. 77-76, 153 (1998).
- 22) K. Murata, K. Kaneko, W. A. Steele, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, and S. Iijima, J. Phys. Chem. B 105, 10210 (2001).
- 23) G. Stan and M. W. Cole, Surf. Sci. 395, 281 (1998).
- 24) G. J. Tjatjopoulos, D. L. Feke, and J. A. Mann, Jr., J. Phys. Chem. 92, 4006 (1988).

- 25) $F(a,b,c;z) = \prod_{n=1}^{n=1} [\{a(a+1)...(a+n-1)b(b+1)...(b+n-1)\}] [a(a+1)...(c+n-1)]] z^n$
- 26) K. Murata, K. Kaneko, W. A. Steele, F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, and S. Iijima, *Nano Lett.* 1, 197 (2001).
- 27) T. Ohba, K. Murata, K. Kaneko, W. A. Steele, F. Kokai, K. Takahashi, D. Kasuya, M. Yudasaka, and S. Iijima, *Nano Lett.* 1, 371 (2001).
- 28) K. Kaneko and C. Ishii, *Colloid Surface* **67**, 203 (1992).
- N. Setoyama, T. Suzuki, and K. Kaneko, *Carbon* 36, 1459 (1998).
- 30) K. Murata, J. Miyawaki, K. Kaneko, W. A. Steele, D. Kasuya, F. Kokai, K. Takahashi, M. Yudasaka, and S. Iijima, in preparation.

要 旨

ミクロ細孔性固体のキャラクタリゼーションという観点 と,水素及びメタン貯蔵という観点からカーポンナノチュ ーブ類の分子吸着について解説した。また,カーポンナノ チューブ類と吸着分子の間の相互作用ポテンシャルを求め, 吸着サイトの解析を行った。水素の吸着量は物理吸着では 非常に小さい。一方メタン吸着は通常の活性炭と比べてカ ーポンナノチューブ類は細孔を有効に活用できるため期待 がもてる。 村田克之 Katsuyuki Murata 千葉大学大学院自然科学研究科, Graduate School of Natural Science and Technology, Chiba Univ., TEL. 043-290-2770, FAX. 043-290-2788, e-mail: murata@pchem2. s.chiba-u.ac.jp

研究テーマ:ナノチューブ類への気体吸着,高圧気体吸着の基礎研究

趣味 : 料理 , ワイン , お茶

田中秀樹 Hideki Tanaka 千葉大学大学院自然科学研究科, Graduate School of Natural Science and Technology, Chiba Univ., TEL. 043-290-2770, FAX. 043-290-2788, e-mail: tanaka@pchem2. s.chiba-u.ac.jp 研究テーマ:ナノ細孔における分子制約 趣味:釣り,スキー,バイク

金子克美 Katsumi Kaneko 千葉大学大学院自然科学研究科, Graduate School of Natural Science and Technology, Chiba Univ., TEL. 043-290-2770, FAX. 043-290-2788, e-mail: kaneko@pchem2. s.chiba-u.ac.jp 研究テーマ:ナノ空間分子科学,ナノ空 間物質科学 趣味:高原の散歩

「2001年度ハフマン賞受賞記念シンポジウム」 開催される

徂徠道夫前会長が米国コロラドスプリングスで開催され たカロリメトリーコンファレンスにおいて2001年度のハフ マン賞を受賞されたことを記念して,去る10月19日,大 阪大学大学院理学研究科の笠井俊夫(反応物理化学),山口 兆両教授(量子化学)の発案で,表題のシンポジウムが大 阪大学豊中キャンパスで開催された。6人の話題提供者が それぞれ,以下の題目で講演を行なった。齋藤一弥「分子 集合体における物性熱力学の展開」,長野八久「化学結合論 は終わったか」,J. Sipowska「Calorimetry: The present status and the future perspective」,川路均「機能性セラ ミックスにおける材料熱力学の展開」, 稲葉 章「界面で形 成される2次元固体の物理化学」, 徂徠道夫「機能性化合物 の分子論的熱力学」(講演順)。いずれも基礎化学や材料科 学におけるこれからの熱測定の役割に力点が置かれた講演 であった。遠方からの参加者も含めて約60人が集い, 和や かな中にも活発な議論がなされた。日頃熱測定にはあまり 縁のない研究者も多数交えて, これからの化学と熱測定の 課題が議論されたことは大変有意義であった。なお, 講演 の要旨と資料は冊子にまとめられているので, 入手をご希 望の方は大阪大学大学院理学研究科分子熱力学研究センタ - 齋藤一弥まで連絡されたい。

(長野八久記)

Netsu Sokutei 28 (5) 2001